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Abstract. In this paper, we discuss the no-arbitrage condition in a discrete
financial market model which does not hold the same interest rate assump-
tions. Our research was based on, essentially, one of the most important
results in mathematical finance, called the Fundamental Theorem of Asset
Pricing. For the standard approach a risk-free bank account process is used
as numeraire. In those models it is assumed that the interest rates for bor-
rowing and saving money are the same. In our paper we consider the model
of a market (with d risky assets), which does not hold the same interest rate
assumptions. We introduce two predictable processes for modelling deposits
and loans. We propose a new concept of a martingale pair for the market and
prove that if there exists a martingale pair for the considered market, then
there is no arbitrage opportunity. We also consider special cases in which
the existence of a martingale pair is necessary and the sufficient conditions
for these markets to be arbitrage free.

1. Introduction

In this paper, we will discuss the no-arbitrage condition in a discrete financial
market model which does not hold the same interest rate assumptions. Our re-
search was based on, essentially, one of the most important results in mathematical
finance, called the Fundamental Theorem of Asset Pricing or the Dalang-Morton-
Willinger theorem [1]. It states that for the standard discrete-time, finite horizon
market model there is no arbitrage opportunity if and only if the price process is
a martingale, with respect to an equivalent probability measure. There are various
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proofs of this theorem in existence, which use different areas of mathematics, for
more detail see [1, 6, 3]. The Fundamental Theorem of Asset Pricing for a model
with finite Ω was proven by M. Harrison and D. Kreps in 1979 [4]. Harrison
and Pliska [5] proved a more general version of this theorem. In [2] Delbaen and
Schachermayer show a concept which characterizes the existence of an equivalent
martingale measure for a general class of processes in terms of the no free lunch
with vanishing risk. The main theorem of that paper is the general version of the
Dalang-Morton-Willinger theorem for real valued semi-martingales.

The Fundamental Theorem of Asset Pricing was studied in detail by many
mathematicians, who checked various aspects and focused on additional equiv-
alent conditions of this theorem. Many new theorems were proved through the
investigation of different aspects of the Dalang-Morton-Willinger theorem. Among
them are theorems which include taxes like in [7], where the author gives the nec-
essary and sufficient conditions for a linear taxation system to be neutral-within
the multi-period discrete time in a no arbitrage model. Kabanov and Safarian
worked on multi-asset discrete-time models with friction and gave in [10] condi-
tions equivalent to the absence of arbitrage in markets with friction. The theory
goes further and there are papers with equivalent conditions for the absence of
so-called weak arbitrage [9] and robust no-arbitrage opportunities [12].

It is also an interesting concept to consider the models with bid and ask price
processes in [8] and [11]. Rola in [11] considers a market with a multi-dimensional
bid and ask processes and with a money account, introduces the notion of an equiv-
alent bid-ask martingale measure and proves that the existence of such a measure
is equivalent to no-arbitrage in this model.

In many papers on arbitrage in discrete market models the authors consider
models containing d+1 financial assets: one risk-free asset {Bt}t=0,1,...,T (which is
interpreted as a bank account) and d risky assets {Sit}t=0,1,...,T for i ∈ {1, . . . , d}
(say i.e. stocks). For the standard approach the risk-free bank account process
is used as numéraire. In those models it is assumed that the interest rates for
borrowing and saving money are the same. In our paper we consider the model of
a market (with d risky assets), which does not hold the same interest rate assump-
tions. We introduce two predictable processes {B+

t }t=0,1,...,T and {B−t }t=0,1,...,T
for modelling deposits and loans. We propose a new concept of a martingale pair
({Bt}t=0,...,T , P

∗) for the marketM = (S,P) and prove that if a martingale pair
for the considered market exists, then there is no arbitrage opportunity. We also
consider special cases in which the existence of a martingale pair is necessary and
the sufficient conditions for these markets to be arbitrage free.

2. Model description

We assume that there is a given probability space (Ω,F , P ), a finite number
T ∈ N+ = N ∪ {0} called the time horizon, and a filtration {Ft}t=0,1,...,T of the
measurable space (Ω,F).

We propose the following model of a market which does not satisfy the as-
sumption that the interest rates for borrowing and saving money are the same.
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Definition 2.1
By the model of a market (with d risky assets), which does not hold the same
interest rates assumption, we mean, in general, the tripleM = (S,P, ϕ), where
• S = {(B+

t , B
−
t , S

1
t , . . . , S

d
t )}t=0,1,...,T is the adapted stochastic process, with

values in (0,+∞)d+2, such that the processes {B+
t }t=0,1,...,T and {B−t }t=0,1,...,T

are predictable, and

B+
0 = B−0 = 1,

B+
t+1

B+
t

≤
B−t+1

B−t
for all t ∈ {0, . . . , T − 1},

• P is a subset of the set of all predictable stochastic processes Θ =
{Θt}t=0,...,T = {(Θ+

t ,Θ−t ,Θ1
t , . . . ,Θd

t )}t=0,...,T , with values in [0,+∞)2 × Rd,
• ϕ is the adapted process {(ϕ1

t , . . . , ϕ
d
t )}t=0,1,...,T , with values in the space

([0,+∞)R)d (i.e. for each t ∈ {0, . . . , T}, each i ∈ {0, . . . , d} and each ω ∈ Ω,
ϕit(ω) is a function R→ [0,+∞)).

We assume that the process {B+
t }t=0,1,...,T is modelling the changes, in time,

of the value of one unit of money given in the bank deposit at time t = 0, and
is called deposit process, while the process {B−t }t=0,1,...,T , called loan process, is
modelling the amount of money that must be given back to the bank at time t, if
one has borrowed one unit of money from the bank at time t = 0.

We also assume, as usual, that the processes {Sit}t=0,1,...,T , for i = 1, . . . , d,
are modelling the prices of the risky assets, say stocks.

Definition 2.2
Assume that the marketM = (S,P, ϕ) is given. By a portfolio on the marketM
we mean any vector Θ = (Θ+,Θ−,Θ1, . . . ,Θd) ∈ [0,+∞)2×Rd. The value of the
portfolio Θ = (Θ+,Θ−,Θ1, . . . ,Θd) at time t is defined by

V Θ
t = Θ+B+

t −Θ−B−t + Θ1S1
t + . . .+ ΘdSdt .

Definition 2.3
By the strategy (or trading strategy) on the market M we mean any predictable
process Θ = {Θt}t=0,...,T = {(Θ+

t ,Θ−t ,Θ1
t , . . . ,Θd

t )}t=0,...,T with values in
[0,+∞)2 × Rd, which is an element of the set P, called the set of all strategies.

In our consideration, we will assume that P consists of all predictable processes
Θ = {Θt}t=0,...,T = {(Θ+

t ,Θ−t ,Θ1
t , . . . ,Θd

t )}t=0,...,T , with values in [0,+∞)2 ×
Rd, but if one wants to consider the market with some additional restriction on
strategies, then P will not consist of all such processes.

Since for t = 0 we must know what F−1 means, we assume that F−1 = {∅,Ω}.
For the simplicity of the considerations we will also assume that F0 = {∅,Ω}.

One can see that for any ω ∈ Ω and for any t ∈ {0, . . . , T}, Θt(ω) ∈ [0,+∞)2×
Rd is a portfolio, and we assume that this portfolio is held from time t− 1 up to
time t. This justifies our assumption that the process {Θt}t=0,...,T is predictable.
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Let us note that for any given strategy {Θt}t=0,...,T on the market M =
(S,P, ϕ), the value of the strategy at time t can be calculated in two ways, namely
as the sum

Θ+
t B

+
t −Θ−t B−t + Θ1

tS
1
t + . . .+ Θd

tS
d
t

or as the sum

Θ+
t+1B

+
t −Θ−t+1B

−
t + Θ1

t+1S
1
t + . . .+ Θd

t+1S
d
t .

This is because the portfolio Θt is held during the time interval (t − 1, t), while
the portfolio Θt+1 is held during the time interval (t, t + 1). Thus, for any t ∈
{0, . . . , T−1}, we consider two possible different values of the strategy {Θt}t=0,...,T
at time t, called the value before transaction and the value after transaction.
Definition 2.4
Assume that we are given a strategy {Θt}t=0,...,T defined on the market M =
(S,P, ϕ). Then, the value of the strategy {Θt}t=0,...,T at time t before transaction,
we define as

V Θ
t− := Θ+

t B
+
t −Θ−t B−t + Θ1

tS
1
t + . . .+ Θd

tS
d
t

and the value of the strategy {Θt}t=0,...,T at time t after transaction, we define as

V Θ
t+ := Θ+

t+1B
+
t −Θ−t+1B

−
t + Θ1

t+1S
1
t + . . .+ Θd

t+1S
d
t .

