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Two constant sign solutions for a nonhomogeneous
Neumann boundary value problem

Abstract. We consider a nonlinear Neumann problem with a nonhomoge-
neous elliptic differential operator. With some natural conditions for its
structure and some general assumptions on the growth of the reaction term
we prove that the problem has two nontrivial solutions of constant sign.
In the proof we use variational methods with truncation and minimization
techniques.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C1,α boundary ∂Ω, where α ∈ (0, 1]
is a positive constant. In this paper we are looking for smooth solutions to the
following Neumann problem−div a(∇u(z)) = f(z, u(z)) a.e. in Ω,

∂u

∂na
= 0 on ∂Ω,

(1.1)

where ∂u
∂na

= (a(∇u(z)), n(z))RN with n(·) = (n1(·), . . . , nN (·)) the outward unit
normal vector on ∂Ω. On the continuous map a = (ai)Ni=1 : RN → RN we impose
certain conditions (see Section 3) to obtain a p-Laplacian type operator, which uni-
fies several important differential operators. Similar conditions are studied widely
in literature (see Damascelli [2], Montenegro [6], Motreanu-Papageorgiou [7]), as
they allow us to apply the regularity results of Lieberman [5]. The reaction term
f : Ω× R→ R is a Carathéodory function. We assume that f(z, ·) has a positive
and negative z-dependant zero and we are interested in the existence of constant
sign positive and negative solutions of Problem (1.1), imposing some growth con-
ditions on f(z, ·) only near zero, without any control in ±∞.
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The rest of this paper is organized as follows. In Section 2 we provide math-
ematical preliminaries and recall the main mathematical tools which will be em-
ployed in this paper. In Section 3 we formulate the assumptions on maps a and f
and provide a basic example of the reaction term f . Next we prove the existence
theorem using variational and truncation methods.

2. Mathematical background

In this paper we will denote by (·, ·)RN the scalar product in RN . Also ‖ · ‖
denotes the norm in Sobolev space W 1,p(Ω). We will assume that 1 < p <∞.

In the analysis of Problem (1.1) we will use the positive cone

C+ =
{
u ∈ C1(Ω̄) | u(z) ≥ 0 for all z ∈ Ω̄ and ∂u

∂na
= 0 on ∂Ω

}
and its interior given by

intC+ = {u ∈ C+ | u(x) > 0 for all z ∈ Ω̄}.

Below we present main mathematical tools which will be needed in the proofs
of our results.

Definition 2.1
Let φ : X ⊇ M → R be a functional on a subset M of the Banach space X. We
say that φ is

• weakly sequentially lower semicontinuous on M iff for each u ∈M and each
sequence {un}n ⊆M such that un → u weakly in X, we have

φ(u) ≤ lim inf
n→∞

φ(un),

• weakly coercive iff
lim
‖u‖→∞

φ(u) =∞ on M.

Theorem 2.2 (25.D in Zeidler [9])
Suppose that the functional φ : X ⊇M → R has the following three properties:

i. M is nonempty closed convex set in reflexive Banach space X,

ii. φ is weakly sequentially lower semicontinuous,

iii. φ is weakly coercive.

Then φ has a minimum on M .

Theorem 2.3 (1.7 in Lieberman [5])
Let h : R+ → R be a C1-function satisfying

δ <
th′(t)
h(t) ≤ c0 for all t > 0
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with some constants δ > 0, c0 > 0. We define H(ξ) =
∫ ξ

0 h(t) dt. By W 1,H(Ω) we
denote the class of functions which are weakly differentiable in the set Ω with∫

Ω
H(|∇u|) dz <∞.

Let α ∈ (0, 1], Λ,Λ1,M0 > 0 be positive constants and let Ω ⊆ RN be a bounded
domain with C1,α boundary. Suppose that A = (A1, . . . , AN ) : Ω × [−M0,M0] ×
RN → RN is differentiable, B : Ω × [−M0,M0] × RN → R is a Carathéodory
function and functions A, B satisfy the following conditions

(∇yA(z1, ξ1, y)x, x)RN ≥
h(|y|)
|y|
|x|2, y 6= 0N , (2.1a)∣∣∣ ∂

∂yj
Ai(z, ξ, y)

∣∣∣ ≤ Λh(|y|)
|y|

, y 6= 0N , (2.1b)

|A(z1, ξ1, y)−A(z2, ξ2, y)| ≤ Λ1(1 + h(|y|))(|z1 − z2|α + |ξ1 − ξ2|α), (2.1c)
|B(z1, ξ1, y)| ≤ Λ1(1 + h(|y|)|y|) (2.1d)

for all z1, z2 ∈ Ω, ξ1, ξ2 ∈ [−M0,M0] and x, y ∈ RN . Then any W 1,H(Ω) solution
u of

divA(z, u,∇u) +B(z, u,∇u) = 0
in Ω with |u| ≤M0 in Ω is in C1,β(Ω) for some positive β depending on α, Λ, δ,
c0, N .

