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Abstract. We define and study some simple structures which we call likens
and which are conceptually near to both sets of natural numbers, i.e. N
with addition and N∗ = N \ {0} with multiplication. It appears that there
are many different likens, which makes it possible to look on usual natural
numbers from a more general point of view. In particular, we show that N
and N∗ are related to some functionals on the space of likens. A similar idea
is known for a long time as the Beurling generalized numbers. Our approach
may be considered as a little more natural and more general, since it admits
the finitely generated likens.

1. Introduction

If we say the set of natural numbers we usually mean the set N = {0, 1, 2, . . .}
equipped with the operations of addition "+" and multiplication "·", and we mean
the natural order in N which agree with both operations. The addition and multi-
plication are related by the distributive law: k · (m+n) = k ·m+k ·n. If we reject
the distributive law, we obtain two different structures: (N,+) and (N∗, ·) which
– as mathematical structures – are ordered semigroups. First of these semigroups
(N,+) is a sub-semigroup of the ordered semigroup R+ = [0,+∞). This is not
true for N∗ = {1, 2, 3, . . .} with multiplication. However the map

ln : N∗ 3 k → ln k ∈ R+

is a monomorphism and is increasing. Hence the image ln(N∗) is a sub-semigroup
of R+. Here lies the essence of the idea of a liken: this is a sub-semigroup of R+

which is additionally ordered "like N".

AMS (2010) Subject Classification: 11A41.
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The idea of the study of the structures, which are more general than the
multiplicative semigroup of natural numbers, appeared for the first time eighty
years ago in the paper of Beurling [1], with the aim to elucidate if, and how far, the
Prime Number Theorem, describing the distribution of prime numbers in the set
of natural numbers, depends on addition in N. Since then several authors obtained
many interesting theorems. An excellent review on these results is presented in the
monograph [2]. To understand the definition of a liken, let us recall the definition
of Beurling generalized numbers. Consider an increasing (not necessarily strictly)
sequence P of real numbers

1 < p1 ≤ p2 ≤ p3 . . .

such that
lim
n→∞

pn =∞.

The numbers which can be written as

n = pk1
i1
· pk2
i2
· pkm
im

are called generalized integers and they form a multiplicative sub-semigroup B =
B(p1, p2, . . .) of the multiplicative semigroup R+. The elements of the sequence
P = (p1, p2, . . .) play the role of generalized prime numbers. The semigroup B is
then generated by its subset P and one may then study the distribution of P in B.
Clearly, the family of sub-groups B, which one may obtain in this way, is very rich,
and hence one may observe different type of distribution of generalized primes in
generalized integers. This is in fact the content of [2].

In the present paper, we would like to present a slightly different point of
view on the Beurling numbers. First, it seems to be useful to consider the sub-
groups generated by a finite number of generators B(p1, p2, . . . , pk). Obviously,
the problem of distribution of primes in such situation is not interesting, but the
finitely generated sub-groups seem to be natural objects of this theory. Moreover,
we think that because of the habits going from the linear algebra, it is most
convenient to work with the additive sub-semigroups of the semigroup of positive
reals. The aim we would like to reach, perhaps difficult to obtain, is to create a
structure on the set of likens. We make in Part I of this paper some steps in this
direction, where we define likens as countable semigroups which tend to infinity,
and we make some general observations about likens. The main result of this part
of the paper is Theorem 16 which says that two likens are isomorphic if and only
if their generators are linearly dependent.

The second part of this paper is devoted to the study of the sequence of gaps
in likens. Since a liken L = (xn)∞0 is a strictly increasing sequence tending to
infinity, one may consider the sequence of gaps of L defined as the sequence of
differences δk = xk+1 − xk. We prove two theorems, Theorem 25 and Theorem
29, which describe some general properties of the sequence of gaps. In particular,
Theorem 29 is a characterization of the additive set of natural numbers N among
the family of all likens and this theorem may be confirming the usefulness of the
space of likens. Indeed, it appears that only in N the sequence of gaps does not
tend to 0 (each gap in N equals 1). The second theorem of this type, which will
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appear in the future work, says that, roughly speaking, the liken N∗ is strongly
related to the assumption that its sequence of gaps is strictly decreasing.

2. Part I. General properties of likens

2.1. Definition of a liken

In this paper, and in particular in this section, we will use the following nota-
tions:

R+ = [0,∞),
Q+ = [0,∞) ∩Q,
RN = {−→a = (ai)∞1 : ai ∈ R},

(R+)N = {−→a ∈ RN : ai ≥ 0},
RN

0 = {−→a ∈ RN : ∃j : i > j ⇒ ai = 0},
QN = {−→a = (ai)∞1 : ai ∈ Q},

(Q+)N = {−→a ∈ QN : ai ≥ 0},
QN

0 = {−→m ∈ QN : ∃j : i > j ⇒ ai = 0},
NN

0 = {−→a ∈ NN : ∃j : i > j ⇒ ai = 0}. (1)

We start by formulating the definition of a liken.

Definition 1
A liken L is a sequence (xn)∞0 of real numbers such that:

a) for all n ∈ N we have 0 = x0 ≤ xn < xn+1,
b) for all m,n ∈ N there is k ∈ N such that xn + xm = xk.

It follows directly from Definition 1 that

Proposition 2
In the notations as above

i) L is a semigroup,
ii) limn→∞ xn = +∞.