For the terminal date T , we can only consider the value before transaction

V Θ
T− := Θ+

TB
+
T −Θ−TB

−
T + Θ1

TS
1
T + . . .+ Θd

TS
d
T .

One can notice that, for a given strategy {Θt}t=0,...,T , the values V Θ
t− and

V Θ
t+ can be different. The inequality V Θ

t+(ω) > V Θ
t−(ω), for some ω ∈ Ω, means

that we add an amount of money to the system/strategy, while the inequality
V Θ
t+(ω) < V Θ

t−(ω), for some ω ∈ Ω, can mean that we subtract an amount of
money from the system/strategy.
Definition 2.5
Let us assume that the marketM = (S,P, ϕ) is given. The process ϕ = {(ϕ1

t , . . . ,
ϕdt )}t=0,1,...,T is called the transaction cost process, and is assumed that for each
i ∈ {1, . . . , d}, each ω ∈ Ω, each t ∈ {0, 1, . . . , T} and each x ∈ R, the value
of the function ϕit(ω) : R → [0,+∞) at x, denoted by ϕit(ω).x, is equal to the
transaction cost of buying x shares of i-th stock at time t if x > 0, and is equal to
the transaction cost of selling |x| shares of i-th stock at time t if x < 0.

For a given strategy {Θt}t=0,...,T defined on the market M = (S,P, ϕ), the
total transaction cost at time t ∈ {0, 1, . . . , T} is defined as

CΘ
t =

d∑
i=1

ϕit.(Θi
t+1 −Θi

t) =:
d∑
i=1

ϕit.∆Θi
t,

where for any function ζ : Ω→ R, by ϕit.ζ we denote the function ω 7→ ϕit(ω).ζ(ω).
For the terminal date T , when (by assumption) all shares are sold, the total
transaction cost is defined as

CΘ
T =

d∑
i=1

ϕiT .(−Θi
T ).
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The following condition means that the market M is assumed to be without
transaction costs

∀ i ∈ {1, . . . , d}, t ∈ {0, 1, . . . , T}, ω ∈ Ω ϕit(ω) ≡ 0.

In case the market M is without transaction costs, we will write M = (S,P)
instead ofM = (S,P, ϕ).

On the other hand, if for each i ∈ {1, . . . , d}, each t ∈ {0, 1, . . . , T} and each
ω ∈ Ω, the functions ϕit(ω)|[0,+∞) and ϕit(ω)|(−∞,0]) are linear, we say that M
is a market with proportional transaction costs. Usually, it is assumed that the
functions ϕit(ω) do not depend on t and ω.

Now we can define the value of the strategy at terminal time T , after transac-
tions.

Definition 2.6
For a given strategy {Θt}t=0,...,T defined on the marketM, we set (by definition)

V Θ
T+ = V Θ

T− − CΘ
T .

The value V Θ
T+ will be called terminal value of the strategy Θ and also denoted

by V Θ
T .

Definition 2.7
The strategy {Θt}t=0,...,T (defined on the marketM = (S,P, ϕ)) is called a self-
financing strategy if

V Θ
t+ = V Θ

t− − CΘ
t for all t ∈ {0, . . . , T}. (1)

If the market M is without transaction costs, the above condition simplifies
as follows

V Θ
t+ = V Θ

t− for all t ∈ {0, . . . , T}. (2)

Let us notice that the condition (1) or (2) must be checked only for t ∈
{0, . . . , T − 1}, because for t = T the condition is valid by the definition of V Θ

T+.
Thus for a self-financing strategy {Θt}t=0,...,T defined on the market without

transaction costs, the common value V Θ
t+ = V Θ

t−, for t ∈ {0, . . . , T}, is called the
value of the strategy at time t and denoted by V Θ

t . In particular, V Θ
0 is called the

initial value of the strategy.
In a general situation, by the initial value of the strategy {Θt}t=0,...,T , we

mean V Θ
0−, which can also be denoted by V Θ

0 .

Definition 2.8
A self-financing strategy {Θt}t=0,...,T is called an arbitrage opportunity or arbitrage
strategy if V Θ

0 = 0 and the terminal value of the strategy satisfies

P (V Θ
T ≥ 0) = 1 and P (V Θ

T > 0) > 0.

In the sequel we will assume that the marketM is without transaction costs.
The following lemma is an easy but useful observation.
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Lemma 2.9
If there is a trading strategy {Θt}t=0,...,T , defined on the marketM = (S,P), such
that V Θ

0− = 0, V Θ
t− ≥ V Θ

t+ for t ∈ {0, . . . , T}, and P (V Θ
T+ ≥ 0) = 1, P (V Θ

T+ > 0) >
0, then there is an arbitrage opportunity on the marketM.

Proof. Let’s create a strategy {Φt}t=0,...,T = {(Φ+
t ,Φ−t ,Φ1

t , . . . ,Φdt )}t=0,...,T in the
following way

Φ0 = (Θ+
0 ,Θ

−
0 ,Θ1

0, . . . ,Θd
0)

and
Φt+1 = (Φ+

t+1,Θ
−
t+1,Θ1

t+1, . . . ,Θd
t+1)

for t = 0, . . . , T − 1, where

Φ+
t+1 = Φ+

t −Θ+
t +

V Θ
t− − V Θ

t+

B+
t

+ Θ+
t+1.

We have proved that the process {Φt}t=0,...,T is indeed a strategy and then that
it is an arbitrage opportunity on the marketM.

To see that {Φt}t=0,...,T ∈ P, we must check that Φ+
t ≥ 0 for all t ∈ {0, . . . , T},

so first we verify this by using induction that Φ+
t ≥ Θ+

t for any t ∈ {0, . . . , T}.
For t = 0, we have Φ+

0 = Θ+
0 . Let t0 ∈ {0, . . . , T − 1} be given and assume

Φ+
t0 ≥ Θ+

t0 . Then, because Φ+
t0 − Θ+

t0 ≥ 0 and V Θ
t0− ≥ V Θ

t0+, we have Φ+
t0+1 =

Φ+
t0 − Θ+

t0 + V Θ
t0−−V

Θ
t0+

B+
t0

+ Θ+
t0+1 ≥ Θ+

t0+1 and the proof of the induction step is
completed.

Next we check that the strategy {Φt}t=0,...,T is self-financing. Note that

V Φ
t− = Φ+

t B
+
t −Θ−t B−t + Θ1

tS
1
t + . . .+ Θd

tS
d
t = Φ+

t B
+
t + V Θ

t− −Θ+
t B

+
t ≥ V Θ

t−. (3)

Therefore,

V Φ
t+ = Φ+

t+1B
+
t −Θ−t+1B

−
t + Θ1

t+1S
1
t + . . .+ Θd

t+1S
d
t

=
(

Φ+
t −Θ+

t +
V Θ
t− − V Θ

t+

B+
t

+ Θ+
t+1

)
B+
t −Θ−t+1B

−
t + Θ1

t+1S
1
t

+ . . .+ Θd
t+1S

d
t

= Φ+
t B

+
t −Θ+

t B
+
t + V Θ

t− − V Θ
t+ + Θ+

t+1B
+
t −Θ−t+1B

−
t + Θ1

t+1S
1
t

+ . . .+ Θd
t+1S

d
t

= Φ+
t B

+
t −Θ+

t B
+
t + V Θ

t−

= V Φ
t−.

Finally, since V Φ
0 = V Θ

0− = 0 and (3) V Φ
T = V Φ

T− ≥ V Θ
T− = V Θ

T+, we have
P (V Φ

0 = 0) = 1, P (V Φ
T ≥ 0) ≥ P (V Θ

T ≥ 0) = 1 and P (V Φ
T > 0) ≥ P (V Θ

T+ > 0) >
0. Thus we have proved that the strategy {Φt}t=0,...,T is an arbitrage opportunity
on the marketM.
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Theorem 2.10
For any predictable process {(Θ1

t , . . . ,Θd
t )}t=0,...,T and any number v0 ∈ R there

is exactly one predictable process {(Θ+
t ,Θ−t )}t=0,...,T with values in [0,+∞)2 such

that
(i) the process {(Θ+

t ,Θ−t ,Θ1
t , . . . ,Θd

t )}t=0,...,T is a self-financing strategy with
the initial value v0,

(ii) for any t ∈ {0, . . . , T} we have Θ+
t · Θ−t = 0 (in other words {Θ+

t = 0} ∪
{Θ−t = 0} = Ω).

Proof. First, we prove the existence of a predictable process {(Θ+
t ,Θ−t )}t=0,...,T .