Theorem 2.4 (5.3.1 in Pucci-Serrin [8])
Let Ω ⊆ RN be a domain. Suppose that A ∈ C1(R+) is such that function
s 7→ sA(s) is strictly increasing in R+ and sA(s) → 0 as s → 0+. Let B ∈
L∞loc(Ω× R+ × RN ) satisfy the following condition

B(z, ξ, y) ≥ −κΦ(|y|)− p(ξ)

for all (z, ξ, y) ∈ Ω × [0,∞) × RN such that |ξ| ≤ 1, where κ > 0 is a constant,
p : R+ → R is non-decreasing on some interval (0, δ), δ > 0, Φ(s) := sA(s) when
s > 0 and Φ(0) := 0. For s ≥ 0 we define

L(s) = sΦ(s)−
∫ s

0
Φ(t) dt.

If either p ≡ 0 in [0, d], d > 0, or the following condition is satisfied

lim
ε→0+

∫ ε

0

1
L−1(P (s)) ds =∞,

where P (s) =
∫ s

0 p(t) dt, then the strong maximum principle for

div(A(|∇u(z)|)∇u(z)) +B(z, u(z),∇u(z)) ≤ 0 (2.2)

holds, i.e. if u is a classical distribution solution of (2.2) with u(z0) = 0 at some
point z0 ∈ Ω, then u ≡ 0 in Ω. By classical distribution solution we mean a
function u ∈ C1(Ω), which satisfies (2.2) in the distribution sense.
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To deal with the boundary condition in Problem (1.1), we introduce the fol-
lowing function space framework, due to Casas-Fernández [1]: for p′ ∈ (1,∞) such
that 1

p + 1
p′ = 1 we introduce a separable Banach space

W p′(div,Ω) = {v ∈ Lp
′
(Ω,RN ) | div v ∈ L1(Ω)}

endowed with the norm

‖v‖Wp′ (div,Ω) = ‖v‖Lp′ (Ω,RN ) + ‖div v‖L1(Ω).

If Ω has a Lipschitz boundary ∂Ω, we have that the space C∞(Ω̄,RN ) is dense in
W p′(div,Ω) (see Lemma 1 in Casas-Fernández [1]). We denote the space of traces
on ∂Ω by W 1/p′,p(∂Ω), endowed with the usual norm, and denote the trace of
u ∈W 1,p(Ω) on ∂Ω by γ0(u). Let us also consider the space

T p(∂Ω) = W 1/p′,p(∂Ω) ∩ L∞(Ω)

endowed with the norm ‖h‖Tp(∂Ω) = ‖h‖W 1/p′,p(∂Ω) + ‖h‖L∞(Ω). We denote the
dual space of T p(∂Ω) by T−p′(∂Ω) and the duality brackets by 〈·, ·〉T . We have

T p(∂Ω) = {γ0(u) | u ∈W 1,p(Ω) ∩ L∞(Ω)}.

Also there exists a unique linear continuous map

γn : W p′(div,Ω)→ T−p
′
(∂Ω)

such that
γn(v) = (v, n)RN , ∀v ∈ C∞(Ω̄,RN ).

From this result one can obtain the following Green’s formula.

Theorem 2.5 (1 in Casas-Fernández [1])
Let a = (ai)Ni=1 : Ω× (R× RN )→ RN be a Carathéodory map, which satisfies

|ai(z, s, ξ)| ≤ k1(|s|p−1 + |ξ|p−1) + k2(z), i = 1, . . . , N

with some constant k1 > 0 and a function k2 ∈ Lp
′(Ω). Then if u ∈ W 1,p(Ω) and

−div a(·, u,∇u) ∈ L1(Ω), then there exists a unique element of T−p′(∂Ω), which
by extension we denote ∂u

∂na
, satisfying the Green’s formula

N∑
i=1

∫
Ω
ai(z, u(z),∇u(z)) ∂v

∂zi
dz =

∫
Ω
−div a(z, u(z),∇u(z))v(z) dz+

〈 ∂u
∂na

, γ0(v)
〉
T

for all v ∈W 1,p(Ω) ∩ L∞(Ω).

3. Problem setting

In this section we formulate our assumptions on the continuous map a and the
Carathéodory reaction term f in Problem (1.1).
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Assumption H(a)1
The function a : RN → RN is such that a(y) = a0(|y|)y for all y ∈ RN , where
a0 : [0,∞) → [0,∞), a0 ∈ C1(0,∞), a0 ∈ C([0,∞)) is such that a0(t) > 0 for
t > 0.