Proof. The property i) follows directly from a) and b). Let us observe that a)
implies inequality 0 < x1, hence L is not trivial. We check by induction that for
each k ∈ N the number k · x1 ∈ L. In other words, for each k ∈ N there exists
nk ∈ N such that xnk

= k ·x1. Hence (xn)∞0 is an increasing sequence which admits
a subsequence (xnk

)∞1 tending to infinity. This ends the proof of Proposition 2.

Clearly, each liken is a countable sub-semigroup of R+, but the inverse is not
true. The semigroup Q+ = [0,∞) ∩ Q is a sub-semigroup of R+, but it is not
a liken. Notice that the property ii) from Proposition 2, although formulated for
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a sequence (xn)∞0 , is in fact a property of the set {xn}∞0 since the existence of the
limit and its value are invariant under the permutations of N. Hence equivalently
one may say that a liken L is a countable sub-semigroup of R+ which tends to
+∞. This is not the case of Q+. It will be convenient to use the notion of locally
finite set. We recall that a subset U of a topological space X is locally finite in
X if for each point x ∈ X there exists a neighbourhood V of x such that V ∩ U
is a finite set. Using this notion, we may say shortly that the likens are locally
finite sub-semigroups of R+. If L = (xn)∞0 is a sub-semigroup of the subgroup
of non-negative reals R+ (clearly with the usual topology), then the sequence
yn = exp(xn) tends to infinity and forms a multiplicative sub-semigroup of the
multiplicative semigroup [1,∞). Conversely, if G = (xn)∞1 is a strictly increasing
sequence, which is a sub-semigroup of the multiplicative semigroup [1,∞), then
the sequence yn = ln(xn) is a liken. As we will see later, there are no essential
differences between likens and Beurling numbers. We will formulate all definitions
and results for "additive" likens, but sometimes it will be more convenient to use
the multiplicative notations.

In each liken we have at the moment two structures: an algebraic structure
related to the addition and an ordinal structure related to the ordering in R. Hence
we must be precise, what we mean saying "isomorphism of likens". We formulate
the formal definitions in order to avoid any misunderstanding.

Definition 3
Let (G,+) be a semigroup and let L be a liken. We will say that a map ϕ : G → L
is

a) an algebraic homomorphism, when ϕ(x+ y) = ϕ(x) + ϕ(y),
b) an algebraic monomorphism, when it is an injective algebraic homomor-

phism,
c) an algebraic isomorphism, when it is a surjective algebraic monomorphism.

In particular, we know now, what it means that two likens L and K are alge-
braically isomorphic. It is also clear that each two likens are isomorphic as ordered
spaces, since they are isomorphic to the ordered space (N,≤). Let us mention that
the map N 3 n → xn ∈ L is not (in general) a homomorphism of likens and let
us mention also that if ϕ : K → L is an ordinal isomorphism, then it is unique.
Finally

Definition 4
Two likens L and K are isomorphic if the (unique) ordinal isomorphism is also an
algebraic homomorphism.

If L′ is a nontrivial subset of a liken L, which is closed with respect to addition,
then L′ is a liken too, and it is natural to say that L′ is a sub-liken of the liken L.

In semigroups one can consider the so-called cancellation law, i.e. the following
property of a semigroup G: for all a ∈ G, b ∈ G, c ∈ G,

a+ c = b+ c⇒ b = c.

It is well known, that for each semigroup G with the cancellation law there
exists a group G (unique up to an isomorphism) such that, roughly speaking,
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G = G − G. The reason for which we work with semigroups is that passing from
G to G, we loose the order which is "like in N". The order will play a fundamental
role in our considerations.

2.2. Undecomposable elements

An important consequence of the definition of a liken (more precisely, a conse-
quence of the order type) is the existence of undecomposable elements. We will see
that undecomposable elements in likens play an analogous role as prime numbers
in N∗.

Definition 5
Let L be a liken and let u ∈ L. We say that u is undecomposable if

u = v + w, v ∈ L 3 w ⇒ v = 0 ∨ w = 0.

Proposition 6
Each liken L = (xn)∞0 has at least one undecomposable element.

Proof. We have observed earlier that x1 > 0. We check that u = x1 is unde-
composable. Indeed, suppose that x1 = v + w, where w and v are from L and
suppose that v > 0 and w > 0. This means in particular, that 0 < v < x1 (and
0 < w < x1). Thus 0 < v < x1 = v + w which is impossible. This ends the
proof.

Proposition 7
Let L be a liken, and let PL be the set of indecomposable elements of L. Then each
element of x ∈ L can be written in the form

x = m1 · a1 +m2 · a2 + . . .+mk · ak, (2)

where m1,m2, . . . ,mk ∈ N, a1, a2, . . . , ak ∈ PL and k ∈ N.

Proof. Let PL denote the set of all undecomposable elements of the liken L. It
follows from Proposition 6 that PL 6= ∅. The set PL may have only one element,
as is in the case of the liken N and PL may have infinitely many elements, as in
the case of the liken N∗ (more exactly ln(N∗), but we will write N∗ for ln(N∗)).
Let L′ denote the set of all elements of L which can be represented in the form
(2). Clearly, L′ is a sub-liken of L. Suppose that L \L′ 6= ∅. Let y be the minimal
element of L \L′. Since PL ⊂ L′ then y /∈ PL. Hence y can be written in the form
y = v+w where v and w are both non-trivial. This means that v < y and w < y,
and in consequence, by definition of y, v and w are in L′ which is impossible.

Proposition 7 says that the set PL generates the liken L. It is natural to ask
now about the uniqueness of the representation (2). This question is a little more
complicated, since we work with natural coefficients, and we will return to this
question later.
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2.3. Universal semigroup

We will try now to answer the question: how rich the family of all likens is?
In other words, we build something which one may call the space of likens.

