Some properties of extensions of loops

The paper is a kind of sequel to the paper [3]. In the paper we shall analyse some aspects of the construction of extensions of loops given in [3]. Moreover, we shall consider this construction in the case when loops are groups.

Definitions of quasigroup, loop, subloop, normal subloop, coset, quotient loop are used according to Bruck [2].

DEFINITION 1. (cf. [3]). A loop Σ is said to be an extension of a loop K by a loop L if the following conditions hold:

(i) K is a normal subloop of the loop Σ,

(ii) the quotient loop Σ/K and the loop L are isomorphic.

Let K be a normal subloop of a loop Σ. A mapping $s: \Sigma/K \to \Sigma$ is called a selector if it satisfies the following condition:
\[\bigwedge_{M \in \sum/K} s(M) \in M. \]

Let \(L \) and \(K \) be loops. Let \(f, g : L \to K \) be arbitrary mappings. By a product \(fg \) of the mappings \(f \) and \(g \) we mean a mapping \(fg : L \to K \) defined as follows:

\[(fg)(l) = f(l)g(l)\]

for \(l \in L \).

Theorem 1. Let \(\sum \) and \(L \) be loops. Let \(K \) be a normal subloop of the loop \(\sum \). The loop \(\sum \) is an extension of the loop \(K \) by the loop \(L \) if and only if there exists a mapping \(\sigma : L \to \sum \) fulfilling the following conditions:

\[(w_1) \bigwedge_{x \in \sum} \bigvee l, k \in L \times K x = \sigma(l)k,\]
\[(w_2) \bigwedge_{l_1, l_2 \in L} [\sigma(l_1 l_2)K = (\sigma(l_1)K)(\sigma(l_2)K)].\]

Proof. If the loop \(\sum \) is an extension of the loop \(K \) by the loop \(L \), then the mapping \(\sigma = s \circ f \), where \(s : \sum/K \to \sum \) is a selector and \(f : L \to \sum/K \) is an isomorphism, satisfies conditions \((w_1)\) and \((w_2)\) (cf. [3]).

Let a mapping \(\sigma : L \to \sum \) satisfies conditions \((w_1)\) and \((w_2)\). We define a mapping \(f : L \to \sum/K \) as follows:

\[f(l) = \sigma(l)K \]

for \(l \in L \).

As an easy consequence of conditions \((w_1)\) and \((w_2)\) we obtain that the mapping \(f \) is an isomorphism.

Then the loop \(\sum \) is an extension of the loop \(K \) by the loop \(L \).
THEOREM 2. Let a loop Σ be an extension of a loop K by a loop L. A mapping $\sigma : L \rightarrow \Sigma$ satisfies conditions (w_1) and (w_2) if and only if $\sigma = s \circ f$, where $s : \Sigma/K \rightarrow \Sigma$ is a selector and $f : L \rightarrow \Sigma/K$ is an isomorphism.

Proof. Let $\sigma : L \rightarrow \Sigma$ satisfies conditions (w_1) and (w_2). We define a mapping $f : L \rightarrow \Sigma/K$ as follows:

$$f(l) = \sigma(l)K$$

for $l \in L$. The mapping f is an isomorphism of the loops L and Σ/K. Define a selector $s : \Sigma/K \rightarrow \Sigma$ by the rule:

$$s(f(l)) = \sigma(l)$$

for $l \in L$. Hence $\sigma = s \circ f$.

If $\sigma = s \circ f$, where $s : \Sigma/K \rightarrow \Sigma$ is a selector and $f : L \rightarrow \Sigma/K$ is an isomorphism, then conditions (w_1) and (w_2) are fulfilled (cf. [3]).

LEMMA 1. Let a loop Σ be an extension of a loop K by a loop L. Let $\sigma_1 = s_1 \circ f_1$, where $s_1 : \Sigma/K \rightarrow \Sigma$ is a selector and $f_1 : L \rightarrow \Sigma/K$ is an isomorphism. Then for an arbitrary automorphism $\chi \in \text{Aut}(L)$ and an arbitrary mapping $\delta : L \rightarrow K$ the mapping $\sigma = (\sigma_1 \circ \chi)\delta$ satisfies conditions (w_1) and (w_2).