Assumption H(a)2
There exist some constants δ, c0, c1, c2, c3 > 0, q ∈ (1, p) and there exists a function
h ∈ C1(0,∞)p = p′

p′−1 satisfying

δ <
th′(t)
h(t) ≤ c0 for all t > 0, (3.1)

c1t
p−1 ≤ h(t) ≤ c2(tq−1 + tp−1) for all t > 0 (3.2)

such that
|∇a(y)| ≤ c3

h(|y|)
|y|

for all y ∈ RN\{0}. (3.3)

Assumption H(a)3
For all y, ξ ∈ RN such that y 6= 0 we have

(∇a(y)ξ, ξ)RN ≥
h(|y|)
|y|
|ξ|2. (3.4)

Assumption H(a)4
There exists some constants µ ∈ (1, q] and τ ∈ (1, p] such that the map t 7→ G0(t 1

τ )
is convex on (0,∞) and limt→0+

G0(t)
tµ = 0, where G0(t) =

∫ t
0 a0(s)sds.

Proposition 3.1
If assumptions H(a)1–H(a)4 hold, then G0 is strictly convex and strictly increas-
ing. Let

G(y) := G0(|y|), y ∈ RN .
Then G is strictly convex, G(0) = 0 and ∇G(y) = a(y) for y ∈ RN\{0}. Moreover,
for all y ∈ RN

G(y) ≤ (a(y), y)RN . (3.5)

Proof. As a0 > 0, G0 is strictly increasing. Thus the function t 7→ G0(t 1
τ ) is

strictly inceasing on (0,∞). So G0 is also strictly convex, because from H(a)4 we
have for any λ ∈ (0, 1), s, t > 0, s 6= t

G0((1− λ)t+ λs) = G0
(
((1− λ)t+ λs)τ · 1

τ

)
< G0

(
((1− λ)tτ + λsτ ) 1

τ

)
≤ (1− λ)G0

(
(tτ ) 1

τ

)
+ λG0

(
(sτ ) 1

τ

)
.

Here we have used the fact, that for τ > 1 the function t 7→ tτ is strictly convex
on (0,∞). To show that G is also strictly convex, let λ ∈ (0, 1). Then by the
definition of the norm and the properties of G0 (strict monotonicity and strict
convexity) we get

G((1− λ)u+ λv) = G0(|(1− λ)u+ λv|) ≤ G0((1− λ)|u|+ λ|v|)
< (1− λ)G0(|u|) + λG0(|v|)
= (1− λ)G(u) + λG(v).
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To obtain the gradient of G, for i = 1, . . . , N and y ∈ RN\{0} we compute

∂G

∂yi
(y) = ∂G0

∂yi
(|y|) = G′0(|y|) yi

|y|
.

So
∇G(u) = G′0(|y|)

|y|
y = a0(|y|)y = a(y)

(see the definition of G0 in H(a)4). Next we show that inequality (3.5) holds. For
y = 0 the inequality is true. Let y ∈ RN\{0}, b ∈ RN . It follows from convexity
of G that

G(b) ≥ G(y) + (∇G(y), b− y)RN .

As ∇G(y) = a(y) and G(0) = 0, for b = 0 we get

0 ≥ G(y)− (a(y), y)RN .

Lemma 3.2 (Properties of a)
If assumptions H(a)1–H(a)4 hold, then

(a) the map a : RN → RN is maximal monotone and strictly monotone, i.e.[
(b− a(y), x− y)RN > 0 ∀y ∈ RN

]
=⇒ b = a(x),

(a(x)− a(y), x− y)RN > 0 for all x, y ∈ RN , x 6= y,

respectively,

(b) there exists c4 > 0 such that for all y ∈ RN

|a(y)| ≤ c4(|y|q−1 + |y|p−1), (3.6)

(c) for all y ∈ RN we have

(a(y), y)RN ≥
c1

p− 1 |y|
p. (3.7)

Proof. (a) Strict monotonicity of a is equivalent to the strict convexity of G (see
Zeidler [9], Proposition 25.10). As a is monotone and continuous, it is also maximal
monotone (Zeidler [9]).