Let NN
0 denote, as in (1), the set of all sequences of natural numbers, with

almost all terms vanishing, i.e.

NN
0 := {−→n = (n1, n2, . . .) : (nj ∈ N) ∧ (∃i ∈ N : k > i⇒ nk = 0)}.

In the set NN
0 we may consider the operations: + – addition and · – multiplication

by natural numbers, defined as usually. With these operations NN
0 is an algebraic

structure which may be called semimodule or a cone over N.
We set ek = (0, 0, . . . , 0, 1, 0, . . .), i.e. ek is an element of NN

0 . So we have

−→n = (n1, n2, . . .) = n1 · e1 + n2 · e2 + . . . .

Using the terminology from linear algebra, we may say that (ek)∞1 is a basis
of the cone NN

0 . This means precisely that each element from NN
0 can be, in a

unique way, written as a linear combination of (ek)k∈N with the coefficient from
N. Clearly, NN

0 is a semigroup. The structure of a cone over N is not specially
important, but we will use this terminology because of the reasons which will
become clear in the next section.

2.4. Homomorphisms from NN
0NN
0NN
0 to R+R+R+

Clearly, R+ is a cone over N. A map ϕ : NN
0 → R+ will be called a homomor-

phism of semigroups, when

ϕ(n1 · e1 + n2 · e2 + . . .) = n1 · ϕ(e1) + n2 · ϕ(e2) + . . . .

It is evident that a homomorphism ϕ : NN
0 → R+ cannot be an epimorphism,

(surjective homomorphism) since NN
0 is countable (hence ϕ(NN

0 ) is countable too)
and R+ is uncountable. However there exist the monomorphisms (i.e. injective
homomorphisms) ϕ : NN

0 → R+. We will now give a more detailed description of
this situation. The next proposition shows that the notion of a liken is practically
equivalent to the notion the Beurling numbers.

Proposition 8
Each function a : N → R+ can be extended in a unique way to a homomorphism
ã : NN

0 → R+ by linearity.

Proof. Let a = (ai)∞1 . Setting ã(ei) = ai, we obtain a necessary formula

ã(n1 · e1 + n2 · e2 + . . .) = n1 · a1 + n2 · a2 + . . . . (3)

It is not hard to check that ã is a homomorphism.

Let H(NN
0 ;R+) (we will write also simply H) denote the set of all homo-

morphisms of the two considered cones. This set is also a cone with respect to
the natural addition and the scalar multiplication. The same is true about the
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product (R+)N. It follows from Proposition 8 that these two structures (i.e. these
two cones) are isomorphic and an isomorphism is for example given by

(R+)N 3 a→ ã ∈ H(NN
0 ;R+).

On the other hand, if ϕ ∈ H then a = (ϕ(ei)) determines ϕ, i.e. ϕ = ã. Hence
we can identify the set of homomorphism H(NN

0 ;R+) with the set (R+)N. In the
last set we have a natural topology, i.e. the product topology which is metrisable.
Usually one considers a metric given by

d((ak); (bk)) =
∞∑
i=1

2−i · |ai − bi|1 + |ai − bi|
.

Moreover, it is well known that (R+)N with respect to this metric is a complete
metric space (as a countable product of complete metric spaces). So, from the
topological point of view, the structure of H(NN

0 ;R+) is relatively simple.
The set of likens will appear to be a subset of H. If ϕ ∈ H then ϕ(NN

0 ) is a
countable sub-semigroup of R+, but is not a liken in general. For example suppose
that a = (ai)∞1 ∈ R+ has a subsequence which has a finite positive limit. Then
ã(NN

0 ) cannot be a liken since (ai)∞1 ⊂ ã(NN
0 ) and in likens each element has only

a finite number of preceding elements. To avoid some technical complications, we
will consider separately the case of finitely generated likens.

2.5. Likens with finite number of generators

Definition 9
We will say that a liken L is finitely generated, when the set PL is finite.

Since the set PL is uniquely determined by L, then so is the number card (PL)
which we call the dimension of L. When PL = {a1, a2, . . . , ak} then we write, if
necessary, L = L(a1, a2, . . . , ak).

As we observed in Proposition 7 each element of x ∈ L(a1, a2, . . . , ak) can be
written in the form

x = m1 · a1 +m2 · a2 + . . .+mk · ak, (4)

but unfortunately in likens the representation (4) in general is not unique, as we
have in the case of bases of vector spaces.

Example 10
Let a1 = 1, a2 =

√
2 and let a3 = 1 +

√
2

2 . It is easy to check that a3 /∈ L(a1, a2)
but 2 · a3 = 2 · a1 + a2. In other words, in the liken L(a1, a2, a3) the uniqueness
does not hold.

Hence if we wish to have a liken, in which the representation (4) is unique, we
must do an additional assumption. Let us denote the vector space R over the field
Q by (R,Q). We have the obvious fact
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Proposition 11
If the real numbers a1, a2, . . . , ak are linearly independent in the vector space
(R,Q), then the representation (4) is unique.

The likens, which have the property described in Proposition 11, will be called
in the sequel likens with uniqueness.

A little more complicated is the following observation
Proposition 12
For any finite sequence of positive real numbers u1, u2, . . . , uk, the set L of all real
numbers x, which can be written in the form

x = m1 · u1 +m2 · u2 + . . .+mk · uk,

where m1,m2, . . . ,mk ∈ N, is a liken.
Proof. Clearly, L is a semigroup, then it remains to show that L tends to +∞.
Equivalently, we must show that for each A > 0 the set {x ∈ L : x ≤ A} is
finite. Let us fix a number A and let α = min{u1, u2, . . . , uk}. Thus α > 0. Let
n = E(Aα ) + 1, where E(z) is the integral part of the real number z. It is easy to
check that the cardinality of the set {x ∈ L : x ≤ A} is less than nk.