Proof. At first, we shall prove that the mapping σ we can represent in the form $\sigma = s \circ f$, where $s : \Sigma/K \rightarrow \Sigma$ is a selector and $f : L \rightarrow \Sigma/K$ is an isomorphism.

The mapping σ can be written as $\sigma = (s_1 \circ f_1 \circ \chi)\delta$. Put $f = f_1 \circ \chi$. Of course, $f : L \rightarrow \Sigma/K$ is an isomorphism and $\sigma = (s_1 \circ f)\delta$.

A mapping $s: \Sigma/K \rightarrow \Sigma$ defined by the following rule:

$$s(f(l)) = s_1(f(l)) \delta(l)$$

for $l \in L$ is a selector.

Thus $s_1(l) = s_1(f(l)) \delta(l) = s(f(l)) = (s \circ f)(l)$ for an arbitrary $l \in L$, hence $s = s \circ f$. Applying Theorem 2 we get that the mapping s satisfies conditions (w_1) and (w_2).

THEOREM 3. Let a loop Σ be an extension of a loop K by a loop L. Let $s_1 = s_1 \circ f_1$, where $s_1: \Sigma/K \rightarrow \Sigma$ is a selector and $f_1: L \rightarrow \Sigma/K$ is an isomorphism. Let $s: L \rightarrow \Sigma$ be an arbitrary mapping. The mapping s satisfies conditions (w_1) and (w_2) if and only if there exist an automorphism $\alpha \in \text{Aut}(L)$ and a mapping $\delta: L \rightarrow K$ such that $s = (s_1 \circ \alpha) \delta$.

Proof. If a mapping $s: L \rightarrow \Sigma$ satisfies conditions (w_1) and (w_2), then according to Theorem 2 $s = s \circ f$, where $s: \Sigma/K \rightarrow \Sigma$ is a selector and $f: L \rightarrow \Sigma/K$ is an isomorphism. Notice that the mapping

$$(1) \quad \alpha = f_1^{-1} \circ f$$

is an automorphism of the loop L. And so we have $f = f_1 \circ \alpha$ and $s = s \circ f_1 \circ \alpha$. Moreover,

$$(2) \quad s((f_1 \circ \alpha)(l))K = s_1((f_1 \circ \alpha)(l))K$$

for $l \in L$. Using equality (2) one can define a mapping $\delta: L \rightarrow K$ as follows:

$$(3) \quad s((f_1 \circ \alpha)(l)) = s_1((f_1 \circ \alpha)(l)) \delta(l)$$

for $l \in L$. Since $s = s \circ f_1 \circ \alpha$ and so $\delta(l) =$

$= (s \circ f_1 \circ \alpha)(l) = ((s_1 \circ f_1 \circ \alpha)(l)) \delta(l) = (s_1 \circ \alpha)(l) \delta(l)$

10
for \(l \in L \). Then \(\sigma = (\sigma_1 \circ \kappa) \delta \), where \(\kappa \in \text{Aut}(L) \) is an automorphism defined by rule (1) and \(\delta : L \to K \) is a mapping defined by formula (3).

If there exist an automorphism \(\kappa \in \text{Aut}(L) \) and a mapping \(\delta : L \to K \) such that \(\sigma = (\sigma_1 \circ \kappa) \delta \), then from Lemma 1 we get that \(\sigma \) satisfies conditions \((w_1) \) and \((w_2) \).

For ease of reference we now write the following definition (cf. [3]).

Let \(L \) and \(K \) be loops. Let \(\psi : L \times K \times L \times K \to K \) be any mapping fulfilling the following conditions:

1° \(\psi(l_1, k_1, 1, 1) = \psi(1, 1, 1, k) = k \),
2° \(\psi(1, k_1, 1, k_2) = k_1 k_2 \),
3° the mapping \(\psi(l_1, k_1, l_2, \cdot) : K \to K \) is a bijection,
4° the mapping \(\psi(l_1, \cdot, l_2, k_2) : K \to K \) is a bijection,
for \(1, l_1, l_2 \in L \) and \(k, k_1, k_2 \in K \).

