
Annales Universitatis Paedagogicae Cracoviensis
Studia Technica VIII (2015)

FOLIA 180

Karol Grondzak, Eduard Vesel

Scientific Calculations on a Graphic Processor Unit

Introduction

Recent world is highly concurrent. The consumer market requires innovations and
improvements of the products. They are developed in the research laboratories by
scientists. To develop new product and market it as first the fast infrastructure for
scientific calculations is needed. This trend can be observed on the top 500 list of
fastest computers ([1]). Scientist from diverse areas of research, including weather
forecasting, cancer treatment, DNA analysis, material sciences and many others
are utilizing the fastest computers to perform their calculations and simulations in
reasonable time.

From the beginning of the computer era, new generations of computers were
designed profiting from the Moore’s law ([2]) of increase in the density of the ele-
ments on the chip. Unfortunately there are some physical limits of this approach
and we have almost reached them. New generations of computers must utilize some
other principle. One of the possibilities is to go parallel. The increased number of
elements on single chip allows for the construction of multi-core processor. The idea
is to provide several processing units in one processor and perform calculations
in parallel. This is quite new paradigm and requires new approach to the design
of algorithms. In the next paragraphs we will introduce one of the emerging tech-
nologies – massively parallel architecture of a processor, consisting of hundreds of
simple processors executing the same instruction on different data.

Modern Processing Units Architecture

In modern computer there is usually more than one processing unit. The de-
signers of Central Processing Units (CPU) have offset the workload of CPUs to spe-
cialized processors, like Direct Memory Access (DMA) or Graphic Processing Unit
(GPU). The role of DMA is to transfer data between peripheral devices and main
memory on behalf of the CPU. To produce output on the computer monitor the GPU
is utilized. Producers of modern GPUs faced the problem with the performance of
their devices before the CPU producers. Their solution is the new architecture of

Scientific Calculations on a Graphic Processor Unit [19]

GPUs based on massively parallel paradigm. The role of GPU is to generate output
on the screen. This task is the same for all the pixels on the screen, but for each pixel,
different data are processed. Thus massively parallel architecture is suitable for this
kind of calculations.

To understand the architecture of modern GPUs, we will briefly introduce the
concept of parallel processor architectures. Processor is a device which is reading
the stream of instructions and performs it on the stream of data. Any of the streams
can be either serial or parallel. Having considered this we have four different archi-
tectures ([3]):
1.	 SISD, single instruction stream is executed on single data stream. This architec-

ture is actually not parallel, but it is mentioned here just to be consistent. Typical
examples of such architecture are processors of Intel family before the era of
multi-core processors. All the processors with many sophisticated technologies
also fall into this category, like pipeline instruction execution units, etc.

2.	 SIMD, single instruction stream processes multiple data. This architecture is
common in Digital Signal Processors (DSP) and other devices, where signals
are processed. Multiprocessors and multi-core processors are another example
of such architecture. First supercomputers, known as vector computers were
based on this architecture. Modern GPUs are also designed as SIMD processors.

3.	 MISD, multiple instructions are executed on the same data. This architecture is
mostly used for fault tolerance calculations. Heterogeneous computers process
the same data and must agree on the result.

4.	 MIMD, multiple instructions are executed on different data. This is the most flex-
ible architecture, which enables to process different data by different algorithms.
Cluster of computers, grid and cloud are the examples of such architecture. Many
of the computers in the top 500 list utilize this architecture.

Soon after the release of new generation of GPUs with massively parallel archi-
tecture, their potential for scientific calculations has been recognized. First success-
ful implementation of parallel algorithm was the matrix multiplication [4]. The era
of General Purpose GPU (GP-GPU) calculations started. As it is with every emerging
technology, the first steps were tedious. There were no specialized tools to prepare
programs for GPUs so the programs were prepared in the language describing the
primitive graphical operations.

Fortunately, the potential of the expansion of the market was recognized by the
GPU producers and new API and development tools were released. As an example
we can mention the Compute Unified Device Architecture (CUDA) execution model
introduced by Nvidia Company for their products [5].

