

Annales Universitatis Paedagogicae Cracoviensis

Studia Mathematica IX (2010)

Małgorzata Chudziak **On a generalization of the Popoviciu equation on groups**

Abstract. **We determine a generał solution of the Ророѵісіи type functional eąuation on groups.**

1. Introduction

In 1965 T. Popoviciu [5], dealing with some inequality for convex functions, has introduced the functional eąuation

$$
3f\left(\frac{x+y+z}{3}\right) + f(x) + f(y) + f(z) = 2\left[f\left(\frac{x+y}{2}\right) + f\left(\frac{x+z}{2}\right) + f\left(\frac{y+z}{2}\right)\right]. \tag{1}
$$

The solution and stability of (1) have been studied by W. Smajdor $[6]$ and T. Trif [7]. Recently, J. Brzdęk [1] has considered stability of (1) on a restricted domain. Solution and stability of the following "ąuadratic" version of (1),

$$
9f\left(\frac{x+y+z}{3}\right) + f(x) + f(y) + f(z) = 4\left[f\left(\frac{x+y}{2}\right) + f\left(\frac{x+z}{2}\right) + f\left(\frac{y+z}{2}\right)\right] \tag{2}
$$

have been investigated by Y.W. Lee [3]. The results from [3] have been generalized by the same author in [4], where the functional eąuation

$$
m^{2} f\left(\frac{x+y+z}{m}\right) + f(x) + f(y) + f(z)
$$

=
$$
n^{2} \left[f\left(\frac{x+y}{n}\right) + f\left(\frac{x+z}{n}\right) + f\left(\frac{y+z}{n}\right) \right]
$$
 (3)

has been considered $(m, n$ are nonzero integers such that $m + 1 = 2n$. The case $m = n = 1$ has been studied by P. Kannappan [2]. For some further generalization of (1) we refer to $[8]$. It is remarkable that the results mentioned above (except for $[1]$ and $[6]$) concern the case, where unknown function f is acting between two real linear spaces. In the present paper we deal with the functional equation

$$
Mf\left(\frac{x+y+z}{m}\right) + f(x) + f(y) + f(z) = N\left[f\left(\frac{x+y}{n}\right) + f\left(\frac{x+z}{n}\right) + f\left(\frac{y+z}{n}\right)\right]
$$
(4)

AMS (2000) Subject Classification: 39B22.

Yolumes І-ѴІІ appeared as *Annales Academiae Paedagogicae Cracoviensis Studia Mathematica.*

in a more general setting. Namely, we assume that m, n, M, N are positive integers, $(G,+)$ is a commutative group uniquely divisible by m and n, $(H,+)$ is a commutative group uniquely divisible by 2 and $f: G \to H$ is an unknown function. Let us recall that a group $(X,+)$ is said to be *uniquely divisible* by a given positive integer k provided, for every $x \in X$, there exists a unique $y \in X$ such that $x = ky$; such an element will be denoted in a sequel by $\frac{x}{k}$. Furthermore, given arbitrary groups $(X,+)$ and $(Y,+)$, a function $Q: X \to Y$ is said to be *quadratic* provided

$$
Q(x+y) + Q(x-y) = 2Q(x) + 2Q(y) \quad \text{for } x, y \in X
$$

and a function $A: X \to Y$ is said to be *additive* provided

$$
A(x + y) = A(x) + A(y) \quad \text{for } x, y \in X.
$$

$2.$ **Results**

We begin this section with the following theorem, which is a main result of the paper.

THEOREM 1

Let m, n, M, N be positive integers, $(G, +)$ be a commutative group uniquely divisible by m and n, and $(H, +)$ be a commutative group uniquely divisible by 2. Then a function $f: G \to H$ satisfies equation (4) for all $x, y, z \in G$ if and only if there exist a quadratic function $Q: G \to H$, an additive function $A: G \to H$ and $a \ B \in H \ such \ that$

$$
(M - 3N + 3)B = 0,\t(5)
$$

$$
(N - n2)Q(x) = (M - m2)Q(x) = 0 \tfor x \in G,
$$
 (6)

$$
(Mn + mn - 2mN)A(x) = 0 \tfor x \in G \t\t(7)
$$

and

$$
f(x) = Q(x) + A(x) + B \qquad \text{for } x \in G. \tag{8}
$$

Proof. Assume that f satisfies (4). Then, applying (4) with $x = y = z = 0$, we get

$$
(M+3-3N)f(0) = 0.\t\t(9)
$$

Define the functions $Q: G \to H$ and $A: G \to H$ by

$$
Q(x) := \frac{f(x) + f(-x)}{2} - f(0) \quad \text{for } x \in G
$$

and

$$
A(x) := \frac{f(x) - f(-x)}{2} \quad \text{for } x \in G,
$$

respectively. Furthermore, let $B := f(0)$. Then it is clear that $A(0) = Q(0) = 0$,

