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A note on preserving the spark of a matrix

Abstract. LetMm×n(F) be the vector space of all m×n matrices over a field
F. In the case where m ≥ n, char(F) 6= 2 and F has at least five elements, we
give a complete characterization of linear maps Φ: Mm×n(F) →Mm×n(F)
such that spark(Φ(A)) = spark(A) for any A ∈Mm×n(F).

1. Preliminaries and introduction

Throughout the text,m and n stand for positive integers, and F denotes a field.
We define Mm×n(F) to be the vector space of all m × n matrices over F. The
m× n zero matrix will be denoted by Om×n and the nth full linear group over F
by GLn(F) (i.e., GLn(F) = {V ∈ Mn×n(F) : det(V ) 6= 0}). Finally, if x1, . . . , xn
are the components of a (row or column) vector x ∈ Fn, then the Hamming weight
of x is defined by

‖x‖0 = #
{
j ∈ {1, . . . , n} : xj 6= 0

}
.

In [3], Donoho and Elad introduced the concept of spark of a matrix into the
mathematical theory of compressed sensing. Let us recall the definition.

Definition 1.1
Suppose that C1, . . . , Cn ∈Mm×1(F) are the columns of a matrix A ∈Mm×n(F).
The spark of A is defined to be the infimum of the set of all positive integers ` with
the property that

∃ j1, . . . , j` ∈ {1, . . . , n} :
{
j1 < . . . < j`,

Cj1 , . . . , Cj`
are linearly dependent.
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The following facts about the spark are well known and easy to prove.

Proposition 1.2
Let A ∈Mm×n(F) and U ∈ GLm(F). Then

(i) spark(A) ∈ {1, . . . , n} ∪ {+∞},

(ii) spark(A) = +∞ if and only if rank(A) = n,

(iii) spark(A) = 1 if and only if A has a zero column,

(iv) spark(A) ≤ rank(A) + 1 whenever spark(A) 6= +∞,

(v) spark(UA) = spark(A).

When dealing with a reasonable map f defined on Mm×n(F), it is always of
interest to know what linear endomorphisms Φ: Mm×n(F)→Mm×n(F) have the
property that f(Φ(A)) = f(A) for any A ∈ Mm×n(F). Such endomorphisms are
called linear preservers of the map f . The theory of linear preserver problems
dates back to 1890s (Frobenius’ theorem on linear preservers of the determinant
function) and still attracts the attention of many mathematicians. We refer to [2]
for a nice overview of results.

This note provides some remarks on linear preservers of the function

Mm×n(F) 3 A 7→ spark(A) ∈ {1, . . . , n} ∪ {+∞}.

We will need the following technical definition.

Definition 1.3
Let U ∈ GLm(F) and V ∈ GLn(F). A map Φ: Mm×n(F) →Mm×n(F) is said to
be (U, V )-standard, if either Φ(A) = UAV for all A ∈ Mm×n(F), or m = n and
Φ(A) = UATV for all A ∈Mm×n(F).

Notice that the (U, V )-standard map is a linear automorphism ofMm×n(F).
The note is based on the characterization of rank k preservers given by Beasley

and Laffey (see [1]), which we recall below.

Theorem 1.4
Let k be a positive integer such that k ≤ min{m,n}. Suppose that the field F has at
least four elements. If a linear automorphism Φ: Mm×n(F)→Mm×n(F) satisfies
the condition

∀A ∈Mm×n(F) : rank(A) = k =⇒ rank(Φ(A)) = k,

then it is a (U, V )-standard map, for some U ∈ GLm(F) and some V ∈ GLn(F).
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2. Results

Our main purpose is to prove

Theorem 2.1
If F has at least five elements, char(F) 6= 2, and m ≥ n, then for a linear endo-
morphism Φ: Mm×n(F)→Mm×n(F), the following conditions are equivalent:

(1) ∀A ∈Mm×n(F) : spark(Φ(A)) = spark(A),

(2) there exist a matrix U ∈ GLm(F), a diagonal matrix D ∈ GLn(F), and an
n× n permutation matrix P such that ∀A ∈Mm×n(F) : Φ(A) = UADP .

The proof will use two simple propositions and a lemma. The propositions are
of independent interest.

Proposition 2.2
Let Φ: Mm×n(F) → Mm×n(F) be a linear map. Suppose that spark(Φ(A)) =
spark(A) for any A ∈Mm×n(F). Then Φ is bijective.

Proof. Pick a matrix B ∈ Mm×n(F) such that Φ(B) = Om×n. It is enough
to show that B = Om×n. Since spark(B) = spark(Φ(B)) = 1, the matrix B has
a zero column. Assume that B has a nonzero column as well (and hence n ≥ 2).
Let S ∈ Mm×n(F) be the matrix consisting of n copies of this nonzero column.
Then spark(S) = 2 and

spark(Φ(S)) = spark(Φ(S −B)) = spark(S −B) = 1,

a contradiction. Consequently, B = Om×n.