DEFINITION 2. An algebraic structure \((L \times K, \circ)\) with an operation \(\circ \) defined by the formula:

\[\langle l_1, k_1 \rangle \circ \langle l_2, k_2 \rangle = \langle l_1 l_2, \psi(l_1, k_1, l_2, k_2) \rangle \]

for arbitrary pairs \(\langle l_1, k_1 \rangle, \langle l_2, k_2 \rangle \in L \times K \) is called a product \(\langle L \times K, \circ \rangle \).

A product \(\langle L \times K, \circ \rangle \) is a loop (cf. [3]).

Let a loop \(\Sigma \) be an extension of a loop \(K \) by a loop \(L \).

Let \(s, s_1 : \Sigma / K \to \Sigma \) be selectors such that \(s(K) = s_1(K) = 1 \) and let \(f, f_1 : L \to \Sigma / K \) be isomorphisms.

We define mappings \(\sigma, \sigma_1 : L \to \Sigma \) in the following way:

\[\sigma = s \circ f \quad \text{and} \quad \sigma_1 = s_1 \circ f_1. \]
By means of the mappings \(\sigma \) and \(\sigma_1 \) we define mappings
\[\varphi, \varphi_1 : L \times K \times L \times K \to K \]
by the formulas:
\[
(\sigma(l_1)k_1)(\sigma(l_2)k_2) = \sigma(l_1l_2) \varphi(l_1,k_1,l_2,k_2),
\]
\[
(\sigma_1(l_1)k_1)(\sigma_1(l_2)k_2) = \sigma_1(l_1l_2) \varphi_1(l_1,k_1,l_2,k_2)
\]
for \(l_1, l_2 \in L \) and \(k_1, k_2 \in K \).

The loops \(\langle L ; K \rangle \varphi \) and \(\langle L ; K \rangle \varphi_1 \) are extensions of the loop \(K^\# = \{ \langle 1 ; k \rangle : k \in K \} \) by the loop \(L \) (cf. [3]).

The extensions \(\langle L ; K \rangle \varphi \) and \(\langle L ; K \rangle \varphi_1 \) are isomorphic. Indeed, mappings \(F : \Sigma \to \langle L ; K \rangle \varphi \) and \(F_1 : \Sigma \to \langle L ; K \rangle \varphi_1 \) defined by the rules:
\[
F(x) = F(\sigma(l)k) = \langle l, k \rangle,
\]
\[
F_1(x) = F_1(\sigma_1(l_1)k_1) = \langle l_1, k_1 \rangle,
\]
for an arbitrary \(x = \sigma(l)k = \sigma_1(l_1)k_1 \in \Sigma \) are isomorphisms (cf. [3]). Then the mapping \(\psi = F_1 \circ F^{-1} \) is an isomorphism of the extensions \(\langle L ; K \rangle \varphi \) and \(\langle L ; K \rangle \varphi_1 \).

According to Theorem 2 the mappings \(\sigma \) and \(\sigma_1 \) satisfy conditions \((w_1) \) and \((w_2) \). It follows from Theorem 3 that \(\sigma = (\sigma_1 \circ \chi) \delta \) for some \(\chi \in \text{Aut}(L) \) and mapping \(\delta : L \to K \).

In the quotient loops \(\langle L ; K \rangle \varphi / K^\# \) and \(\langle L ; K \rangle \varphi_1 / K^\# \) all cosets have the same form \(\{1\} \times K \) for every \(l \in L \). It is easy to see that the loops \(\langle L ; K \rangle \varphi / K^\# \) and \(\langle L ; K \rangle \varphi_1 / K^\# \) are identical.

A mapping \(g : L \to \langle L, K \rangle \varphi / K^\# \) defined as follows:
\[
g(l) = \{1\} \times K
\]
for \(l \in L \) is an isomorphism (cf. [3]). By means of the mapping \(g \) and the automorphism \(\chi \in \text{Aut}(L) \) we define an
isomorphism \(g_1 : L \rightarrow \langle L, K \rangle^{/K} \) putting \(g_1 = g \circ \chi \).