We will describe a topological character of the space of finitely generated likens
with uniqueness. Let Lk denote the set of all likens with uniqueness which have
exactly k undecomposable elements. It follows from Propositions 7, 11 and 12 that
Lk can be identified with the setMk of all increasing sequences of positive reals
−→a = (a1, a2, . . . , ak) which are linearly independent in the vector space (R,Q).
Let Mk denote the cone of all non-negative and non-decreasing sequences from
(R+)k. It is easy to observe that Mk is a closed sub-cone of (R+)k and Mk has
non-empty interior. We have the following fact
Proposition 13
The setMk is a Gδ dense subset of Mk.
Proof. Let −→m = (m1,m2, . . . ,mk) be a point from Zk and let

M−→m = {−→a ∈ (R+)k : m1a1 +m2a2 + . . .+mkak = 0}.

It is clear that M−→m is a closed subset of (R+)k and has empty interior. It is also
easy to check that

Mk = Mk \
⋃
−→m∈Zk

M−→m .

This ends the proof, since Zk is countable.

2.6. Likens with infinite number of generators

Now we will give an analogous description of the set of infinitely generated
likens. Let L be a liken and let the set PL = {a1, a2, . . .} be infinite. We assume
that PL is linearly independent in the vector space (R,Q). This assumption is
sufficient to have the uniqueness of the representation (2). We have observed in
Proposition 2 that in the case when PL is infinite we must have limk→∞ ak = +∞.
The converse is also true. Namely, the following proposition holds
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Proposition 14
Let −→a = (ai)∞1 be a sequence from (R+)N which is linearly independent in (R,Q)
and tends to infinity. Then ã(NN

0 ) is a liken.

Proof. Since the image ã(NN
0 ) does not change after permuting the set PL and since

−→a = (a1, a2, . . .) tends to infinity, we may assume that (ak)∞1 is increasing and that
a1 > 0. Let A > 0. We must show that only a finite number of members of the set
ã(NN

0 ) is less than A. Let j ∈ N be a natural number such that k > j ⇒ ak > A.
Let ~m = (m1,m2, . . .) be a point from NN

0 such that the following is true:

i) there is k0 > j such that mk0 ≥ 1,
or

ii) there is k0 ≤ j such that mk0 >
A
a1
.

If i) then

ã(~m) = m1a1 +m2a2 + . . .+mjaj + . . .+mk0ak0 . . . > mk0ak0 > A.

If ii) then

ã(~m) = m1a1 + . . .+mk0ak0 + . . .+mjaj + . . . > mk0ak0 > a1 ·
A

a1
> A.

This implies that the only elements of type ã(~m) which can be less than A
are those with mk = 0 for k > j (since mk is a natural number, mk < 1 implies
mk = 0) andmk are equi-bounded for k ≤ j. But the number of such ~m is finite.

Proposition 14 makes it possible to prove for likens with infinitely many gen-
erators and with uniqueness, a theorem similar to Proposition 13. More exactly,
we have

Proposition 15
Let L∞ denote the set of all likens with infinite number of generators and with
uniqueness. Then L∞ is a Gδ dense subset in an infinite dimensional complete
metric space.

We omit the proof of Proposition 15 since it is similar to the proof of Propo-
sition 13.

2.7. A theorem on isomorphism of likens

Suppose that we have two sequences −→a = (ak)∞1 and
−→
b = (bk)∞1 which

generate two likens with uniqueness denoted by La and Lb, respectively. We will
prove the following

Theorem 16
In the notations as above the likens La and Lb are isomorphic, if and only if there
exists a positive number λ such that −→a = λ ·

−→
b .
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Before starting the proof of this theorem, we must do some preparatory ob-
servations.

Clearly, when −→a = λ ·
−→
b , then La is isomorphic to Lb. So we must prove that

if La is isomorphic to Lb, then −→a = λ ·
−→
b for some λ > 0. Suppose then that

ϕ : La → Lb is an isomorphism (algebraic and ordinal) of likens. The same is true
for the map ϕ−1 : Lb → La. First we observe that for each k the element ϕ(ak) ∈ Lb
is undecomposable in Lb. Indeed, if ϕ(ak) = t + s implies ak = ϕ−1(t) + ϕ−1(s)
and thus if t and s are both non-trivial, then so are ϕ−1(t) and ϕ−1(s).

Next, by induction we check that for each k the equality ϕ(ak) = bk holds. In
consequence for each −→m = (m1,m2, . . .) ∈ NN

0 we have

ϕ(m1 · a1 +m2 · a2 + . . .) = m1 · b1 +m2 · b2 + . . .

or equivalently for each −→m ∈ NN
0 ,

ϕ(ã(−→m)) = b̃(−→m)

and finally we may say that for each −→m ∈ NN
0 3 −→n we have

ã(−→m) ≤ ã(−→n )⇔ b̃(−→m) ≤ b̃(−→n ). (5)

In other words, we have just proved that the condition La isomorphic to Lb
implies the condition (5).

Let us observe that each element −→a ∈ RN = {−→a = (ai)∞1 : ai ∈ R} defines a
linear functional on the vector space RN

0 = {−→a : ∃j : i > j ⇒ ai = 0} given by
the following formula

a(x) := 〈−→a ,−→x 〉 =
∞∑
1
ai · xi. (6)

The series in (6) is convergent since each vector x ∈ RN
0 has only a finite

number of non-zero coordinates.