(b) and (c) The proof is similar to the proof of Lemma 2.1 in Damascelli [2].
We use the fact that

aj(y1)− aj(y2) =
∫ 1

0

N∑
i=1

∂aj
∂xi

(y1 + t(y1 − y2))((y1)i − (y2)i) dt

and, as a((0, . . . , 0)) = 0 by H(a)1, from (3.3) and (3.2) (see H(a)2) we get (3.6).
Similarly, from H(a)3 and (3.2) in H(a)2 we get (3.7).
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Corollary 3.3
If hypotheses H(a)1–H(a)4 hold, then for all y ∈ RN

c1
p(p− 1) |y|

p ≤ G(y) ≤ c4(|y|q + |y|p). (3.8)

Proof. To prove the first inequality we observe, that from (3.7) we have

a0(|y|)|y|2 ≥ c1
p− 1 |y|

p for all y ∈ RN .

So in particular
a0(s)s ≥ c1

p− 1s
p−1 for all s ≥ 0.

Thus

G(y) = G0(|y|) =
∫ |y|

0
a0(s)sds ≥

∫ |y|
0

c1
p− 1s

p−1 ds = c1
p(p− 1) |y|

p.

We prove the second inequality using the Cauchy-Schwarz inequality, Lemma 3.2
and Proposition 3.1:

G(y) ≤ (a(y), y)RN ≤ |a(y)||y| ≤ c4(|y|q + |y|p)

(see (3.5), (3.6)).

Example 3.4
Here we present some examples of maps satisfying hypotheses H(a):
(a) a(y) = |y|p−2y with 1 < p < ∞. This map corresponds to the p-Laplacian

operator defined by

∆pu = div(|∇u|p−2∇u), u ∈W 1,p(Ω).

(b) a(y) = |y|p−2y + |y|q−2y with 1 < q < p <∞. This map corresponds to the
(p, q)-differential operator defined by

∆pu+ ∆qu, u ∈W 1,p(Ω).

(c) a(y) = (1 + |y|2)(p−2)/2y with 1 < p < ∞. This map corresponds to the
generalized p-mean curvature differential operator defined by

div((1 + |∇u|2)(p−2)/2∇u), u ∈W 1,p(Ω).

Notation 3.5
Let A : W 1,p(Ω)→W 1,p(Ω)∗ be defined by

〈A(u), v〉 =
∫

Ω
(a(∇u(x)),∇v(x)))RN dx, u, v ∈W 1,p(Ω), (3.9)

where 〈·, ·〉 denotes duality brackets for (W 1,p(Ω)∗,W 1,p(Ω)). We will also denote
the duality brackets for (W 1,p

0 (Ω)∗,W 1,p
0 (Ω)) by 〈·, ·〉0. For a Carathéodory func-

tion f : Ω× R→ R let Nf : W 1,p(Ω)→M(Ω,R), whereM(Ω,R) is the set of all
measurable functions on Ω, be defined by

Nf (u) : Ω 3 x 7→ Nf (u)(x) = f(x, u(x)) ∈ R for u ∈W 1,p(Ω).
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Our assumptions on the Carathéodory map f : Ω× R→ R are the following.
Assumption H(f)1
For a.e. z ∈ Ω, f(z, 0) = 0 and for every ρ > 0 there exists aρ ∈ L∞(Ω)+ such
that for a.e. z ∈ Ω and every ξ ∈ R we have

|ξ| ≤ ρ =⇒ |f(z, ξ)| ≤ aρ(z).

Assumption H(f)2
There exist functions w± ∈W 1,p(Ω) ∩ C(Ω̄) and constants c−, c+ such that

w−(z) ≤ c− < 0 < c+ ≤ w+(z) for all z ∈ Ω̄,
f(z, w+(z)) ≤ 0 ≤ f(z, w−(z)) for a.e. z ∈ Ω,

A(w−) ≤ 0 ≤ A(w+) in (W 1,p(Ω))∗, (3.10)

where A is defined by (3.9) and by (3.10) we mean that for any u ∈W 1,p(Ω) with
u ≥, the following inequalities hold

〈A(w−), u〉 ≤ 0 and 〈A(w+), u〉 ≥ 0.

Assumption H(f)3
There exists δ0 > 0 such that for a.e. z ∈ Ω and for all ξ ∈ R such that 0 < |ξ| ≤ δ0,
we have

0 < f(z, ξ)ξ ≤ µF (z, ξ) and ess inf
Ω

F (·, δ0) > 0

with F (z, ξ) =
∫ ξ

0 f(z, t) dt and µ is as in H(a)4.
Assumption H(f)4
There exist ĉ0, ĉ1 > 0 and s, r ∈ R with s 6= r and s < µ, s ≤ τ ≤ p ≤ r ≤ p∗

(where τ and µ are the same as in H(a)4) such that for a.e. z ∈ Ω and for all
ξ ∈ R

f(z, ξ)ξ ≥ ĉ0|ξ|s − ĉ1|ξ|r. (3.11)
Remark 3.6
Hypothesis H(f)3 implies that

ĉ2|ξ|µ ≤ F (z, ξ) for a.e. z ∈ Ω and for |ξ| ≤ δ0,

with some ĉ2 > 0.
Remark 3.7
Let us consider

ψ(ξ) = ĉ0|ξ|s−2ξ − ĉ1|ξ|r−2ξ, ξ ∈ R. (3.12)
Then inequality (3.11) becomes f(z, ξ)ξ ≥ ψ(ξ)ξ for ξ ∈ R and a.e. z ∈ Ω, so for
a.e. z ∈ Ω we have

f(z, ξ) ≥ ψ(ξ), if ξ ≥ 0,
f(z, ξ) ≤ ψ(ξ), if ξ < 0.