Denote Xt− = Θ1
tS

1
t + . . . + Θd

tS
d
t and Xt+ = Θ1

t+1S
1
t + . . . + Θd

t+1S
d
t . Now, for

the strategy Θ = {(Θ+
t ,Θ−t ,Θ1

t , . . . ,Θd
t )}t=0,...,T given by an arbitrary predictable

process {(Θ+
t ,Θ−t )}t=0,...,T with values in [0,+∞)2, we can write V Θ

t− = Θ+
t B

+
t −

Θ−t B−t +Xt− and V Θ
t+ = Θ+

t+1B
+
t −Θ−t+1B

−
t +Xt+.

Let us observe that X0− is a constant number and Xt+ is Ft-measurable for
t = 0, . . . , T − 1. We will construct a process {(Θ+

t ,Θ−t )}t=0,...,T inductively with
respect to t ∈ {0, . . . , T}. For t = 0, we set

(Θ+
0 ,Θ

−
0 ) :=

{
(v0 −X0−, 0) if v0 −X0− ≥ 0,
(0, X0− − v0) otherwise,

(4)

for t ∈ {0, . . . , T−1}, assuming that we have already constructed Ft−1-measurable
variables Θ+

t and Θ−t , we put

Θ+
t+1 :=

V Θ
t− −Xt+

B+
t

1l{V Θ
t−−Xt+≥0} (5)

and
Θ−t+1 :=

Xt+ − V Θ
t−

B−t
1l{V Θ

t−−Xt+<0}. (6)

Regardless of the fact that in the equations above a process {(Θ+
t ,Θ−t )}t=0,...,T

is not entirely defined, the value of this strategy at time t before the transaction V Θ
t−

is known because we have assumed that Θ+
t and Θ−t have already been constructed.

Now we may easily check that the process Θ = {(Θ+
t ,Θ−t ,Θ1

t , . . . ,Θd
t )}t=0,...,T

defined by (4)–(6) is predictable and satisfies conditions of the theorem.
First notice that, by (4), we have

V Θ
0− = Θ+

0 B
+
0 −Θ−0 B

−
0 +X0− = Θ+

0 −Θ−0 +X0− = v0.

On the other hand, by (5) and (6), for any t ∈ {0, . . . , T − 1} we get

V Θ
t+ = Θ+

t+1B
+
t −Θ−t+1B

−
t +Xt+

= (V Θ
t− −Xt+)1l{V Θ

t−−Xt+≥0} − (Xt+ − V Θ
t−)1l{V Θ

t−−Xt+<0} +Xt+

= V Θ
t−.

To see that Θ+
t ,Θ−t are Ft−1-measurable, for t ∈ {0, . . . , T}, let us notice, that

Θ+
0 ,Θ

−
0 are constants and that for a given t ∈ {0, . . . , T − 1} if Θ+

t ,Θ−t are Ft−1-
measurable, then by (5) and (6) Θ+

t+1,Θ
−
t+1 are Ft-measurable. Thus, we have
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already checked that the condition (i) is satisfied. The condition (ii) is also satis-
fied because of the definition of Θ+

t and Θ−t (see equations (4)–(6).
Now we prove the uniqueness of the process {(Θ+

t ,Θ−t )}t=0,...,T . Suppose,
conversely, that we have two processes {(Θ+

t ,Θ−t )}t=0,...,T and {(Φ+
t ,Φ−t )}t=0,...,T

satisfying conditions (i) and (ii) from the theorem. Since Θ+
0 −Θ−0 +X0− = v0 =

Φ+
0 − Φ−0 +X0−, Θ+

0 ,Θ
−
0 ,Φ

+
0 ,Φ

−
0 ∈ [0,∞) and Θ+

0 ·Θ
−
0 = 0 = Φ+

0 · Φ
−
0 it follows

that Θ+
0 = Φ+

0 and Θ−0 = Φ−0 .
Next, using induction with respect to t ∈ {0, . . . , T}, we show that Θ+

t = Φ+
t

and Θ−t = Φ−t for all t ∈ {0, . . . , T}. So, assume that for t0 ∈ {0, . . . , T − 1},
we have Θ+

t0 = Φ+
t0 and Θ−t0 = Φ−t0 . Then, V Θ

t0− = Θ+
t0B

+
t0 − Θ−t0B

−
t0 + Xt0− =

Φ+
t0B

+
t0 − Φ−t0B

−
t0 + Xt0− = V Φ

t0−. Since V Θ
t0+ = V Θ

t0− and V Φ
t0+ = V Φ

t0−, we obtain
Θ+
t0+1B

+
t0 −Θ−t0+1B

−
t0 +Xt0+ = V Θ

t0+ = V Φ
t0+ = Φ+

t0+1B
+
t0 − Φ−t0+1B

−
t0 +Xt0+, and

thus
Θ+
t0+1B

+
t0 −Θ−t0+1B

−
t0 = Φ+

t0+1B
+
t0 − Φ−t0+1B

−
t0 . (7)

Since Φ+
t0+1 ·Φ

−
t0+1 = 0, B+

t0 , B
−
t0 > 0 and Θ+

t0+1,Θ
−
t0+1,Φ

+
t0+1,Φ

−
t0+1 ≥ 0, we see by

(7), that {Θ−t0+1 = 0} ⊂ {Φ−t0+1 = 0} and {Θ+
t0+1 = 0} ⊂ {Φ+

t0+1 = 0}. Through
this symmetry, we also have {Φ−t0+1 = 0} ⊂ {Θ−t0+1 = 0} and {Φ+

t0+1 = 0} ⊂
{Θ+

t0+1 = 0}, and so {Θ−t0+1 = 0} = {Φ−t0+1 = 0} and {Θ+
t0+1 = 0} = {Φ+

t0+1 = 0}.
Now, on the set {Θ−t0+1 = 0} = {Φ−t0+1 = 0} equation (7) simplifies to

Θ+
t0+1B

+
t0 = Φ+

t0+1B
+
t0 . (8)

Since B+
t0 > 0, it follows from (8)) that Θ+

t0+1 = Φ+
t0+1 on the set {Θ−t0+1 = 0}.

Of course, on the set {Θ+
t0+1 = 0} = {Φ+

t0+1 = 0} we also have Θ+
t0+1 = Φ+

t0+1.
Thus, we get Θ+

t0+1 = Φ+
t0+1, on the set {Θ+

t0+1 = 0} ∪ {Θ−t0+1 = 0} = Ω. Similar
arguments show that Θ−t0+1 = Φ−t0+1 on Ω.

Theorem 2.11
Assume that we are given a predictable process {(Θ1

t , . . . ,Θd
t )}t=0,...,T . Let

{(Θ+
t ,Θ−t )}t=0,...,T and {(Φ+

t ,Φ−t )}t=0,...,T be two predictable processes such that
both processes

Θ = {(Θ+
t ,Θ−t ,Θ1

t , . . . ,Θd
t )}t=0,...,T and Φ = {(Φ+

t ,Φ−t ,Θ1
t , . . . ,Θd

t )}t=0,...,T

are self-financing strategies. If V Θ
0 ≥ V Φ

0 and for all t ∈ {0, . . . , T − 1} we have
Θ+
t ·Θ−t = 0, then for all t ∈ {0, . . . , T},

V Θ
t ≥ V Φ

t . (9)

Moreover, if t0 ∈ {0, . . . , T − 1} is such that

P
(

Φ+
t0+1 > 0,Φ−t0+1 > 0,

B+
t0+1

B+
t0

<
B−t0+1

B−t0

)
> 0, (10)

then for all t ∈ {t0 + 1, . . . , T},

P (V Θ
t > V Φ

t ) > 0. (11)
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Proof. We prove (9) using induction on t. Let t = 0, then (9) is satisfied by the
assumption. Assume now that the claim is true for t, where t ∈ {0, . . . , T − 1}.
We show that it is true for t+ 1.

Since

Θ = {(Θ+
t ,Θ−t ,Θ1

t , . . . ,Θd
t )}t=0,...,T and Φ = {(Φ+

t ,Φ−t ,Θ1
t , . . . ,Θd

t )}t=0,...,T

are self-financing strategies, we have

V Θ
t = V Θ

t+ = Θ+
t+1B

+
t −Θ−t+1B

−
t + Θ1

t+1S
1
t + . . .+ Θd

t+1S
d
t

and
V Φ
t = V Φ

t+ = Φ+
t+1B

+
t − Φ−t+1B

−
t + Θ1

t+1S
1
t + . . .+ Θd

t+1S
d
t .

Inequality V Θ
t ≥ V Φ

t implies

Θ+
t+1B

+
t −Θ−t+1B

−
t ≥ Φ+

t+1B
+
t − Φ−t+1B

−
t . (12)

First, consider the situation on the set {Θ+
t+1 = 0}. Multiplying (12) by B−t+1

B−t
and

using B+
t+1
B+

t

≤ B−t+1

B−t
, we obtain

−Θ−t+1B
−
t+1 ≥ Φ+

t+1B
+
t ·

B−t+1

B−t
− Φ−t+1B

−
t+1 ≥ Φ+

t+1B
+
t+1 − Φ−t+1B

−
t+1.