The basic difference between modern CPU and modern GPU can be seen in
Figure 1. The CPU consists of one Control unit, several Arithmetic Logic Units (ALU)
and cache memory. GPU contains hundreds of ALUs organized into several groups.
Each group shares the control unit and local memory.

[20] Karol Grondzak, Eduard Vesel

Fig. 1. CPU versus GPU architecture

Source: Nvidia Company

Massively Parallel Calculations on GPU

To demonstrate the possibility of scientific calculation speed-up we will pres-
ent the step by step process of designing massively parallel code for vector distance
calculation. The problem can be formulated as follows. Let us consider two sets of
vectors of the same length. We want to calculate the Euclid distance of the vectors in
the first set from the vectors in the second set.

The task is accomplished by simple algorithm which, in its serial version, con-
sists of three nested loops (Fig. 2), where the vectors are stored in matrices First and
Second containing N and M rows respectively, and sqr is the operation of the sec-
ond power. Vectors have K elements. Resulting matrix is of N rows and M columns
dimension. The overall amount of operations needed to perform the calculation is
then:

Oa = 2NMK,	 (1)

Om = NMK,	 (2)

where Oa is the amount of addition/subtraction operations and Om is the amount
of multiplication operations. On SISD architecture the processor would perform all
the calculations, iterating the loops. On SIMD architecture we can employ all the
available processors and split the outermost loop into several parts, each executed
on a separate processor. Having p processors, we can split the loop into N/p parts
and we would expect the speed-up of factor p. Because of the many factors, such
a speed-up is rarely achieved in the reality (consider the overhead caused by
the management of the parallel calculation, the conflicts when accessing main
memory, etc.). Implementing the algorithm on SIMD processor this naïve way, we
may be dissatisfied by the poor performance. To demonstrate that the detailed
understanding of the SIMD processor architecture can be crucial for algorithm
implementation, we will compare three implementations of the vector distance
calculation algorithm.

Scientific Calculations on a Graphic Processor Unit [21]

for (i = 0; i < N; i++)
 for (j = 0; j < M; j++)
 for (k = 0; k < K; k++)
 Result[i, j] = Result[i, j] + sqr(First[i, k] – Second[j, k])

Fig. 2. Algorithm for vector distance calculation
Source: author

First implementation is the naïve implementation, which just distributes the
workload of two outermost loops to the available processors. It means that each
thread calculates the distance of one vector from fist matrix from a vector from the
second matrix (Fig. 3).
__global__ void distance (int (* first)[N], int (* second)[N], int (* result)[K]) {

int i, tmp;
int res = 0;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
for (i = 0; i < N; ++i) {

 	 tmp = (first[row][i] – second[col][i]);
 	 res += tmp * tmp;
 }
 result[row][col] = res;
}

Fig. 3. Source code for vector distance calculation on GPU, naïve implementation
Source: author

Studying the memory model of modern GPUs ([6]), we would soon discover
that the access to main memory is slow, comparing to access to shared memory,
assigned to each group of threads (Fig. 4).

Fig. 4. Memory Model of GPU Streaming Multiprocessor
Source: Nvidia Company

[22] Karol Grondzak, Eduard Vesel

If we consider this model and the organization of the calculation, we can
achieve significant improvement of the performance by transferring data needed
for calculation into shared memory. The code will change as it can be seen in Figure
5. This minor change drastically improves the performance of the calculation, as can
be seen in Table 1.

__global__ void distance (int (* first)[N], int (* second)[N], int (* result)[K]) {
 int m,
 int i, tmp, res = 0;
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.y;
 __shared__ int sf[BLOCK_SIZE][BLOCK_SIZE];
 __shared__ int ss[BLOCK_SIZE][BLOCK_SIZE];
 for(m = 0; m < N / BLOCK_SIZE; m++) {

sf[threadIdx.y][threadIdx.x] = first[row][m * BLOCK_SIZE + threadIdx.x];
ss[threadIdx.y][threadIdx.x] = second[col][m * BLOCK_SIZE + threadIdx.x];
 	 __syncthreads();
 for (i = 0; i < BLOCK_SIZE; ++i) {

tmp = (sf[threadIdx.y][i] – ss[threadIdx.x][i]);
res += tmp * tmp;