(3.13)

Let ξ0 = ( ĉ0
ĉ1

)
1
r−s . We can observe that ψ > 0 on (−∞,−ξ0)∪ (0, ξ0) and ψ < 0 on

(−ξ0, 0)∪ (ξ0,∞). Also ψ is strictly increasing on (∞,−ξ0) and strictly decreasing
on (ξ0,∞). Thus, from H(f)2 and (3.13) we infer that for a.e. z ∈ Ω we have
ψ(w+(z)) < 0 and ψ(w−(z)) > 0.
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Lemma 3.8
Let 1 < s ≤ p ≤ r with s < r. For any constants α, β, γ, given, if α, β > 0, then
we can find M1,M2 > 0 such that for any ξ > 0 we have

αξs − βξr + γξ ≤M1 −M2ξ
p.

Example 3.9
f(z, ξ) = ψ(ξ) = ĉ0|ξ|s−2ξ − ĉ1|ξ|r−2ξ satisfies conditions H(f)1–H(f)4. Indeed,
we can easily observe that H(f)1 and H(f)4 are satisfied. We have that µ

s > 1
and µ

r < 1 (recall that 1 < s < µ ≤ q < p ≤ r), so

f(z, ξ)ξ = ĉ0|ξ|s − ĉ1|ξ|r <
µ

s
· ĉ0|ξ|s −

µ

r
· ĉ1|ξ|r = µF (z, ξ),

thus H(f)3 is fulfilled. We set w±(z) = ±ξ0 = ±( ĉ0
ĉ1

)
1
r−s for z ∈ Ω and c± = ± ξ0

2 .
We have w± ∈W 1,p(Ω) and ∇w± = 0, so

〈A(w±), v〉 =
∫

Ω
(a(∇w±(x)),∇v(x)))RN dx = 0

for any v ∈W 1,p(Ω). Also

f(z, w±(z)) = ψ(w±(z)) = ψ(±ξ0) = 0

(see Remark 3.7). Thus H(f)2 is also fulfilled.

4. Existence of two constant sign solutions

In this section we state the main result of this paper.

Theorem 4.1
If hypotheses H(a)1–H(a)4 and H(f)1–H(f)4 hold, then Problem (1.1) has at
least two nontrivial constant sign smooth solutions

u0 ∈ intC+ and v0 ∈ −intC+.

Proof. First we prove the existence of nontrivial positive smooth solution u0. We
introduce the following truncation of the reaction term

f̂+(z, ξ) =


0, if ξ < 0,
f(z, ξ) + ξp−1, if 0 ≤ ξ ≤ w+(z),
f(z, w+(z)) + ξp−1 + ψ(ξ)− ψ(w+(z)), if ξ > w+(z),

(4.1)

where ψ is given by (3.12). This is a Carathéodory function. Let

F̂+(z, ξ) =
∫ ξ

0
f̂+(z, t)dt

and consider the C1−functional ϕ̂+ : W 1,p(Ω)→ R, defined by

ϕ̂+(u) =
∫

Ω
G(∇u(z)) dz + 1

p
‖u‖pp −

∫
Ω
F̂+(z, u(z)) dz, u ∈W 1,p(Ω).
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Claim
There exists u0 ∈W 1,p(Ω) such that

ϕ̂+(u0) = min
u∈W 1,p(Ω)

ϕ̂+(u) =: m̂+.

It is clear that ϕ̂+ is weakly sequentially lower semicontinuous. We have

F̂+(z, ξ)

=


0, if ξ < 0,∫ ξ

0 f(z, t) dt+ 1
pξ
p, if 0 ≤ ξ ≤ w+(z),∫ w+(z)

0 f(z, t) dt+ (ξ − w+(z))f(z, w+(z))
+
∫ ξ
w+(z) ψ(t) dt− (ξ − w+(z))ψ(w+(z)) + 1

pξ
p, if ξ > w+(z).