Proposition 2.3
Suppose that char(F) 6= 2. Then, for a matrix V ∈ GLn(F), the following condi-
tions are equivalent:

(1) ∀A ∈Mm×n(F) : spark(AV ) = spark(A),

(2) there exist a diagonal matrix D ∈ GLn(F) and an n× n permutation matrix
P such that V = DP .

Proof. Let W = [wij ] ∈Mn×n(F) be such that

∃ `, p, q ∈ {1, . . . , n} :
{
p 6= q,

wp` 6= 0, wq` 6= 0.

We will show that there is a matrix B = [bkj ] ∈Mm×n(F) with spark(B) = 2 and
spark(BW ) = 1.

Let λ = w1` + . . .+ wn`. Assume that wr` − λ 6= 0 for some r ∈ {p, q}. Then
it suffices to define

bkj =


1, if k = 1 and j 6= r,

1− λw−1
r` , if k = 1 and j = r,

0, otherwise.
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Assume, therefore, that wp` − λ = 0 = wq` − λ. Then λ + (λ − wp` − wq`) = 0,
and hence it suffices to define

bkj =


2, if k = 1 and j /∈ {p, q},
1, if k = 1 and j ∈ {p, q},
0, otherwise.

Thus, if a matrix V ∈ GLn(F) satisfies condition (1), then each column of
V (and hence each row) has exactly one element different from 0. Condition (2)
follows. Implication (2) ⇒ (1) is obvious and holds true over an arbitrary field.

We denote by Σn the set of all permutations of {1, . . . , n}.

Corollary 2.4
Suppose that char(F) 6= 2. Then, for a linear endomorphism f : M1×n(F) →
M1×n(F), the following conditions are equivalent:

(1) ∀x ∈M1×n(F) : ‖f(x)‖0 = ‖x‖0,

(2) ∃σ ∈ Σn ∃ a1, . . . , an ∈ F \ {0} ∀x = (x1, . . . , xn) ∈ M1×n(F) : f(x) =
(a1xσ(1), . . . , anxσ(n)),

(3) ∀x ∈M1×n(F) : spark(f(x)) = spark(x).

Proof. If n = 1, then there is nothing to do. Assume that n ≥ 2. Then
spark(x) ∈ {1, 2} for all x ∈ M1×n(F). Moreover, spark(x) = 2 for some x ∈
M1×n(F) if and only if ‖x‖0 = n. These two properties yield implication (1)⇒ (3).
Let us proceed to (3) ⇒ (2). If condition (3) is satisfied, then by Proposition 2.2,
the endomorphism f is bijective, and hence

∃V ∈ GLn(F)∀x ∈M1×n(F) : f(x) = xV.

Condition (2) now follows from Proposition 2.3. Implication (2) ⇒ (1) is obvious.

The above equivalence (1) ⇔ (2) is well known and can be easily proved over
an arbitrary field, without involving the concept of spark. Implication (1) ⇒ (3)
also holds true over an arbitrary field.

Example 2.5
The linear endomorphism g : M1×3(Z2) 3 (x1, x2, x3) 7→ (x1, x1 + x2 + x3, x3) ∈
M1×3(Z2) satisfies the condition

∀x ∈M1×3(Z2) : spark(g(x)) = spark(x).

However, g is not a “Hamming isometry”.

Notice that a linear endomorphism h : Mn×1(F)→Mn×1(F) is a preserver of
the spark if and only if h is bijective.

Let us return to the main purpose of the note.
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Lemma 2.6
If n ≥ 2, then no matrix V ∈ GLn(F) has the property that spark(ATV ) =
spark(A) for all A ∈Mn×n(F).

Proof. Assume that n ≥ 2 and pick a matrix V ∈ GLn(F). Let C ∈Mn×1(F)
be a nonzero column such that every element of CTV is different from 0. Define
S ∈Mn×n(F) to be the matrix whose first column coincides with C and any other
column coincides with On×1. Then spark(S) = 1 and spark(STV ) = 2.

Proof of Theorem 2.1. Implication (2) ⇒ (1) is obvious (cf. Proposition 1.2;
the implication holds true over an arbitrary field and even if m < n). Assume that
Φ satisfies condition (1). Then it follows from Proposition 2.2 that Φ is bijective.
Moreover, if rank(A) = n for a matrix A ∈ Mm×n(F), then spark(Φ(A)) =
spark(A) = +∞, and hence rank(Φ(A)) = n. Theorem 1.4 yields therefore that Φ
is a (U, V )-standard map for some U ∈ GLm(F) and some V ∈ GLn(F). Suppose,
for a moment, that m = n ≥ 2 and

∀A ∈Mm×n(F) : Φ(A) = UATV.

Then spark(ATV ) = spark(Φ(A)) = spark(A) for any A ∈ Mm×n(F), which
contradicts Lemma 2.6. Consequently, Φ(A) = UAV for all A ∈ Mm×n(F). This
implies that for an arbitrary A ∈Mm×n(F), we have spark(AV ) = spark(UAV ) =
spark(A). Thus, by Proposition 2.3, there exist a diagonal matrix D ∈ GLn(F)
and an n× n permutation matrix P such that V = DP . The proof is complete.
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