Definition 17
Given a space (set) F ⊂ RN and two linear functionals −→a and

−→
b , we will say that

these functionals agree with respect to the order on the space F , when for each
x, y ∈ F the following equivalence holds

a(x) ≤ a(y)⇔ b(x) ≤ b(y).

We will prove the following

Theorem 18
If two functionals −→a and

−→
b agree with respect to the order on NN

0 then they agree
with respect to the order on RN.
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Proof. Let us assume that −→a and
−→
b agree with respect to the order on NN

0 .
i) We will prove that −→a and

−→
b agree with respect to the order on (Q+)N0 .

Let us assume that x and y are two vectors from (Q+)N0 . Then there exists
a natural number β > 0 such that the vectors x′ = βx and y′ = βy are in
NN

0 . Hence

a(x) ≤ a(y)⇔ βa(x) ≤ βa(y)⇔ a(βx) ≤ a(βy)⇔ a(x′) ≤ a(y′)
⇔ a(x′) ≤ a(y′)⇔ b(x′) ≤ b(y′)⇔ βb(x) ≤ βb(y)
⇔ b(x) < b(y).

Thus i) is proved.

ii) Now we will prove that −→a and
−→
b agree on (R+)N0 . Indeed, suppose that

x and y are two vectors from (R+)N0 . We may assume, without loss of
generality, that x and y have both a finite support bounded by a number
k ∈ N. Then there exist two sequences of vectors xn and yn from (Q+)N0
such that xn tends to x and yn tends to y and all elements of these two
sequences have the supports also bounded by k. Hence we have a sequence
of equivalences

a(xn) ≤ a(yn)⇔ b(xn) ≤ b(yn).

Since the supports of all considered vectors are commonly bounded, we
may pass to the limit and we obtain a(x) ≤ a(y)⇔ b(x) ≤ b(y).

iii) Suppose now that z ∈ RN
0 is an arbitrary vector. We have the following

equivalence
a(z) ≤ 0⇔ b(z) ≤ 0.

Indeed z = z+ − z−, where z+ and z− denote the positive and negative
parts of the vector z, respectively. Thus we have

a(z) ≤ 0⇔ a(z+ − z−) ≤ 0⇔ a(z+) ≤ a(z−)⇔ b(z+) ≤ b(z−)
⇔ b(z+ − z−) ≤ 0 ≤ b(z) ≤ 0.

This ends the proof of iii) since for each two non-negative vectors x and y
we have

a(x) < a(y)⇔ a(x− y) < 0⇔ b(x− y) < 0⇔ b(x) < b(y).

It follows from the above considerations that

Theorem 19
If two functionals −→a and

−→
b agree with respect to the order on NN

0 then they are
linearly dependent.

Proof. Applying Theorem 18, it follows from our assumptions that our functionals
agree with respect to the order on RN

0 . But this means that −→a and
−→
b have equal
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kernels. Indeed, suppose that for an x ∈ RN
0 we have a(x) = 0. Since by Theorem

18,
a(x) = a(0)⇔ b(x) = b(0)

then b(x) = 0. It is known that two functionals are linearly dependent if and only
if their kernels are equal.

Now we are ready to prove Theorem 16.

Proof. We have observed above in formula (5) that if La and Lb are isomorphic,
then the functionals−→a and

−→
b agree with respect to the order and then by Theorem

19, −→a and
−→
b are linearly dependent.

We will end this section by the following remark.

Remark 20
As we have observed above, given a set of generators (finite, or infinite) – say
−→a = (ak)∞1 – the liken La does not depend on the sequence (ak)∞1 but depends
only on the set of its elements. The unique property we need is to be locally finite.
Clearly, each finite set is locally finite, and for infinite sets U (subset of U ⊂ R+)
we know that U is locally finite if and only if U tends to +∞.

2.8. Different counting functions in likens

Suppose that −→a = (ai)∞i=1 (or −→a = (ai)ki=1) defines a monomorphism. This
means that ã(NN

0 ) is a strictly increasing sequence La = (xn)∞n=0. As we have
observed above (ai)∞1 (or (ai)k1) is a subsequence of the sequence (xn)∞n=0, and
an element xn ∈ La is undecomposable if and only if xn = ã(ei) for some i ∈ N
(i ≤ k). In other words, only those xn are undecomposable (we will also say prime)
which are equal to some ai.

The fact that La behaves "like N" makes possible to define and study different
counting functions, similar to the well known prime counting function in N∗.

Definition 21
For −→a and for La as above and for a real number x ∈ R we set

πL(x) = card {n ∈ N : xn ≤ x}. (7)

Hence the function πL(x) counts the number of those elements of the sequence xn
which are less than x. Unfortunately, it is very difficult to write down precisely
the formula for the function πL for a given liken L. However, in two important
situations we can do it. If L = N, i.e. L has one generator equal 1, then πL(x) =
E(x), where E(x) is integral part of x. If L = N∗ then, as we have observed earlier,
xn = ln(n). This implies that

πL(x) = E(ex).

The next functions we are going to define, are directly related with the un-
decomposable elements. Let L = (xn)∞0 be a liken, and let (ak)∞1 be a sequence
(increasing) of undecomposable elements of L. For x ∈ R we set

πa(x) = max{k : ak ≤ x}
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and
π∗a(m) = πa(xm).