(4.2)

As w+ ∈ C(Ω̄), there exists z0, z1 ∈ Ω̄ such that

w+(z0) = max
z∈Ω̄

w+(z)

and
ψ(w+(z1)) = min

z∈Ω̄

(
ĉ0w+(z)s−1 − ĉ1w+(z)r−1) = min

z∈Ω̄
ψ(w+(z)).

Also let us denote Ω< := {z ∈ Ω | 0 ≤ u(z) ≤ w+(z)} and Ω> := {z ∈ Ω | u(z) >
w+(z)}. Then (see (4.2))∫

Ω
F̂+(z, u(z)) dz =

∫
Ω
F̂+(z, u+(z)) dz =

5∑
i=1

Ii + 1
p
‖u+‖pp,

where

I1 =
∫

Ω<

∫ u+(z)

0
f(z, t)dtdz,

I2 =
∫

Ω>

∫ w+(z)

0
f(z, t)dtdz,

I3 =
∫

Ω>
u+(z)f(z, w+(z)) dz +

∫
Ω>

w+(z)(ψ(w+(z))− f(z, w+(z))) dz,

I4 = −
∫

Ω>

( ĉ0
s
w+(z)s − ĉ1

r
w+(z)r

)
dz,

I5 =
∫

Ω>

( ĉ0
s
u+(z)s − ĉ1

r
u+(z)r − u+(z)ψ(w+(z))

)
dz.

From H(f)2, H(f)1 we have

I1 ≤
∫

Ω<

∫ u+(z)

0
f+(z, t)dtdz ≤

∫
Ω<

∫ w+(z0)

0
f+(z, t)dtdz

≤
∫

Ω<

∫ w+(z0)

0
aw+(z0)(z) dtdz

≤ w+(z0) · |Ω<|N · ‖aw+(z0)‖L∞
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and similarly,
I2 ≤ w+(z0) · |Ω>|N · ‖aw+(z0)‖L∞ .

From H(f)2 and Remark 3.7, we have

I3 ≤
∫

Ω>
w+(z)(ψ(w+(z))− f(z, w+(z))) dz ≤ 0.

As ψ and w+ are continuous functions (see H(f)2 and Remark 3.7) and Ω is
bounded, there exists constant ĉ3 ∈ R, such that

I4 ≤ ĉ3.

Using Lemma 3.8 we can find ĉ4, ĉ5, ĉ6 > 0, such that

I5 ≤
∫

Ω>

( ĉ0
s
u+(z)s − ĉ1

r
u+(z)r + u+(z)|ψ(w+(z1))|

)
dz

≤
∫

Ω>

(
ĉ4 − ĉ5u+(z)p

)
dz = ĉ4|Ω>|N − ĉ5

∫
Ω>

u+(z)p dz

≤ ĉ6 − ĉ5‖u+‖pp.
Then

ϕ̂+(u) =
∫

Ω
G(∇u(z)) dz + 1

p
‖u‖pp −

∫
Ω
F̂+(z, u(z)) dz

≥ c1
p(p− 1)

∫
Ω
‖∇u+(z)‖p dz + c1

p(p− 1)

∫
Ω
‖∇u−(z)‖p dz

+ 1
p
‖u+‖pp + 1

p
‖u−‖pp + ĉ5‖u+‖pp −

1
p
‖u+‖pp + ĉ7

≥ ĉ8 + ĉ9‖u‖p,

with some constants ĉ7, ĉ8 ∈ R, ĉ9 > 0 (see (3.8)). Hence ϕ̂+ is also weakly
coercive, so we can apply Theorem 2.2 and obtain that there exists u0 ∈W 1,p(Ω)
such that

ϕ̂+(u0) = min
u∈W 1,p(Ω)

ϕ̂+(u).

This proves the Claim.

By the Claim we get that (ϕ̂+)′(u0) = 0 (see Zeidler [9], Proposition 25.11,
p.510). This implies

A(u0) + |u0|p−2u0 = N
f̂+

(u0). (4.3)

We will show that ϕ̂+(u0) < 0, so u0 6= 0. By virtue of hypothesis H(a)4 for
a given ε > 0 we can find δ1,ε ∈ (0, δ0] such that

G0(t) ≤ εtµ ∀t ∈ (0, δ1,ε],

so by the definition of G for y ∈ RN such that |y| ≤ δ1,ε we have

G(y) ≤ ε|y|µ.
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For ũ ∈ intC+ and t ∈ (0, 1) such that |∇(tũ)(z)| ≤ δ1,ε we get∫
Ω
G(|∇(tũ)(z)|) dz ≤ tµε‖∇(ũ)‖µµ,

so by Remark 3.6 for t ∈ (0, 1) such that tũ(z) ≤ min{δ1,ε, c+} (see H(f)2) and
|∇(tũ)(z)| ≤ min{δ1,ε, c+} for a.e. z ∈ Ω, we have