Therefore, on the set {Θ+
t+1 = 0} we get

V Θ
t+1 = V Θ

(t+1)− = −Θ−t+1B
−
t+1 + Θ1

t+1S
1
t+1 + . . .+ Θd

t+1S
d
t+1

≥ Φ+
t+1B

+
t+1 − Φ−t+1B

−
t+1 + Θ1

t+1S
1
t+1 + . . .+ Θd

t+1S
d
t+1 = V Φ

(t+1)−

= V Φ
t+1.

Consider now the situation on the set {Θ−t+1 = 0}. Through multiplying (12) by
B+

t+1
B+

t

and using the inequality B+
t+1
B+

t

≤ B−t+1

B−t
, we obtain

Θ+
t+1B

+
t+1 ≥ Φ+

t+1B
+
t+1 − Φ−t+1B

−
t ·

B+
t+1

B+
t

≥ Φ+
t+1B

+
t+1 − Φ−t+1B

−
t+1.

Hence, also on the set {Θ−t+1 = 0}, we have

V Θ
t+1 = V Θ

(t+1)− = Θ+
t+1B

+
t+1 + Θ1

t+1S
1
t+1 + . . .+ Θd

t+1S
d
t+1

≥ Φ+
t+1B

+
t+1 − Φ−t+1B

−
t+1 + Θ1

t+1S
1
t+1 + . . .+ Θd

t+1S
d
t+1 = V Φ

(t+1)−

= V Φ
t+1,

which completes the proof of (9), because {Θ+
t+1 = 0} ∪ {Θ−t+1 = 0} = Ω.

Next we prove (11) by using induction on t. Let us take any

ω ∈
{

Φ+
t0+1 > 0, Φ−t0+1 > 0,

B+
t0+1

B+
t0

<
B−t0+1

B−t0

}
. (13)
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In the sequel, we will write vΘ
t for V Θ

t (ω), vΦ
t for V Φ

t (ω), θ+
t , θ−t , θit for, re-

spectively, Θ+
t (ω), Θ−t (ω), Θi

t(ω) and φ+
t , φ−t , φit for, respectively, Φ+

t (ω), Φ−t (ω),
Φit(ω). We will use similar notation for B+

t (ω), B−t (ω) and Sit(ω) (there is no pos-
sibility of confusion with the cost process, because we consider the market without
transaction costs).

First we show that V Θ
t0+1(ω) > V Φ

t0+1(ω). Since Θ is a self-financing strategy,
we have

vΘ
t0 = V Θ

t0+(ω) = θ+
t0+1b

+
t0 − θ

−
t0+1b

−
t0 + θ1

t0+1s
1
t0 + . . .+ θdt0+1s

d
t0 .

Let us set

xt0 := θ1
t0+1s

1
t0 + . . .+ θdt0+1s

d
t0 ,

xt0+1 := θ1
t0+1s

1
t0+1 + . . .+ θdt0+1s

d
t0+1,

additionally vΘ
t0−xt0 = θ+

t0+1b
+
t0−θ

−
t0+1b

−
t0 . Consider the situation when vΘ

t0−xt0 ≥
0. Then θ−t0+1 = 0 and vΘ

t0 − xt0 = θ+
t0+1b

+
t0 , so

θ+
t0+1 =

vΘ
t0 − xt0
b+t0

. (14)

Note that
vΦ
t0 = vΦ

t0+ = φ+
t0+1b

+
t0 − φ

−
t0+1b

−
t0 + θ1

t0+1s
1
t0 + . . .+ θdt0+1s

d
t0

= φ+
t0+1b

+
t0 − φ

−
t0+1b

−
t0 + xt0 ,

(15)

therefore
φ+
t0+1 =

vΦ
t0 − xt0 + φ−t0+1b

−
t0

b+t0
. (16)

One can make the following obvious observation that, because of (13) and the fact
that φ−t0+1 > 0 we have

φ−t0+1
b−t0
b+t0
b+t0+1 − φ

−
t0+1b

−
t0+1 < 0. (17)

Now, using (9) and (14)–(17), we obtain

vΘ
t0+1 = θ+

t0+1b
+
t0+1 − θ

−
t0+1b

−
t0+1 + θ1

t0+1s
1
t0+1 + . . .+ θdt0+1s

d
t0+1

= θ+
t0+1b

+
t0+1 + xt0+1 =

vΘ
t0 − xt0
b+t0

b+t0+1 + xt0+1 ≥
vΦ
t0 − xt0
b+t0

b+t0+1 + xt0+1

>
vΦ
t0 − xt0
b+t0

b+t0+1 + φ−t0+1
b−t0
b+t0
b+t0+1 − φ

−
t0+1b

−
t0+1 + xt0+1

= (vΦ
t0 − xt0 + φ−t0+1b

−
t0)
b+t0+1

b+t0
− φ−t0+1b

−
t0+1 + xt0+1

= φ+
t0+1b

+
t0+1 − φ

−
t0+1b

−
t0+1 + xt0+1

= vΦ
t0+1.
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Further, if vΘ
t0 − xt0 < 0, then θ+

t0+1 = 0 and vΘ
t0 − xt0 = −θ−t0+1b

−
t0 , and thus

−θ−t0+1 =
vΘ
t0 − xt0
b−t0

.

As in earlier examples, using (9), (16) and (17), we have

vΘ
t0+1 = −θ−t0+1b

−
t0+1 + xt0+1 =

vΘ
t0 − xt0
b−t0

b−t0+1 + xt0+1

≥
vΦ
t0 − xt0
b−t0

b−t0+1 + xt0+1 >
vΦ
t0 − xt0
b+t0

b+t0+1 + xt0+1

>
vΦ
t0 − xt0
b+t0

b+t0+1 + φ−t0+1
b−t0
b+t0
b+t0+1 − φ

−
t0+1b

−
t0+1 + xt0+1

= φ+
t0+1b

+
t0+1 − φ

−
t0+1b

−
t0+1 + xt0+1

= vΦ
t0+1.

Since the afore-mentioned arguments are valid for arbitrary ω ∈
{

Φ+
t0+1 > 0,

Φ−t0+1 > 0, B
+
t0+1

B+
t0

<
B−t0+1

B−t0

}
, we see that

{
Φ+
t0+1 > 0, Φ−t0+1 > 0,

B+
t0+1

B+
t0

<
B−t0+1

B−t0

}
⊂ {V Θ

t0+1 > V Φ
t0+1}.

Assume now that P (V Θ
t > V Φ

t ) > 0 for t, where t ∈ {t0 + 1, . . . , T − 1}. We show
that {V Θ

t > V Φ
t } ⊂ {V Θ

t+1 > V Φ
t+1}. So, let us fix ω ∈ {V Θ

t > V Φ
t } and use the

notation which we used in the proof that P (V Θ
t0+1 > V Φ

t0+1) > 0. Thus, we have

vΘ
t = vΘ

t+ = θ+
t+1b

+
t − θ−t+1b

−
t + xt.

Consider the situation when vΘ
t − xt ≥ 0. Then θ−t+1 = 0 and θ+

t+1 = vΘ
t −xt

b+t
. On

the other hand, we have

vΦ
t = φ+

t+1b
+
t − φ−t+1b

−
t + xt,

so φ+
t+1 = vΦ

t −xt+φ−t+1b
−
t

b+t
. Since φ+

t+1 ≥ 0, we see that φ−t+1 ≥
xt−vΦ

t

b−t
. Since

b+t+1
b+t
≤ b−t+1

b−t
and φ−t+1 ≥ 0, we get

φ−t+1
b−t
b+t
b+t+1 − φ

−
t+1b

−
t+1 ≤ 0.

Therefore, we have

vΘ
t+1 = θ+

t+1b
+
t+1 + xt+1 = vΘ

t − xt
b+t

b+t+1 + xt+1 >
vΦ
t − xt
b+t

b+t+1 + xt+1



[28] Marek Karaś and Anna Serwatka

≥ vΦ
t − xt
b+t

b+t+1 + φ−t+1
b−t
b+t
b+t+1 − φ

−
t+1b

−
t+1 + xt+1

= φ+
t+1b

+
t+1 − φ

−
t+1b

−
t+1 + xt+1 = vΦ

t+1.

If vΘ
t −xt < 0, then θ+

t+1 = 0 and −θ−t+1 = vΘ
t −xt

b−t
. As in previous cases, we obtain

vΘ
t+1 = −θ−t+1b

−
t+1 + xt+1 = vΘ

t − xt
b−t

b−t+1 + xt+1 >
vΦ
t − xt
b−t

b−t+1 + xt+1

≥ vΦ
t − xt
b+t

b+t+1 + xt+1 ≥
vΦ
t − xt
b+t

b+t+1 + xt+1 + φ−t+1
b−t
b+t
b+t+1 − φ

−
t+1b

−
t+1

= vΦ
t+1.