Notice that \(g(1) = \{\langle 1, k \rangle : k \in K\} \) and \(g_1(1) = \{\langle 1_1, k \rangle : 1_1 = \chi(1) \wedge k \in K\} \) for every \(1 \in L \). We shall prove that \(\psi(g(1)) = g_1(1) \) for \(1 \in L \). If \(\langle 1, k \rangle \in g(1) \) then \(\psi(\langle 1, k \rangle) = F_1(F^{-1}(\langle 1, k \rangle)) = F_1(\xi(1)k) \). Since \(\xi(1) = (\xi_1 \circ \chi)(1) \xi(1) = \xi_1(1_1) \xi(1) \), where \(1_1 = \chi(1) \) and so \(\psi(\langle 1, k \rangle) = F_1(\xi(1)k) = F_1((\xi_1(1_1) \xi(1))k) = F_1(\xi_1(1_1) \xi(1)) \circ F_1(k) = \langle 1_1, \xi(1) \rangle \circ \langle 1, k \rangle = \langle 1_1, g_1(1_1, \xi(1), 1, k) \rangle \in g_1(1) \).

Since the mappings \(\psi, g, g_1 \) are isomorphisms, then the inclusion \(\psi(g(1)) \subseteq g_1(1) \) implies the equality \(\psi(g(1)) = g_1(1) \) for every \(1 \in L \). Notice that \(\psi(\langle 1, k \rangle) = F_1(F^{-1}(\langle 1, k \rangle)) = F_1(\xi(1)k) = F_1(\xi_1(1)k) = \langle 1, k \rangle \) for every \(k \in K \).

In the group theory is known the following definition of an extension of groups (cf. [4]).

DEFINITION 3. A group \(\Sigma \) is said to be an extension of a group \(K \) by a group \(L \) if the following conditions hold:

(i) \(K \) is a normal subgroup of the group \(\Sigma \),
(ii) the quotient group \(\Sigma/K \) and the group \(L \) are isomorphic.

Let a group \(\Sigma \) be an extension of a group \(K \) by a group \(L \). Let \(s: \Sigma/K \rightarrow \Sigma \) be a selector such that \(s(K) = 1 \) and let \(f: L \rightarrow \Sigma/K \) be an isomorphism. We define a mapping \(\xi : L \rightarrow \Sigma \) as follows:

\[\xi = s \circ f. \]

Let \(\psi : L \times K \times L \times K \rightarrow K \) be a mapping defined by the
following rule:

\[(\sigma(l_1)k_1)(\sigma(l_2)k_2) = \sigma(l_1l_2)\varphi(l_1,k_1,l_2,k_2)\]

for arbitrary \(l_1,l_2 \in L\) and \(k_1,k_2 \in K\).

We shall prove that the mapping \(\varphi\) has the form:

\[\varphi(l_1,k_1,l_2,k_2) = \lambda(l_1,l_2)\mu(k_1,l_2)k_2\]

for arbitrary \(l_1,l_2 \in L\) and \(k_1,k_2 \in K\), where mappings

\[\lambda: L \times L \rightarrow K\]

and \(\mu: K \times L \rightarrow K\) satisfy the following conditions:

(a) \(\lambda(l,1) = \lambda(1,l) = 1\),

(b) \(\mu(k,1) = k\),

(c) \(\mu(1,l) = 1\),

(d) the mapping \(\mu(\cdot,1): K \rightarrow K\) is a bijection,

(e) \(\mu(k_1,k_2,k_1) = \mu(k_1,k_2)\mu(k_1,k_2,1)\mu(k_1,k_2,1)\lambda(l_1l_2,1)\)

(f) \(\lambda(l_1,l_2)\lambda(l_2,l_3) = \lambda(l_1l_2,l_3)\mu(\lambda(l_1,l_2),l_3)\)

for \(l_1,l_2,l_3 \in L\) and \(k,k_1,k_2 \in K\).