This last function counts the number of generators, as a function of the index n,
of the term xn. It may be considered as a generalization of the prime counting
function in the case of the classical liken N∗ which is, as we know, asymptotically
equal to n

ln(n) .

The next theorem is rather rough, but gives some qualitative information about
the function πL in the case, when L is finitely generated.

Theorem 22
Suppose that 0 < a1 < a2 < . . . < ak is a sequence of real numbers which are
linearly independent in the vector space (R,Q). Let L be a liken generated by the
sequence (ai)k1 , i.e. L = L(a1, a2, . . . , ak). Then there exist two polynomials, wL
and WL(depending on L) of degree k such that

wL(x) ≤ πL(x) ≤WL(x).

Proof. The isomorphism ã given by (3) defining liken L(a1, a2, . . . , ak) is now de-
fined on Nk = N× N× . . .× N and has the form

ã : N×N×. . .×N 3 (m1,m2, . . . ,mk)→ m1 ·a1+m2 ·a2+. . .+mk ·ak = ã(−→m) ∈ R.

Since Nk ⊂ Rk then we may consider the linear functional on Rk given by ã(−→x ) =∑k
i=1 ai · xi. The points −→m ∈ N× N× . . .× N will be called lattice points. When

a real number x ∈ [0,∞) moves, then the hyperplane

Hx = {−→x ∈ Rk : ã(−→x ) = x}

moves in Rk and in each position for x > 0 cuts the cone (Rk)+ and forms a
pyramid, or – more precisely – a simplex

Sx = {−→x ∈ Rk)+ : 0 ≤ ã(−→x ) ≤ x}.

Now we see that the number πL(x) equals to the number of lattice points in Sx.
To evaluate from the above the number of lattice points in Sx, we consider a
rectangular parallelepiped formed by the edges of Sx "starting" from the origin. If
we denote this rectangular parallelepiped by Px, then since Sx ⊂ Px, we conclude
that πL(x) is less than the number of lattice points in Px. The length of the edge
of Sx lying on the axis generated by ei = (0, 0, . . . , 1, 0, . . . , 0) equals x

ai
, hence the

number of lattice points in Px is less than the volume of Px. This implies that as
WL we can take the polynomial

WL(x) = xk

a1 · a2 · . . . · ak
.

To evaluate πL(x) from below, let us observe that there exists a number d > 0
(depending on a1, a2, . . . , ak) such that [0, d]k ⊂ S1. In consequence, the simplex
Sx contains the product [0, d · x]k and thus πL(x) is bounded from below by the
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number of lattice points in [0, d · x]k. This implies that as wL we can take the
polynomial

wL(x) = (d · x− 1)k.

The polynomial WL bounds the counting function πL from above, but is far
from to be the best upper bound, since the rectangular parallelepiped Px is consid-
erably bigger than the prism Sx. The right order of magnitude of πL(x) at infinity
is near rather to the Lebesgue measure mk(Sx) which equals

mk(Sx) = 1
k! ·

xk

a1 · a2 · . . . · ak
.

The problem of finding the exact number of lattice points in Sx is a complicated
problem from the discrete geometry (counting lattice points) and the so-called
Ehrhart polynomials [3]. However, even this rough information, which is given by
Theorem 22, allows to the following

Corollary 23
The set of prime numbers in N∗ is infinite.

Proof. Indeed, as we have observed above, the liken N∗ has an exponential counting
function which cannot be controlled from above by any polynomial. Hence N∗
cannot be finitely generated.

3. Part II. Gaps in likens

The word gap is frequently used to name the difference between two successive
elements of a given sequence. In this section we will prove two theorems about
the gaps in likens.

3.1. First theorem

If L = (xn)∞0 is a liken, then (xn)∞0 is strictly increasing and then injective. It
seems to be interesting to observe that the sequence of gaps between the elements
of L in general must not be injective. In particular, this is the case of finitely
generated likens.

Definition 24
Let L = L(a1, a2, . . . , ad) = (xn)∞0 be a liken with d generators a1, a2, . . . , ad
which are independent in the vector space (R,Q). The sequence of differences
δ := (δk)∞k=0,

δk = xk+1 − xk

will be called the sequence of gaps of the liken L.

Clearly, by definition of a liken, δk > 0, since L is strictly increasing.
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Let us fix x > 0 and let M(x) = {xn ∈ L : xn ≤ x}. Hence

M(x) = {x0, x1, x2, . . . , xk(x)},

where x0 < x1 < x2 < . . . < xk(x) and k(x) = max{n : xn ≤ x}. We see that
k(x) = πL(x) (7).

We set
πδ(x) = card (δ({0, 1, 2, . . . , k(x)})).

In the notations as above we have

Theorem 25
There exists a polynomialWd such that deg(Wd) < d and such that πδ(x) ≤Wd(x).

Proof. It is clear that Theorem 25 is true in the case, when d = 1 (one can take
W1 ≡ 1), hence in the sequel we may assume that d ≥ 2.

It follows from our assumptions on L that each element xk of the liken L can
be uniquely represented in the form (2),

xk = m1
k · a1 +m2

k · a2 + . . .+md
k · ad,

where m1
k,m

2
k, . . . ,m

d
k ∈ N. Hence we have

δk =
d∑
i=1

mi
k+1 · ai −

d∑
i=1

mi
k · ai =

d∑
i=1

(mi
k+1 −mi

k) · ai.

Putting εik = mi
k+1 −mi

k, we can write

δk =
d∑
i=1

εik · ai,

where all εik are integral numbers.
Some of the numbers εik are positive, some may be negative. Since the numbers

δk are all positive then for each k at least one of the numbers εjk is positive. We
set Id = I = {1, 2, . . . , d} and we denote

Ak = {j ∈ Id : εjk > 0}

and
A

′

k = Id \Ak.