Thus, we have proved that {V Θ
t > V Φ

t } ⊂ {V Θ
t+1 > V Φ

t+1} for all t ∈ {t0 + 1, . . . ,
T − 1}. This completes the proof of the theorem.

As a consequence of these theorems we obtain the following fact.

Corollary 2.12
If there is an arbitrage strategy on the marketM = (S,P), then there is, also, an
arbitrage strategy satisfying the condition (ii) of Theorem 2.10.

Proof. Indeed, if Θ = {(Θ+
t ,Θ−t ,Θ1

t , . . . ,Θd
t )}t=0,...,T is any arbitrage strategy on

the market M = (S,P), then by Theorem 2.10 there is a predictable process
{(Φ+

t ,Φ−t )}t=0,...,T such that the process Φ = {(Φ+
t ,Φ−t ,Θ1

t , . . . ,Θd
t )}t=0,...,T is

a self-financing strategy with the initial value 0. Then, by Theorem 2.11, we have

P (V Φ
T ≥ 0) ≥ P (V Θ

T ≥ 0) = 1

and
P (V Φ

T > 0) ≥ P (V Θ
T > 0) > 0.

3. Martingale property

Since we have two processes {B+
t }t=0,...,T and {B−t }t=0,...,T that can be con-

sidered as the processes of the value of money in time, it is not clear how to define
discounted price processes of risky assets. The same reason makes it unclear how
to define the notion of a martingale measure. To avoid this difficulty we propose
the following concept of a martingale pair.

Definition 3.1
Let us assume that we are given the marketM = (S,P) defined on the probability
space (Ω,F , P ) with the filtration {Ft}t=0,...,T .

If there exist a predictable process {Bt}t=0,...,T and a probability measure P ∗
on (Ω,FT ) such that

(i) P ∗ is equivalent to P ,
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(ii) B0 = 1 and for all t ∈ {0, . . . , T − 1} we have

B+
t+1

B+
t

≤ Bt+1

Bt
≤
B−t+1

B−t
,

(iii) the process {(S
1
t

Bt
, . . . ,

Sd
t

Bt
)}t=0,...,T is P ∗-martingale,

then we say that the pair ({Bt}t=0,...,T , P
∗) is a martingale pair for the market

M = (S,P).

Let us assume that we are given a predictable process {Bt}t=0,...,T satisfying
condition (ii) of Definition 3.1. Then, we consider the model M̃ = (S̃, P̃), where
the process S̃ of prices is defined as {(Bt, S1

t , . . . , S
d
t )}t=0,1,...,T , the set P̃ consists

of all predictable processes {(Θ0
t ,Θ1

t , . . . ,Θd
t )}t=0,1,...,T with values in Rd+1.

The values of the strategy Θ = {(Θ0
t ,Θ1

t , . . . ,Θd
t )}t=0,1,...,T in the model M̃ =

(S̃, P̃) are defined by

V Θ
t− = Θ0

tBt + Θ1
tS

1
t + . . .+ Θd

tS
d
t for t = 0, 1, . . . , T

and
V Θ
t+ = Θ0

t+1Bt + Θ1
t+1S

1
t + . . .+ Θd

t+1S
d
t for t = 0, 1, . . . , T.

Similarly to the proof of Lemma 2.9, one can prove the following

Lemma 3.2
If there is a trading strategy {Θt}t=0,...,T , defined on the market M̃ = (S̃, P̃), such
that V Θ

0− = 0, V Θ
t− ≥ V Θ

t+ for t ∈ {0, . . . , T}, and P (V Θ
T+ ≥ 0) = 1, P (V Θ

T+ > 0) >
0, then there is an arbitrage opportunity on the market M̃ = (S̃, P̃).

Using the above lemma, we can prove the following

Lemma 3.3
If there is an arbitrage opportunity on the market M, then there is, also, an
arbitrage opportunity on the market M̃.

Proof. Let us assume that {Θt}t=0,...,T , defined on the marketM = (S,P) is an
arbitrage opportunity. Let us define a strategy {Ψt}t=0,...,T , defined on the market
M̃, as follows

Ψ0
0 = Θ+

0 B
+
0 −Θ−0 B

−
0 = Θ+

0 −Θ−0
and

Ψ0
t =

Θ+
t B

+
t−1 −Θ−t B−t−1
Bt−1

(18)

for t ∈ {1, . . . , T} and
Ψi
t = Θi

t (19)

for t ∈ {0, . . . , T} and i ∈ {1, . . . , d}. Observe that V Ψ
0− = V Θ

0− = 0. We will
prove that V Ψ

t− ≥ V Ψ
t+, for t ∈ {0, . . . , T}. Denote Xt− = Θ1

tS
1
t + . . . + Θd

tS
d
t and
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Xt+ = Θ1
t+1S

1
t + . . .+ Θd

t+1S
d
t . Since {Θt}t=0,...,T is a self-financing strategy, we

have Θ+
t B

+
t −Θ−t B−t +Xt− = Θ+

t+1B
+
t −Θ−t+1B

−
t +Xt+ and so

Xt− −Xt+ = (Θ+
t+1 −Θ+

t )B+
t − (Θ−t+1 −Θ−t )B−t . (20)

Observe that, by (18)–(20) and the condition (ii) of Definition 3.1, we get

V Ψ
t− − V Ψ

t+ = Ψ0
tBt +Xt− −Ψ0

t+1Bt −Xt+

=
Θ+
t B

+
t−1 −Θ−t B−t−1
Bt−1

Bt −
Θ+
t+1B

+
t −Θ−t+1B

−
t

Bt
Bt

+ (Θ+
t+1 −Θ+

t )B+
t − (Θ−t+1 −Θ−t )B−t

= Θ+
t

(B+
t−1

Bt−1
Bt −B+

t

)
−Θ−t

(B−t−1
Bt−1

Bt −B−t
)

≥ 0.

Also, by (18)–(20) and the condition (ii) of Definition 3.1, we obtain

V Ψ
T = V Ψ

T− =
Θ+
TB

+
T−1 −Θ−TB

−
T−1

BT−1
BT +XT−

= Θ+
TB

+
T−1

BT
BT−1

−Θ−TB
−
T−1

BT
BT−1

+XT−

≥ Θ+
TB

+
T −Θ−TB

−
T +XT− = V Θ

T−

= V Θ
T .

By the above inequality, we have

P (V Ψ
T ≥ 0) ≥ P (V Θ

T ≥ 0) = 1

and
P (V Ψ

T > 0) ≥ P (V Θ
T > 0) = 1

and so by Lemma 3.2, there is an arbitrage opportunity on the market M̃ =
(S̃, P̃).

Example 3.4
Let us consider a one-period model M of a financial market with one risky as-
set St and two processes B−t = (1, 1)t and B+

t = (1, 02)t. The stock price
at time t = 1 can take two different values S1(ω1) = 108, S1(ω2) = 104 and
S0 = 100. Next, we consider the model M̃ = (S̃, P̃), where the process S̃ of prices
is defined as {(Bt, St)}t=0,1,...,T , the set P̃ consists of all predictable processes
{(Θ0

t ,Θt)}t=0,1,...,T and Bt = (1, 02)t.

Let us consider a strategy Θ on the market M̃ defined (Θ0
0,Θ1

0) = (0, 0) and
(Θ0

1,Θ1
1) = (−100, 1). Note that Θ is a self-financing strategy, because Θ0

0B0 +
Θ1

0S0 = Θ0
1B0 + Θ1

1S0 and an arbitrage strategy, because V Θ
0 = 0 and V Θ

1 =
Θ0

1B1 + Θ1
1S1 = −100 + S1 > 0.
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We will show that there is not an arbitrage strategy on the marketM. Suppose
that ϕ is an arbitrage strategy on the marketM, then ϕ satisfies ϕ+

1 ≥ 0, ϕ−1 ≥ 0,

ϕ+
0 − ϕ

−
0 + ϕ1

0S0 = 0, ϕ+
1 − ϕ

−
1 + ϕ1

1S0 = 0 (21)

and
1, 02ϕ+

1 − 1, 1ϕ−1 + ϕ1
1S1 > 0. (22)

Using (21)–(22) we have (ϕ−1 −100ϕ1
1)1, 02−1, 1ϕ−1 +ϕ1

1S1 > 0, which is equivalent
to ϕ−1 <

(S1−100)ϕ1
1

0,08 . If ϕ1
1 ≤ 0 we obtain a contradiction with ϕ−1 ≥ 0, so we need

ϕ1
1 > 0. Then ϕ+

1 = ϕ−1 − 100ϕ1
1 <

(S1−100)ϕ1
1

0,08 − 100ϕ1
1 = (S1−108)ϕ1

1
0,08 ≤ 0, which

contradicts ϕ+
1 ≥ 0. We have proved that there is no (ϕ+

t , ϕ
−
t ) satisfying conditions

(21)–(22) and ϕ+
1 ≥ 0, ϕ−1 ≥ 0, so the marketM is arbitrage free.