ϕ̂+(tũ) ≤ tµε‖∇(ũ)‖µµ − ĉ2tµ‖ũ‖µµ

(see (4.2)). Choosing ε < ĉ2‖ũ‖µµ
‖∇(ũ)‖µµ

, we see that

ϕ̂+(u0) ≤ ϕ̂+(tũ) < 0 = ϕ̂+(0),

hence u0 6= 0.
In the next step we will show that

A(u0) = Nf (u0). (4.4)

First we act on (4.3) with −u−0 ∈W 1,p(Ω). Then∫
Ω

(
a(∇u0(z)),∇(−u−0 (z)))

)
RN dz +

∫
Ω
|u0(z)|p−2u0(z)(−u−0 )(z) dz

=
∫

Ω
f̂+(z, u0(z))(−u0)−(z) dz = 0

(see (4.1)). By (3.7) we get
c1

p− 1‖∇(−u−0 ))‖pp + ‖(−u−0 )‖pp ≤ 0,

so u0 ≥ 0 (because u0 6= 0).
Next on (4.3) we act with (u0 − w+)+ ∈ W 1,p(Ω). Suppose that |{u0 >

w+}|N > 0. Then〈
A(u0), (u0 − w+)+〉+

∫
Ω
|u0(z)|p−1(u0 − w+)+(z) dz

=
∫

Ω
f̂+(z, u0(z))(u0 − w+)+(z) dz

=
∫

Ω
(f(z, w+(z)) + u0(z)p−1 + ψ(u0(z))− ψ(w+(z)))(u0 − w+)+(z) dz

=
∫

Ω
|u0(z)|p−1(u0 − w+)+(z) dz +

∫
{u0>w+}

f(z, w+(z))(u0 − w+)(z) dz

+
∫
{u0>w+}

(ψ(u0(z))− ψ(w+(z)))(u0 − w+)(z) dz

<

∫
Ω
|u0(z)|p−1(u0 − w+)+(z) dz +

∫
{u0>w+}

f(z, w+(z))(u0 − w+)(z) dz

≤
∫

Ω
|u0(z)|p−1(u0 − w+)+(z) dz

≤
〈
A(w+), (u0 − w+)+〉+

∫
Ω
|u0(z)|p−1(u0 − w+)+(z) dz,
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(see (4.1), H(f)2 and Remark 3.7), so∫
{u0>w+}

(a(∇u0(z))− a(∇w+(z)),∇((u0 − w+)(z)))RN < 0,

a contradiction with the strict monotonicity of a (see Lemma 3.2). Thus |{u0 >
w+}|N = 0, hence u0 ≤ w+ a.e. in Ω. We have proved that

u0 ∈ [0, w+] and u0 6= 0,

where [0, w+] = {u ∈ W 1,p(Ω) | 0 ≤ u(z) ≤ w+(z) for a.e. z ∈ Ω}. Then, by
virtue of (4.1), we have that

N
f̂+

(u0) = Nf (u0) + |u0|p−2u0,

so by (4.3) we obtain (4.4). Also u0 ∈ L∞(Ω), as for a.e. z ∈ Ω we have |u(z)| ≤
w+(z) ≤ ‖w+‖C(Ω̄). By virtue of (3.6) and the representation theorem for the
elements of W−1,p′(Ω) = (W 1,p

0 (Ω))∗ (see Gasiński-Papageorgiou [3], p.212), we
can obtain

div a(·,∇u0(·)) ∈W−1,p′(Ω).

Next we act on (4.4) with v ∈ C1
c (Ω) and obtain

〈−div a(·,∇u0(·)), v〉0 = 〈Nf (u0), v〉0 .

Thus
−div a(∇u0(z)) = f(z, u0(z)) a.e. in Ω (4.5)

(recall that C1
c (Ω) is dense inW 1,p

0 (Ω)). By Theorem 2.5 we have ∂u
∂na
∈ T−p′(∂Ω)

satisfying the Green’s formula for operator a

N∑
i=1

∫
Ω
ai(∇u(z)) ∂v

∂zi
dz =

∫
Ω
−div a(∇u(z))v(z) dz +

〈
∂u

∂na
, γ0(v)

〉
T

for all v ∈W 1,p(Ω) ∩ L∞(Ω). Combining this with (4.5) and (4.4) we obtain〈
∂u

∂na
, γ0(v)

〉
T

= 0, ∀v ∈W 1,p(Ω) ∩ L∞(Ω),

hence
∂u

∂na
= 0 in T−p

′
(∂Ω)