Setting njk = εjk for j ∈ Ak and njk = −εjk for j ∈ Id \Ak we can write

δk =
∑
j∈Ak

njk · aj −
∑
j∈A′

k

njk · aj . (8)

Let us observe now that the set A′

k cannot be empty. Indeed, suppose that for
each j we have εjk > 0, or equivalently, that mi

k+1 −mi
k > 0. Hence, in particular,

(d ≥ 2) ε1k > 0 and ε2k > 0. Thus m1
k+1 ≥ m1

k + 1 and m2
k+1 ≥ m2

k + 1. This
implies
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xk+1 ≥ m1
k+1 · a1 +m2

k+1 · a2 +
∑
j>2

mj
k+1 · aj

> m1
k · a1 +m2

k+1 · a2 +
∑
j>2

mj
k+1 · aj

> m1
k · a1 +m2

k · a2 +
∑
j>2

mj
k+1 · aj

≥ m1
k · a1 +m2

k · a2 +
∑
j>2

mj
k · aj

= xk.

Setting
z = m1

k · a1 +m2
k+1 · a2 +

∑
j>2

mj
k+1 · aj

we see that xk+1 > z > xk. Hence xk and xk+1 cannot be two successive elements
of the liken L. In other words, this means that the set Ak is never empty and is
never all Id, or equivalently 0 < cardAk < d.

Let
Pd = {A ⊂ Id : A 6= ∅, A 6= Id}.

The family Pd has 2d − 2 elements. It follows from the above that for each k ∈ N
there exists a set A ∈ Pd such that we can rewrite (8),

δk =
∑
j∈A

njk · aj −
∑
j∈A′

njk · aj . (9)

Let us fix A ∈ Pd and let δ(A) denote the set of all δk which can be written
in the form (9). Finally, for x > 0 we set

δ(A)(x) = {δk : δk ∈ δ(A), k ≤ k(x)},

and
πδ(x,A) = card (δ({0, 1, 2, . . . , k(x)}) ∩ δ(A)(x)).

Since
πδ(x) =

∑
A∈Pd

πδ(x,A),

hence to finish the proof of Theorem 25 it is sufficient to show that for each
fixed A ∈ Pd there exists a polynomial WA(x) such that degWA(x) < d and
πδ(x,A) ≤ WA(x). Let us fix a set A, let us fix a real x > 0, and let a natural
number k be such that δk ∈ δ(A)(x). Then, as we have observed in (9),

δk =
∑
j∈A

njk · aj −
∑
j∈A′

njk · aj = uk − vk, (10)

where
uk =

∑
j∈A

njk · aj
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and
vk =

∑
j∈A′

njk · aj .

Hence we have

xk+1 =
∑
j∈Id

mj
k+1 · aj ≥

∑
j∈A

mj
k+1 · aj ≥

∑
j∈A

(mj
k+1 −m

j
k) · aj

=
∑
j∈A

njk · aj = uk.

Thus if xk+1 ≤ x, then uk ≤ x. Using the same argument (replacing A by A′) we
check that vk ≤ x.

Now let LA denote the liken generated by those aj for which j ∈ A and let
LA′ denote the liken generated by remaining generators. Let L∗ = LA ∪LA′ . The
set L∗ is a subset of the liken L, then this set can be ordered as an increasing
sequence. Let L∗ = (γp)∞0 , and γ0 < γ1 < γ2 . . ..

It follows from the above remark that for each δk ∈ δ(A)(x) there exist two
indices p ∈ N, q ∈ N such that p > q and by (10), δk = γp − γq. We will prove
that p = q + 1. Indeed, suppose that p > q + 1. Hence we have

uk = γp > γp−1 > γq = vk.

Let ck denote the greatest summand of xk and xk+1. Adding ck to both sides of
the above inequality we obtain

xk+1 = uk + ck > γp−1 + ck > vk + ck = xk.

Setting y = γp−1 + ck we have xk < y < xk+1 which is impossible since xk and
xk+1 are successive in the liken L. Hence we proved that for each δk ∈ δ(A)(x)
and for each u ∈ LA and for each v′ ∈ LA′ 3 v′′ such u ≤ x, v′ ≤ x, v′′ ≤ x we
have that, if δk = u− v′ = u− v′′ then v′ = v′′. Thus the set δ(A)(x) has no more
elements that the set

UA(x) = {z ∈ LA : z ≤ x}.

Since the liken LA is finitely generated, the number of its elements increases like
a polynomial of degree equal to the number of elements of the set A. But the
cardinality of A is less than d, hence we can take WA(x) = WLA because degW =
card (A). This ends the proof.

Remark 26
Theorem 25 allows us to point out once more the difference between finitely and
infinitely generated likens. In the classical liken N∗ the sequence of gaps is injec-
tive, which means that ωL(x) = k(x) = πL(x) (the number of different elements
in the sequence of gaps grows at the same rate as the number of the elements of
a liken). In consequence, N∗ cannot be finitely generated. Let us also remark
that in N∗ two successive elements are always relatively prime. As we have ob-
served in Propositions 7 and 8, each element of a liken with uniqueness can be
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identified with the sequence of its coordinates in the expansion (2), then each el-
ement x ∈ L is a function on N with the values in N. Hence it clear what we
mean by the support of x. Thus "relatively prime" means clearly that for each
k, supp (xk) ∩ supp (xk+1) = ∅. This property of N∗ is never true for finitely
generated likens, since in finite dimensional case there exist elements with full
support.