Now, we are in a position to prove the first main result.

Theorem 3.5
If there exists a martingale pair for the market M = (S,P), then there is no
arbitrage opportunity on the marketM = (S,P).

Proof. Let us assume that there exists a martingale pair ({Bt}t=0,...,T , P
∗) for the

market M = (S,P). Then the process {(S
1
t

Bt
, . . . ,

Sd
t

Bt
)}t=0,...,T is P ∗-martingale.

This means that P ∗ is a martingale measure in the model M̃. Using The First
Fundamental Theorem of Asset Pricing we show that M̃ is arbitrage-free. It
follows from Lemma 3.3 that there is not any arbitrage opportunity on the mar-
ketM.

We also have the following result.

Theorem 3.6
If ({Bt}t=0,...,T , P

∗) is a martingale pair for the marketM = (S,P), then for any
h ∈ L2(Ω,FT , P ) letting

Ct = EP∗(B−1
T Bth | Ft)

the extended model M̄ = (S̄, P̄) is arbitrage free, where

S̄ = {(B+
t , B

−
t , S

1
t , . . . , S

d
t , Ct)}t=0,1,...,T

and P̄ is the set of all predictable processes {(Θ+
t ,Θ−t ,Θ1

t , . . . ,Θd
t ,Θd+1

t )}t=0,1,...,T
with values in [0,+∞)2 × Rd+1.

Proof. Observe that the process {(S
1
t

Bt
, . . . ,

Sd
t

Bt
)}t=0,...,T is P ∗-martingale and Ct

Bt
=

EP∗(B−1
T h | Ft) is also P ∗-martingale, so {(S

1
t

Bt
, . . . ,

Sd
t

Bt
, Ct

Bt
)}t=0,...,T is P ∗-martin-

gale. Hence ({Bt}t=0,...,T , P
∗) is a martingale pair for the market M̄ = (S̄, P̄).

Thus, we can use Theorem 3.5.
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4. Some special cases

In this section we will examine some special cases in which the implication
of Theorem 3.5 can be replaced by equivalence. We will start with the easiest;
a one-period two-state model of a financial market with one risky asset St and two
different deterministic interest rates for loans (rl) and deposits (rd).

Example 4.1
Let us assume that the probability space (Ω,F , P ) is given as follows: Ω =
{u, d}, F = P(Ω) and P (u), P (d) > 0 with P (u) + P (d) = 1. We also con-
sider filtration {F}t=0,1 with F0 = {∅,Ω}, F1 = F , and assume that the process
{(B+

t , B
−
t , St)}t=0,1 is given by B+

0 = B−0 ≡ 1, S0 ∈ (0,+∞), B+
1 ≡ 1 + rd,

B−1 ≡ 1+rl, where positive numbers rd and rl satisfy the obvious relation rd < rl,
and S1(u) = Su1 , S1(d) = Sd1 with 0 < Sd1 < Su1 . Of course rd and rl denote,
respectively, the interest rates under which the bank account and the bank loans
are subjected.

One can easily check that there is an arbitrage opportunity if S0(1 + rd) ≥ Su1
or Sd1 ≥ S0(1 + rl) (see Definition 2.8) In other words, the necessary conditions for
the considered market to be arbitrage free are

S0(1 + rd) < Su1 and Sd1 < S0(1 + rl).

The following easy lemma will be used to prove the existence of a martingale
pair for the arbitrage free models considered in this section.

Lemma 4.2
Let us consider four positive numbers d, u, rd, rl such that d < u, rd < rl,
1 + rd < u and d < 1 + rl. Then, we have the following inequality

max{d, 1 + rd} < min{u, 1 + rl}.

Proof. There are two cases: d ≥ 1 + rd or d < 1 + rd. In the first case, we have
max{d, 1 + rd} = d. Since, by assumptions, d < u and d < 1 + rl, it follows
that max{d, 1 + rd} = d < min{u, 1 + rl}. In the second case, it is true that
max{d, 1 + rd} = 1 + rd and so max{d, 1 + rd} = 1 + rd < min{u, 1 + rl}, because
per the assumptions we have 1 + rd < 1 + rl and 1 + rd < u.

Now we will provide the necessary and sufficient conditions for the market of
Example 4.1 to be arbitrage free. In other words, in the context of Example 4.1,
we reverse the implication of Theorem 3.5.

Theorem 4.3
Let us consider the model of the financial market described in Example 4.1. Then,
the following conditions are equivalent
(a) the model is arbitrage free,
(b) S0(1 + rd) < Su1 and Sd1 < S0(1 + rl),
(c) the model permits a martingale pair.
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Proof. Since the implication (a)⇒(b) was already mentioned above in Example 4.1
(the necessary conditions) and the implication (c)⇒(a) is a consequence of Theo-
rem 3.5, thus we only need to show the implication (b)⇒(c).

Now, assume that the condition (b) is satisfied. Then, by Lemma 4.2 for
d = S1(d)

S0
and u = S1(u)

S0
, there exists a positive number r such that

max
{S1(d)

S0
, 1 + rd

}
< 1 + r < min

{S1(u)
S0

, 1 + rl

}
. (23)

Let us consider the process {Bt}t=0,1 given by B0 ≡ 1, B1 ≡ 1+r and the function
Q : F → R given by

Q(u) = S0(1 + r)− S1(d)
S1(u)− S1(d) and Q(d) = S1(u)− S0(1 + r)

S1(u)− S1(d) .

Since, by (23), S1(d) < S0(1 + r) < S1(u), one can see that Q(u), Q(d) > 0.
We also see, by the definition of Q, that Q(u) + Q(d) = 1. Thus, the function Q
is a probability measure, and moreover this probability measure is equivalent to
P (because we have Q(u), Q(d), P (u), P (d) > 0). From (23), we also obtain

B+
1

B+
0

= 1 + rd < 1 + r = B1

B0
= 1 + r < 1 + rl = B−1

B−0
.

One can, also, easily see that EQ( S1
B1

) = S0
B0

, where EQ denotes the mean value
with respect to probability measure Q. But, this means that the process { St

Bt
}t=0,1

is a Q-martingale.
So we are checked that the pair ({Bt}t=0,1, Q) is a martingale pair for the

considered market and thus the proof of implication (b)⇒(c) is finished.

The next special case that we will examine is the following one-period multi-
state model.

Example 4.4
Now, we assume that the probability space (Ω,F , P ) is given as follows: Ω =
{ω1, . . . , ωn}, F = P(Ω) and P (ω1), . . . , P (ωn) > 0 with P (ω1) + . . .+ P (ωn) = 1
for some n ≥ 2. We also consider filtration {F}t=0,1 with F0 = {∅,Ω}, F1 = F .
Assume that the process {(B+

t , B
−
t , St)}t=0,1 is given by B+

0 = B−0 ≡ 1, S0 ∈
(0,+∞), B+

1 ≡ 1 + rd, B−1 ≡ 1 + rl, where positive numbers rd and rl satisfy
rd < rl and S1(ω1), . . . , S1(ωn) are positive numbers. Without loss of generality,
we can assume that S1(ω1) < S1(ω2) < . . . < S1(ωn).

One can easily check that there is an arbitrage opportunity if S0(1 + rd) ≥
S1(ωn) or S1(ω1) ≥ S0(1 + rl). In other words, the necessary conditions for the
considered market to be arbitrage free are

S0(1 + rd) < S1(ωn) and S1(ω1) < S0(1 + rl).

Now, we prove the following generalization of Theorem 4.3.
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Theorem 4.5
Let us consider the model of the financial market described in Example 4.4. Then,
the following conditions are equivalent
(a) the model is arbitrage free,
(b) S0(1 + rd) < S1(ωn) and S1(ω1) < S0(1 + rl),
(c) the model permits a martingale pair.

Proof. As in the proof of Theorem 4.3, we only need to show the implication
(b)⇒(c). Thus, assume that the condition (b) is satisfied. By Lemma 4.2 for
d = S1(ω1)

S0
and u = S1(ωn)

S0
, there exists a positive number r such that

max
{S1(ω1)

S0
, 1 + rd

}
< 1 + r < min

{S1(ωn)
S0

, 1 + rl

}
.