In view of Theorem 2 the mapping \(\sigma\) satisfies condition \((w_2)\) which may be written in the form:

\[(\sigma(l_1)\sigma(l_2))k = \sigma(l_1l_2)k\]

for arbitrary \(l_1,l_2 \in L\).

Using (5) we can define a mapping \(\lambda: L \times L \rightarrow K\) in the following way:

\[\sigma(l_1)\sigma(l_2) = \sigma(l_1l_2)\lambda(l_1,l_2)\]

for arbitrary \(l_1,l_2 \in L\).

A mapping \(\mu: K \times L \rightarrow K\) we define by the rule:

\[\mu(k, l) = \sigma(1)^{-1}k\sigma(l)\]

for arbitrary \(l \in L\) and \(k \in K\).
We shall prove that the mappings λ and μ satisfy conditions (a_1) - (a_7).

It is easy to check that conditions (a_1) - (a_4) hold.

If $k_1, k_2 \in K$ and $l \in L$, then $\mu(k_1 k_2, l) = \sigma(l)^{-1} k_1 k_2 \sigma(l) = (\sigma(l)^{-1} k_1 \sigma(l)) (\sigma(l)^{-1} k_2 \sigma(l)) = \mu(k_1, l) \mu(k_2, l)$ and so condition (a_5) is fulfilled.

If $k \in K$ and $l_1, l_2 \in L$, then

$$\mu(k, l_1 l_2) = \sigma(l_1 l_2)^{-1} k \sigma(l_1 l_2) =$$

$$= [\sigma(l_1) \sigma(l_2) \lambda(l_1, l_2)^{-1}]^{-1} k [\sigma(l_1) \sigma(l_2) \lambda(l_1, l_2)^{-1}] =$$

$$= \lambda(l_1, l_2) \sigma(l_2)^{-1} (\sigma(l_1)^{-1} k \sigma(l_1)) \sigma(l_2) \lambda(l_1, l_2)^{-1} =$$

$$= \lambda(l_1, l_2) (\sigma(l_2)^{-1} \mu(k, l_1) \sigma(l_2)) \lambda(l_1, l_2)^{-1} =$$

$$= \lambda(l_1, l_2) \mu(\mu(k, l_1), l_2) \lambda(l_1, l_2)^{-1}$$

and so condition (a_6) is fulfilled.

If $l_1, l_2 \in L$ and $k_1, k_2 \in K$, then

$$(\sigma(l_1) k_1) (\sigma(l_2) k_2) = \sigma(l_1 l_2) \lambda(l_1, l_2) \mu(k_1, l_2) k_2.$$

Indeed, $(\sigma(l_1) k_1) (\sigma(l_2) k_2) =$

$$= \sigma(l_1) \sigma(l_2) \mu(k_1, l_2) k_2 =$$

$$= \sigma(l_1) \sigma(l_2) \mu(k_1, l_2) k_2 = \sigma(l_1 l_2) \lambda(l_1, l_2) \mu(k_1, l_2) k_2.$$

If $l_1, l_2, l_3 \in L$ and $k_1, k_2, k_3 \in K$, then

$$(\sigma(l_1) k_1) [(\sigma(l_2) k_2)(\sigma(l_3) k_3)] = [(\sigma(l_1) k_1)(\sigma(l_2) k_2)](\sigma(l_3) k_3).$$

Using (6) we have:

$$(\sigma(l_1) k_1) [(\sigma(l_2) k_2)(\sigma(l_3) k_3)] =$$

$$= (\sigma(l_1) k_1) [\sigma(l_2 l_3) \lambda(l_2, l_3) \mu(k_2, l_3) k_3] =$$

$$= \sigma(l_1 l_2 l_3) \lambda(l_1, l_2 l_3) \mu(k_1, l_2 l_3) \lambda(l_2, l_3) \mu(k_2, l_3) k_3;$$

$$[(\sigma(l_1) k_1) (\sigma(l_2) k_2)](\sigma(l_3) k_3) =$$

$$= [\sigma(l_1 l_2)(\lambda(l_1, l_2) \mu(k_1, l_2) k_2)](\sigma(l_3) k_3).$$
Hence, \(\lambda(1, 1, 1, 1) \mu(k_1, 1, 1, 1) = \lambda(1, 1, 1, 1) \mu(k_1, 1, 1, 1) \).