(recall that γ0(W 1,p(Ω) ∩ L∞(Ω)) = T p(∂Ω)).
As will be proven below, by the regularity result of Lieberman (Theorem 2.3),

we have u0 ∈ C+\{0}. Indeed, let h ∈ C1(0,∞) satisfy (3.1) and (3.2). We take
A(z, ξ, y) = a(y), B(z, ξ, y) = f(z, ξ). Then (2.1a) becomes (3.4). Also (2.1b) is
satisfied by (3.3), with Λ = c3. (2.1c) and (2.1d) obviously hold, because for any
Λ1 > 0 we have |A(z1, ξ1, y)−A(z2, ξ2, y)| = |a(y)− a(y)| = 0. We have

|B(z1, ξ1, y)| = |f(z1, ξ1)| ≤ aw+(z0)(z1) ≤ ‖aw+(z0)‖L∞ ≤ Λ1(1 + h(|y‖)|y|)
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for all y ∈ RN , with Λ1 = ‖aw+(z0)‖L∞ . For such A and B, u0 also solves
divA(z, u,∇u) + B(z, u,∇u) = 0. As 1 < q < p we can easily check that u0 ∈
W 1,H(Ω), namely∫

Ω
H(|∇u0|) dz =

∫
Ω

∫ |∇u0|

0
h(t) dtdz ≤

∫
Ω

(c2
q
|∇u0|q + c2

p
|∇u0|p

)
dz

≤ c2
q
|Ω|N +

(c2
q

+ c2
p

)
‖∇u0‖pp

<∞

as u0 ∈ W 1,p(Ω) (see (3.2)). So u0 satisfies the assumptions of Theorem 2.3 with
M0 = w+(z0), hence u0 ∈ C1,β(Ω) with some β > 0, depending on α, c0, c3, δ, N .
Thus u0 is a smooth solution of Problem (1.1). From the strong maximum principle
(see Theorem 2.4), it follows that u0 ∈ intC+. To prove that, in Theorem 2.4, we
put A := a0. Then the map s 7→ sA(s) is strictly increasing in R+ as G0 is strictly
convex (see Proposition 3.1). Also

L(s) = s2a0(s)−
∫ s

0
ta0(t) dt =

∫ s

0
(ta0(t) + t2a′0(t)) dt

is a strictly increasing C1-function. From (4.5) and (3.13) we have, that there
exists some λ0 > 0 such that for a.e. z ∈ Ω

−div a0(|∇u0(z)|)∇u0(z) + λ0u0(z)r−1 = f(z, u0(z)) + λ0u0(z)r−1 ≥ 0.

Thus u0 ∈ C1,β(Ω) is a classical distribution solution of

div a0(|∇u0(z)|)∇u0 − λ0u
r−1
0 ≤ 0.

For y ∈ RN and i, j = 1, . . . , N we have that

∂aj
∂yi

(y) = ∂

∂yi
(a0(|y|)yj) = a′0(|y|)yiyj

|y|
+ δija0(|y|),

where δij is the Kronecker delta. Thus from (3.4) we obtain for any s ≥ 0

a′0(s)s4 + a0(s)s2 ≥ c1sp, s ≥ 0. (4.6)

As for 0 ≤ s < 1 we have a′0(s)s2 ≥ a′0(s)s3, it follows from (4.6) that

L(s) ≥ c1
∫ s

0
tp−1 dt = c1

p
sp ≥ c1

p
sr, 0 ≤ s < 1.

We define L0(s) := c1
p s

r. We have that L,L0 : [0, 1) → R are strictly increasing,
L(0) = L0(0) = 0 and L(s) ≥ L0(s) for any 0 ≤ s < 1, so from Leoni ([4], p.6) we
infer that there exists some constant δ2 > 0 such that

L−1(s) ≤ L−1
0 (s), 0 ≤ s < δ2. (4.7)
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Setting p(s) := λ0s
r−1, from (4.7) we obtain for any ε < ( r

λ0
δ2) 1

r

∫ ε

0

1
L−1(P (s)) ds ≥

∫ ε

0

1
L−1

0 (P (s))
ds = ĉ8

∫ ε

0

1
t

ds =∞,

where ĉ8 > 0 is a constant depending on λ0, c1, p, r. Thus we have shown that the
assumptions of Theorem 2.4 are satisfied and we are allowed to apply the strong
maximum principle as required.

Similarly, using the truncation

f̂−(z, ξ) =


0, if ξ > 0,
f(z, ξ) + ξp−1, if w−(z) ≤ ξ ≤ 0,
f(z, w−(z)) + ξp−1 + ψ(ξ)− ψ(w−(z)), if ξ < w−(z)

we prove the existence of the nontrivial negative smooth solution.
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