Moreover, we can choose r such that 1 + r /∈ {S1(ω1)
S0

, . . . , S1(ωn)
S0
}. Let k ∈

{1, . . . , n− 1} be such that

S1(ωk)
S0

< 1 + r <
S1(ωk+1)

S0
.

Without loss of generality, we can assume that k ≤ n − k (if the inequality
k > n−k holds, the argument is similar). Now, we can choose a partition I1, . . . , Ik
of the set {k + 1, . . . , n} with Il 6= ∅ for l = 1, . . . , k.

Now, let us consider the process {Bt}t=0,1 given by B0 ≡ 1 and B1 ≡ 1 + r
and the function Q : F → R given by

Q(ωl) =
∑
i∈Il
|S1(ωi)− S0(1 + r)|∑k

i=1 #Ii|S1(ωi)− S0(1 + r)|+
∑n
i=k+1 |S1(ωi)− S0(1 + r)|

for l = 1, . . . , k and

Q(ωl) = |S1(ωj)− S0(1 + r)|∑k
i=1 #Ii|S1(ωi)− S0(1 + r)|+

∑n
i=k+1 |S1(ωi)− S0(1 + r)|

for l ∈ Ij . From the definition of Q it is obvious that Q(ω1), . . . , Q(ωn) > 0. One
can, also, check that Q(ω1)+. . .+Q(ωn) = 1. Thus, the function Q is a probability
measure that is equivalent to P . The same reasons, as in the proof of Theorem 4.3
give B+

1
B+

0
< B1

B0
<

B−1
B−0

. To see that EQ( S1
B1

) = S0 = S0
B0

, we make the following
calculations

EQ

( S1

B1

)
=

n∑
i=1

S1(ωi)
1 + r

Q(ωi) =
n∑
i=1

S0(1 + r) + [S1(ωi)− S0(1 + r)]
1 + r

Q(ωi)

= S0 + 1
1 + r

k∑
i=1

{
[S1(ωi)− S0(1 + r)]Q(ωi)

+
∑
j∈Ii

[S1(ωj)− S0(1 + r)]Q(ωj)
}
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and notice that, for all i ∈ {1, . . . , k}, we have

[S1(ωi)− S0(1 + r)]Q(ωi) +
∑
j∈Ii

[S1(ωj)− S0(1 + r)]Q(ωj) = 0.

So we have checked that the pair ({Bt}t=0,1, Q) is a martingale pair for the con-
sidered market and have also finished the proof of implication (b)⇒(c).

Before we present, in the next section, a general result for finite models, we
will examine the next model which is similar to the model of Cox-Ross-Rubinstein.
We will call it a CRR-type model.

Example 4.6
This model can be realized on the probability space (Ω,F , P ) defined as follows:
Ω = {ω1, . . . , ωn} with n = 2T , where T is the time horizon, F = P(Ω) and
P (ω1), . . . , P (ωn) > 0 with P (ω1) + . . .+ P (ωn) = 1.

We also consider filtration {F}t=0,...,T with F0 = {∅,Ω}, F1 = σ({A1
u, A

1
d}),

where A1
d = {ω1, . . . , ωn

2
}, A1

u = {ωn
2 +1, . . . , ωn}, F2 = σ({A2

uu, A
2
ud, A

2
du, A

2
dd}),

where A2
dd = {ω1, . . . , ωn

4
}, A2

du = {ωn
4 +1, . . . , ωn

2
}, A2

ud = {ωn
2 +1, . . . , ω3·n4 } and

A2
uu = {ω3·n4 +1, . . . , ωn}, and so on. To be precise, for k ∈ {1, . . . , T}, we define
Fk as the σ-field generated by the partition of the set Ω in to the 2k subsets Akε1...εk

with ε1, . . . , εk ∈ {u, d}, where Akε1...εk
= {ωϕk(ε1...εk)· n

2k +1, . . . , ω(ϕk(ε1...εk)+1)· n

2k
}

and ϕk(ε1 . . . εk) = ε1 . . . εk(2), assuming the value of the k-digit binary sequence
ε1 . . . εk, where we assign value 1 to the ’digit’ u and value 0 to the ’digit’ d.

To define the process {(B+
t , B

−
t , St)}t=0,...,T , we assume that u and d denote,

depending on the context, symbols acting as short-cuts of up and down (like in
the above-mentioned definition of filtration), and positive numbers (like below in
the definition of the process {St}t=0,...,T ). Of course, if u and d are considered as
positive numbers, we assume that d < u.

Now, we can define {(B+
t , B

−
t , St)}t=0,...,T . First of all, we put B+

t ≡ (1 + rd)t
and B−t ≡ (1 + rl)t for t = 0, 1, . . . , T and

Sk =
∑

ε,...,εk∈{u,d}

ε1 · · · εkS0 · 1Ak
ε1...εk

,

where 1Ak
ε1...εk

denotes the characteristic function of the set Akε1...εk
. One can

easily verify that there is an arbitrage opportunity if 1 + rd ≥ u or d ≥ 1 + rl. In
other words, the necessary conditions for the considered market to be arbitrage
free are

1 + rd < u and d < 1 + rl.

The requirements for the model in Example 4.6 to be arbitrage free are the
following.

Theorem 4.7
Let us consider the model of the financial market described in Example 4.6. Then,
the following conditions are equivalent
(a) the model is arbitrage free,
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(b) 1 + rd < u and d < 1 + rl,
(c) the model permits a martingale pair.

Proof. As in the proofs of Theorems 4.3 and 4.5, we only need to show the impli-
cation (b)⇒(c). So choose a positive number r such that

max{d, 1 + rd} < 1 + r < min{u, 1 + rl}.

Using this number r, we define

p = (1 + r)− d
u− d

and q = 1− p = u− (1 + r)
u− d

.

By the definition of the filtration {Ft}t=0,...,T , we have for any k ∈ {1, . . . , T − 1}
and for any ε1, . . . , εk ∈ {u, d} that Akε1...εk

Ak+1
ε1...εkd

∪ Ak+1
ε1...εku

. We also have
Ω = A1

d ∪ A1
u. Thus, the probability measure Q : F → R, we can define such that

Q(A1
u) = p, Q(A1

d) = q and for any k ∈ {1, . . . , T − 1} and any ε1, . . . , εk ∈ {u, d},

Q
(
Ak+1
ε1...εku

|Akε1...εk

)
= p and Q

(
Ak+1
ε1...εkd

|Akε1...εk

)
= q.

By this definition of Q, as one can check, we have for any k ∈ {1, . . . , T − 1} and
any ε1, . . . , εk ∈ {u, d}, such that

EQ

( Sk+1

Bk+1

∣∣∣Akε1...εk

)
= ε1 · · · εkuS0

(1 + r)k+1 · p+ ε1 · · · εkdS0

(1 + r)k+1 · q
ε1 · · · εkS0

(1 + r)k = Sk
Bk

∣∣∣
Ak

ε1...εk

,

which means that EQ( Sk+1
Bk+1

| Fk) = Sk

Bk
for k = 1, . . . , T − 1. Of course, we also

have EQ( S1
B1
| F0) = EQ( S1

B1
) = S0

B0
.

Since, also, B+
t+1
B+

t

= 1 + rd < 1 + r = Bt+1
Bt

= 1 + r < 1 + rl = B−t+1
B−t

for any
t ∈ {0, . . . , T − 1}, it follows that the pair ({Ft}t=0,...,T , Q) is a martingale pair
for the model.

5. The first fundamental-type theorem for finite models
with two different interest rates

Example 5.1
Let us consider a model of a financial market with one risky asset St. Assume
that {B+

t }t=0,1,...,T and {B−t }t=0,1,...,T are predictable stochastic processes, with
values of (0,+∞), such that the process {B+

t }t=0,1,...,T is a deposit process and
the process {B−t }t=0,1,...,T is a loan process (see Definition 2.1). This model
can be realized on the finite probability space (Ω,F , P ) defined as follows: Ω =
{ω1, . . . , ωn}, T ∈ N+ is the time horizon, F = P(Ω) and P (ω1), . . . , P (ωn) > 0
with P (ω1) + . . .+ P (ωn) = 1.

We also define filtration {Ft}t=0,...,T on the measurable space (Ω,F) as fol-
lows F0 = {∅,Ω} and the filtration {Ft}t=0,...,T is described by the sequence of
partitions

A(t) = {A(t)
i | i = 1, . . . , rt} for all t ∈ {0, . . . , T}
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with A(0) = {Ω} (and r0 = 1), such that for all t ∈ {0, . . . , T − 1} there is
a partition {I(t)

1 , . . . , I
(t)
rt } of the set {1, . . . , rt+1} such that for all i ∈ {1, . . . , rt},

we have A(t)
i =

⋃
j∈I(t)

i

A
(t+1)
j . We also assume that FT = F .