 }
 __syncthreads();

 }
result[row][col] = res;
}

Fig. 5. Modified source code for vector distance calculation on GPU using shared memory

Source: author

Tab. 1. The execution times of vector distance calculations for different processors (CPU, GPU) and different
implementations on GPU (GPU_1 – naïve, GPU_2 – using shared memory, GPU_3 – using shared memory
and minimizing the bank conflicts)

Size of vector
and matrices

Execution time [ms]

CPU GPU_1 GPU_2 GPU_3

128 7.6339 2.5 0.25 0.12

256 48.594 29.47 1.27 0.51

512 324.39 350 9.15 4.3

1024 2551.6 1245 70 27

2048 21096 6950 563 206

4096 168920 53557 4505 1647

The last, third implementation is targeting the bank conflicts. Shared memory
is organized in blocks called banks. Size of each bank is 16. The only access into
one bank from different threads which does not cause conflict is when each thread
is accessing different cell in bank, or when all threads are accessing the same cell.

Scientific Calculations on a Graphic Processor Unit [23]

The algorithm depicted in Figure 5 does not satisfy this condition and thus there
are bank conflicts and the code does not achieve the maximum speed possible. To
achieve the optimal bank access, one has to spread data from local arrays located in
shared memory into different banks, as it is depicted in Figure 6.

Fig. 6. The bank conflict explanation

Source: author

All three implementations of the vector calculation algorithm were executed
and the resulting times are summarized in Table 1. It can be seen that the best re-
sults, comparing to the algorithm implementation on CPU, were obtained by third
GPU implementation. This result demonstrates that it is possible to achieve signifi-
cant speed-up of the GPU, when considering the properties and architecture details.
This paper is a demonstration of such approach.

Conclusion

In this paper we have introduced the massively parallel architecture of mod-
ern GPUs. The SIMD architecture of the modern GPUs can be utilized for parallel
scientific calculations. The computational model, development tools and high-level
libraries were presented. A simple example demonstrating the possibility of calcu-
lations speed-up was presented. Author hopes that this contribution will motivate
more scientists to utilize the power of modern GPUs for their research activities.

References

[1]	 Top 500. The list. Retrieved from http://www.top500.org/.
[2]	 Brock D.C. (ed.), Understanding Moore’s Law: four decades of innovation, Chemical Heri-

tage Press, Philadelphia 2006.
[3]	 Flynn M.J., Some computer organizations and their effectiveness, IEEE Transactions on

Computers. 1972, C–21(9), p. 948–960.
[4]	 Larsen E.S., McAllister D., Fast matrix multiplies using graphics hardware, Proceedings of

Supercomputing 2001, Denver 2001.
[5]	 CUDA technology. Retrieved from http://www.nvidia.com/object/cuda_home_new.

html.
[6]	 Kirk B.D., Hwu W.W., Programming Massively Parallel Processors, A hands-on Approach,

Morgan Kaufmann Publishers, 2010.

[24] Karol Grondzak, Eduard Vesel

Abstract

The demands on speed of scientific calculations are growing from the time when the first
computer was constructed. Scientists are solving problems which were not viable ten or
fifteen years ago. We can also expect that scientists in the future will solve problems which
are not viable today. The times of extensive improvement of processors are almost over;
we are hitting the physical limits of the electronic devices. Recent trend in improving the
computational power of modern processors is to provide several processing units on the
same chip, thus parallel thinking when proposing new algorithms is the necessity. In this
paper we will introduce the concept of massively parallel Graphic Processing Unit, which can
be utilized for particular types of scientific calculations.

Key words: Graphic Processor Unit, Massively Parallel Calculations, Scientific Calculations,
CUDA Technology

Karol Grondzak
Pedagogical University of Cracow
Institute of Technology
ul. Podchorążych 2
30-084 Kraków, Poland

Eduard Vesel
Faculty of Management Science and Informatics
University of Zilina
Zilina, Slovak Republic