Applying conditions \((a_6)\) and \((a_7)\) to the left side and the right side of the above equality, respectively, we get:

\[
\lambda(1, 1, 1, 1) \mu(k_1, 1, 1, 1) \lambda(1, 1, 1, 1) = \lambda(1, 1, 1, 1) \mu(k_1, 1, 1, 1) \mu(1, 1, 1, 1) \mu(k_2, 1, 1, 1)
\]

and this means that condition \((a_7)\) holds.

Comparing equalities \((4)\) and \((6)\) we obtain

\[
\psi(l_1, k_1, l_2, k_2) = \lambda(l_1, l_2) \mu(k_1, l_2) k_2
\]

for \(l_1, l_2 \in L \) and \(k_1, k_2 \in K \).

It follows from \([3]\) that the group \(\Sigma \) and the loop \(<L; K>\psi \), where \(\psi \) is a mapping defined by formula \((4)\) are isomorphic, thus \(<L; K>\psi \) is a group.

If a mapping \(\psi : L \times K \times L \times K \rightarrow K \) has the form

\[
\psi(l_1, k_1, l_2, k_2) = \lambda(l_1, l_2) \mu(k_1, l_2) k_2
\]

for arbitrary \(l_1, l_2 \in L \) and \(k_1, k_2 \in K \), where mappings

\(\lambda : L \times L \rightarrow K \) and \(\mu : K \times L \rightarrow K \) satisfy conditions

\((a_1) - (a_7)\), then \(<L; K>\psi \) is a group.

It is easy to check that conditions \(1^0 - 4^0\) of Definition 2 are fulfilled, then \(<L; K>\psi \) is a loop.

We shall show that the operation \(\circ \) in the loop

\(<L; K>\psi \) is associative.

If \(l_1, l_2, l_3 \in L \) and \(k_1, k_2, k_3 \in K \), then

\[
<l_1, k_1> \circ [<l_2, k_2> \circ <l_3, k_3>] =
\]

\[
= <l_1 l_2 l_3, \psi(l_1, k_1, l_2 l_3, \psi(l_2, k_2, l_3, k_3)>
\]
and \[[<1_1,k_1> \circ <l_2,k_2>] \circ <l_3,k_3> = \]
\[= <l_1l_2l_3, \psi(l_1l_2, \psi(l_1,k_1,l_2,k_2),l_3,k_3)> \]
Applying (a_6), (a_7) and (a_5) we obtain:

\[\psi(l_1,k_1,l_2l_3, \psi(l_2,k_2,l_3,k_3)) = \]
\[= \lambda(l_1,l_2l_3) \mu(k_1,l_2l_3) \lambda(l_2,l_3) \mu(k_2,l_3)k_3 = \]
\[= \lambda(l_1,l_2l_3) \lambda(l_2,l_3) \mu(k_1,l_2,l_3) \lambda(l_2,l_3) \mu(k_2,l_3)k_3 = \]
\[= \lambda(l_1,l_2l_3) \lambda(l_2,l_3) \mu(k_1,l_2,l_3) \mu(k_2,l_3)k_3 = \]
\[= \lambda(l_1,l_2,l_3) \mu(k_1,l_2,l_3) \mu(k_2,l_3)k_3 = \]
\[= \psi(l_1l_2, \psi(l_1,k_1,l_2,k_3),l_2,k_3). \]
Thus \(<L ; K \psi \) is a group.

It follows from the considerations in [3] that the group \(<L ; K \psi \), where the mapping \(\psi \) has form (7), is an extension up to isomorphism of the group \(K \) by the group \(L \).

In this way the problem of determination of all extensions of a group \(K \) by a group \(L \) can be reduced to the construction of all products \(<L ; K \psi > \), where the mapping \(\psi \) has form (7).

References
