STRESZCZENIE W JĘZYKU ANGIELSKIM (Abstract)

Title:

Superconductivity and structure of selected metals from groups 5f and (3-5)d and their hydrides.

Key words:

uranium, γ -U phase, cubic structure, superconductivity, hydrides, ferromagnetism

Abstract:

Metallic uranium exists in three allotropic phases, between room temperature and its melting point: α -U, β -U, and γ -U. The high-temperature γ -U phase with cubic structure can be retained to the room temperature by using a combination of ultrafast-cooling and alloying with 3*d*, 4*d* and 5*d* elements in groups IV - VIII of the periodic table; i.e.the U_{1-x}T_x systems; T = Mo, Zr, Nb, Ru, Pd, Pt, Ti. U_{1-x}T_x alloys absorb hydrogen when exposed to high hydrogen pressures (> 4 bar), forming hydrides of the (UH₃)_{1-x}T_x type.

The aim of the dissertation was to investigate the crystal structure and superconductivity of selected U_{1-x}T_x systems (U- *n* at.% T; x = n/100; at.=atomic percentage T = Nb, Ru, Pt, Pd, Ti) alloys synthesized via an ultrafast-cooling method with the cooling rate in the range of 10⁶ K/s. The results will be compared with the earlier results obtained for the U-Mo and U-Zr systems. Stabilization of the γ -U phase is possible for the concentration of $n \ge 15$ at.% T. The investigated U-T alloys (T = Nb, Pt, Pd, Ru, Ti) become superconducting in the temperature range of 0,40 – 1,95 K. Detailed investigations of the superconducting state at ultra-low temperature to 70 mK and in the magnetic field up to 5 T allowed to determine the values of the upper critical field and the critical slope, which is respectively in the range of 1,0 - 4,3 T and 2,0 - 4,3 T/K. (For a comparison: the highest value of T_c and value of upper critical fields and of the critical slope for U- 15 at.% Mo is respectively 2.11 K, 6.7 T i 4,7 T/K).

The investigated hydrides $(UH_3)_{1-x}T_x$ (T = Nb, Ru, Ti; presented in this work) have a mixture of α -UH₃ and β -UH₃ phase. They are ferromagnets with the Curie temperature in the range of ~151 - 195 K and a spontaneous magnetization M_s in the range 0,80-1,05 μ B/U. (For a comparison: hydride (UH₃)_{0.85}Mo_{0.15} is a nanocrystalline ferromagnet with pure β -UH₃ phase ($T_C = 200$ K; $M_s = 1,09 \mu$ B/U); hydride (UH₃)_{0.70}Zr_{0.30} is a crystalline ferromagnet with α -UH₃ phase $T_C = 170$ K; $M_s = 0,89 \mu$ B/U).