Each set of the partition A(t) represents one of the possible states of the
world at time t, and the number rt can be interpreted as the number of states in
which the world can arrive at the moment t. Let us fix t ∈ {0, . . . , T − 1} and
i ∈ {1, . . . , rt}. Since the functions B+

t , B
−
t , St are constant on the sets of the

form A
(t)
i , by B+

t (A(t)
i ) and so on we will denote this constant value. Note that

B+
t+1(A(t+1)

j ) = B+
t+1(A(t)

i ) and B−t+1(A(t+1)
j ) = B−t+1(A(t)

i ) for all j ∈ I(t)
i .

One can check that the necessary conditions for the considered market to be
arbitrage free are

B+
t+1(A(t)

i )
B+
t (A(t)

i )
<

max
j∈I(t)

i

{St+1(A(t+1)
j )}

St(A(t)
i )

and
B−t+1(A(t)

i )
B−t (A(t)

i )
>

min
j∈I(t)

i

{St+1(A(t+1)
j )}

St(A(t)
i )

,

for all t ∈ {0, . . . , T − 1} and all i ∈ {1, . . . , rt}.

The necessary and sufficient conditions for the model of Example 5.1 to be
arbitrage free are the following.

Theorem 5.2
Let us consider the model of financial market described in Example 5.1. Then, the
following conditions are equivalent:
(a) the model is arbitrage free ,

(b) B+
t+1(A(t)

i
)

B+
t (A(t)

i
)
<

max
j∈I

(t)
i

{St+1(A(t+1)
j

)}

St(A(t)
i

)
and B−t+1(A(t)

i
)

B−t (A(t)
i

)
>

min
j∈I

(t)
i

{St+1(A(t+1)
j

)}

St(A(t)
i

)
for

all t ∈ {0, . . . , T − 1} and all i ∈ {1, . . . , rt}.
(c) the model permits a martingale pair.

Proof. We only need to show the implication (b)⇒(c). For t = 1 we choose r(1)
1

and k(1)
1 as in Theorem 4.5, such that

max
{mins S1(A(1)

s )
S0

,
B+

1
B+

0

}
< 1 + r

(1)
1 < min

{maxs S1(A(1)
s )

S0
,
B−1
B−0

}
.

Consider the process {Bt}t=0,1, and the function Q on F1 defined analogously as
in Theorem 4.5. Let us fix t ∈ {2, . . . , T − 1} and i ∈ {1, . . . , rt}. By analogy we
choose r(t)

i such that

max
{min

j∈I(t)
i

St(A(t)
j )

St−1(A(t−1)
i )

,
B+
t (A(t−1)

i )
B+
t−1(A(t−1)

i )

}
< 1 + r

(t)
i
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< min
{max

j∈I(t)
i

St(A(t)
j )

St−1(A(t−1)
i )

,
B−t (A(t−1)

i )
B−t−1(A(t−1)

i )

}
.

Let the process {Bs}s=0,...,t be given byB0 ≡ 1 andBs(A(s−1)
j ) = Bs−1(A(s−1)

j )(1+
r

(s)
j ) for s ∈ {1, . . . , t} and j ∈ I(s)

i .
Now, we consider the conditional probability Q(A(t+1)

j |A(t)
i ) for all t ∈ {1, . . . ,

T − 1}, all i ∈ {1, . . . rt} and all j ∈ I(i)
t , and define it analogously as in the proof

of Theorem 4.5. The definition of Q on F1 gives the definition of Q : FT → R.
By this definition of Q (similar to the proof in Theorem 4.5) we get for any

t = 1, . . . , T − 1 and for any i ∈ {1, . . . , rt},

EQ

( St+1

Bt+1

∣∣∣Ati) =
∑
j∈I(t)

i

St+1(A(t+1)
j )

Bt+1(A(t+1)
j )

·Q(A(t+1)
j |A(t)

i ) = St
Bt

∣∣∣
A

(t)
i

,

which means that EQ( St

Bt
| Ft−1) = St−1

Bt−1
for t = 2, . . . , T . Of course, we also have

EQ( S1
B1
| F0) = EQ( S1

B1
) = S0

B0
.

Since, also, B
+
t+1
B+

t

< Bt+1
Bt

<
B−t+1

B−t
for any t ∈ {0, . . . , T − 1}, it follows that the

pair ({Ft}t=0,...,T , Q) is a martingale pair for the model.

We will show the application of Theorem 5.2, considering the phenomenon
of different access to arbitration in a certain sense in the same market for two
different investors.

Example 5.3
Let us assume that the probability space (Ω,F , P ) is given as follows Ω = {u, d},
F = P(Ω) and P (u), P (d) > 0 with P (u) + P (d) = 1. Let {F}t=0,1 be filtration
such that F0 = {∅,Ω}, F1 = F , and the process {(B+

t , B
−
t , Bt, St)}t=0,1 be given

by B+
0 = B−0 = B0 ≡ 1, S0 ∈ (0,+∞), B+

1 ≡ 1 + rd, B−1 ≡ 1 + rl and B1 =
B+

1 , where positive numbers rd and rl, because of their interpretation, satisfy the
obvious relation rd < rl. Finally let S1(u) > S1(d) > 0 be real numbers.

Of course rd and rl denote, respectively, the interest rates under which the
bank account and the bank loans are subjected. Furthermore, we assume that
1 + rd <

S1(d)
S0

< 1 + rl <
S1(u)
S0

. We also make an assumption that a small player
can not take any position in Bt while a big player can take any position in Bt
(including a short position).

From the small player’s point of view the considered model is indifferent from
the model {(B+

t , B
−
t , St)}t=0,1 without any constraints. This model by Theo-

rem 4.3, is arbitrage free and so the small player does not have an arbitrage
opportunity in the model {(B+

t , B
−
t , Bt, St)}t=0,1.

From the big player’s point of view the situation is completely different because
of the possibility of taking a position in Bt, especially a short position, means that
the big player can borrow money at the same interest rate as he can make a deposit.
Since 1 + rd <

S1(d)
S0

< S1(u)
S0

, the big player has an arbitrage opportunity in the
model.
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The Example 5.3 shows that a big player who has the same interest rate for
deposits and loans is in a prime position compared to a small player who has
two different interest rates. Moreover, we can create a market model in which
both players have two different interest rates, but the big player is still in a better
position. We consider that situation in the next example.

Example 5.4
Let us assume that the probability space (Ω,F , P ) and the filtration {Ft}t=0,1 is
given in the previous example. Now, consider the following process

{(B+
t,s, B

−
t,s, B

+
t,b, B

−
t,b, St)}t=0,1 (24)

with B+
0,s = B−0,s = B+

0,b = B−0,b ≡ 1, B+
1,s ≡ 1+rd,s, B−1,s ≡ 1+rl,s, B+

1,b ≡ 1+rd,b,
B−1,b ≡ 1 + rl,b, where positive numbers rd,s, rl,s, rd,b, rl,b satisfy the following
relation rd,s ≤ rd,b ≤ rl,b ≤ rl,s, S0 ∈ (0,+∞) and let S1(u) > S1(d) > 0 be real
numbers. We also assume that the small player cannot take any position in B+

t,b

and B−t,b. While the big player can take long position not only in B+
t,s and B−t,s (as

the small player can) but also in B+
t,b and B

−
t,b (both kinds of players can take long

and short position in St). From the small player’s point of view the considered
model gives exactly the same possibilities as the model {(B+

t,s, B
−
t,s, St)}t=0,1 gives.

While from the big player’s point of view the considered model gives even more
possibilities from the model {(B+

t,b, B
−
t,b, St)}t=0,1. Now, suppose that one of the

following is satisfied
1. 1 + rd,s ≤ 1 + rd,b ≤ 1 + rl,b ≤ S1(d)

S0
< 1 + rl,s <

S1(u)
S0

,

2. S1(d)
S0

< 1 + rd,s <
S1(u)
S0
≤ 1 + rd,b ≤ 1 + rl,b < 1 + rl,s.

Now, using Theorem 4.3 for the model {(B+
t,s, B

−
t,s, St)}t=0,1 we obtain, that the

small player does not have an arbitrage opportunity in the model (24). By The-
orem 4.3 using the model {(B+

t,b, B
−
t,b, St)}t=0,1 and the above discussion, we con-

clude that a big player does have an arbitrage opportunity in the model.

Remark 5.5
Note that we can generalize Example 5.4 and consider the market model, as in
Example 5.1, with two players with different deposit processes and loan processes.
With properly selected processes the small player doesn’t have an arbitrage oppor-
tunity, because of Theorem 5.2, in contrast to the big player, who has an arbitrage
opportunity. The examples show that different investors, who have different access
to deposits and loans, have different positions related to arbitrage.
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