3.2. Some consequences of a certain theorem of Dirichlet

We will prove some further theorems on gaps in likens for which we will need
some consequences of the well known theorem of Dirichlet, see e.g. [4].

Theorem 27
For each irrational number α there exists infinitely many rational numbers p

q ,
p ∈ Z, q ∈ N such that ∣∣∣∣α− p

q

∣∣∣∣ < 1
q2 .

As an easy consequence of Dirichlet’s theorem we obtain

Lemma 28
Let {a1, a2, . . . , ak} be a finite sequence of positive real numbers which satisfies
the following condition: for each partition of the set {1, 2, . . . , k} onto non-empty
subsets K and M we have ∑

i∈K ai∑
j∈M aj

/∈ Q.

Then, for each η > 0 and for each partition (K,M) as above there exist infinitely
many pairs (p, q) of natural numbers such that∣∣q ·∑

i∈K
ai − p ·

∑
j∈M

aj
∣∣ < η.

Proof. Let us fix a partition (K,M) and a positive number η > 0. Next we apply
Theorem 27 for

α =
∑
i∈K ai∑
j∈M aj

and we obtain ∣∣∣∣ ∑i∈K ai∑
j∈M aj

− p

q

∣∣∣∣ < 1
q2

for infinitely many rational numbers p
q . This implies that

∣∣q ·∑
i∈K

ai − p ·
∑
j∈M

aj
∣∣ < ∑

i∈K ai

q2

for infinitely many p
q . We choose q so large that∑

i∈K ai

q2 < η

and this ends the proof.



LikeN’s – a point of view on natural numbers [113]

3.3. Second theorem

We will prove another theorem on gaps in likens, saying in particular, that
the one-dimensional likens, in which the sequence of gaps is constant, constitute
a kind of singularity. Namely, we have the following

Theorem 29
Let L = L(a1, a2, . . . , ad) = (xn)∞0 denote a liken with d generators (d > 1). Let
δn = xn+1 − xn be a sequence of gaps of the liken L. Then

lim
n→∞

δn = 0.

Proof. It is not hard to observe that it suffices to verify our theorem only for d = 2,
but we must use also Lemma 28. Since δn > 0 then it is sufficient to show that

lim sup
n→∞

δn = 0.

To obtain a contradiction assume that there exist a number α > 0 and a subse-
quence n1 < n2 < . . . of the sequence of natural numbers such that δnk

> α. Then
δnk

= xnk+1 − xnk
. Let

xnk
=

d∑
j=1

mj
nk
· aj .

Since the sequence xnk
as a subsequence of the liken L tends to infinity, at least

one of d sequences mj
nk

is a sequence of real numbers tending to infinity. We will
consider two cases.

Case 1. Assume that for each 1 ≤ j ≤ d we have limk→∞mj
nk

= ∞. Let us
divide the set {1, 2, . . . , d} into two non-empty and disjoint subsets K
and M and fix a number η < α. Now we apply for Lemma 28 K and L.
Consider a pair (p, q) such that∣∣q ·∑

i∈K
ai − p ·

∑
j∈M

aj
∣∣ < η.

Without loss of generality we may assume that

0 < q ·
∑
i∈K

ai − p ·
∑
j∈M

aj < η.

Now we choose nk so large that 1 ≤ j ≤ d there is mj
nk

> max(p, q).
Consider a point

x =
∑
i∈K

(mnk
+ q) · ai +

∑
j∈M

(mnk
− p) · aj .

Since all coefficients at the generators are positive then x belongs to the
liken L and there exists s ∈ N such that x = xs. We will prove that
xnk

< xs. Indeed, we have

xs − xnk
= q ·

∑
i∈K

ai − p ·
∑
j∈M

aj > 0.
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In consequence, we have

α < δnk
= xnk+1 − xnk

≤ xs − xnk
= q ·

∑
i∈K

ai − p ·
∑
j∈M

aj < η ≤ α.

This contradiction ends the proof of the Case 1.
Case 2. Let us suppose that there exists j such that the sequencemj

nk
is bounded

and let K be the set of all such j. More exactly, K := {j : mj
nk
< Aj}.

It follows from our assumption that M = {1, 2, . . . , d} \ K 6= ∅. We
choose η < α and apply Lemma 28 for K, M and η as above. We choose
a pair (p, q) such that we have the inequality

0 < q ·
∑
i∈K

ai − p ·
∑
j∈M

aj < η

and we choose nk such that mj
nk
> p for j ∈M .

Now we set

x =
∑
i∈K

(mnk
+ q) · ai +

∑
j∈M

(mnk
− p) · aj

and we use the same argument as in Case 1. Since all coefficients at
generators are positive then x belongs to L and x = xs for some s ∈ N.
We check that xnk

< xs. Indeed, we have

xs − xnk
= q ·

∑
i∈K

ai − p ·
∑
j∈M

aj > 0.

In consequence,

α < δnk
= xnk+1 − xnk

≤ xs − xnk
= q ·

∑
i∈K

ai − p ·
∑
j∈M

aj < η ≤ α

and this contradiction ends the proof.

Remark 30
Theorem 29 may by interpreted geometrically. As we have proved in Theorem
22 the function πL(x) behaves like a polynomial WL which has the degree equal
to the dimension of L. Hence the number of the elements of L in an interval
[x, x+ 1] behaves like the derivative W ′L of WL, hence tends to infinity with x and,
in consequence, the average gap tends to 0. Theorem 29 says that, in some sense,
there are no irregularities in the sequence of gaps.
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