Q is an even function, *A* is odd and / is of the form (8). Furthermore, in view of (9) , (5) is valid. Note also, that by (4) , for every $x, y, z \in G$, we get

$$
Mf\left(\frac{-(x+y+z)}{m}\right) + f(-x) + f(-y) + f(-z)
$$

= $N\left[f\left(\frac{-(x+y)}{n}\right) + f\left(\frac{-(x+z)}{n}\right) + f\left(\frac{-(y+z)}{n}\right)\right].$

Therefore, taking into account (9), we obtain that *Q* and *A* satisfy (4) for every $x, y, z \in G$. Now, we show that *Q* is a quadratic function. Since *Q* is even and satisfies (4), for every $x, y \in G$, we have

$$
MQ\left(\frac{y}{m}\right) + 2Q(x) + Q(y) = MQ\left(\frac{x+y-x}{m}\right) + Q(x) + Q(y) + Q(-x)
$$

$$
= N\left[Q\left(\frac{x+y}{n}\right) + Q\left(\frac{x-y}{n}\right)\right].
$$

Thus

$$
MQ\left(\frac{y}{m}\right) + 2Q(x) + Q(y) = N\left[Q\left(\frac{x+y}{n}\right) + Q\left(\frac{x-y}{n}\right)\right] \tag{10}
$$

for $x, y \in G$. Taking in (10) $y = 0$, we get $2Q(x) = 2NQ(\frac{x}{n})$ for $x \in G$ whence, as *H* is uniąuely divisible by 2, we have

$$
Q(x) = NQ\left(\frac{x}{n}\right) \qquad \text{for } x \in G. \tag{11}
$$

Moreover, putting in (10) $x = 0$, we obtain

$$
MQ\left(\frac{y}{m}\right) + Q(y) = 2NQ\left(\frac{y}{n}\right) \quad \text{for } y \in G
$$

which, together with (11) , gives

$$
Q(y) = MQ\left(\frac{y}{m}\right) \quad \text{for } y \in G. \tag{12}
$$

Now, from (10) – (12) we deduce that *Q* is quadratic. Furthermore note that, as *Q* is quadratic, from (11) and (12) it follows (6) .

Next, we consider the function *A.* As we have already noted, *A* is odd, vanishes at 0 and satisfies (4), that is, for every $x, y, z \in G$, it holds

$$
MA\left(\frac{x+y+z}{m}\right) + A(x) + A(y) + A(z)
$$

= $N\left[A\left(\frac{x+y}{n}\right) + A\left(\frac{x+z}{n}\right) + A\left(\frac{y+z}{n}\right)\right].$ (13)

Applying (13) with $z = 0$, and then with $y = z = 0$, we get

$$
MA\left(\frac{x+y}{m}\right) + A(x) + A(y) = N\left[A\left(\frac{x+y}{n}\right) + A\left(\frac{x}{n}\right) + A\left(\frac{y}{n}\right)\right] \tag{14}
$$

for $x, y \in G$ and

$$
MA\left(\frac{x}{m}\right) + A(x) = 2NA\left(\frac{x}{n}\right) \quad \text{for } x \in G,
$$
\n⁽¹⁵⁾

respectively. By (15), for every $x, y \in G$, we get

$$
MA\left(\frac{x+y}{m}\right) + A(x+y) = 2NA\left(\frac{x+y}{n}\right).
$$

Thus, in view of (14), we get

$$
A(x + y) - A(x) - A(y) = N\left[A\left(\frac{x+y}{n}\right) - A\left(\frac{x}{n}\right) - A\left(\frac{y}{n}\right)\right].
$$

On the other hand, using the oddness of A and applying (13), for $x, y \in G$, we obtain

$$
N\left[A\left(\frac{x+y}{n}\right) - A\left(\frac{x}{n}\right) - A\left(\frac{y}{n}\right)\right]
$$

=
$$
N\left[A\left(\frac{x+y}{n}\right) + A\left(\frac{y-(x+y)}{n}\right) + A\left(\frac{x-(x+y)}{n}\right)\right]
$$

=
$$
MA\left(\frac{x+y-(x+y)}{m}\right) + A(x) + A(y) - A(x+y).
$$

Conseąuently,

$$
A(x + y) - A(x) - A(y) = A(x) + A(y) - A(x + y) \quad \text{for } x, y \in G,
$$

which means that $2A$ is an additive function. Since H is uniquely divisible by 2, we conclude that A is additive. Finally note that as A is additive, (15) implies (7).

Since the converse is easy to check, the proof is completed.

The next two corollaries generalize to some extend Theorem 2.1 in [7] and Theorem 2.1 in [4], respectively.

COROLLARY 1

Let m, n be positive integers, $(G, +)$ be a commutative group uniquely divisible *by m and n, and* $(H, +)$ *be a commutative group uniquely divisible by 2. Then a function* $f:G \to H$ *satisfies equation*

$$
mf\left(\frac{x+y+z}{m}\right) + f(x) + f(y) + f(z)
$$

= $n\left[f\left(\frac{x+y}{n}\right) + f\left(\frac{x+z}{n}\right) + f\left(\frac{y+z}{n}\right)\right]$ for $x, y, z \in G$

if and only if there exist a quadratic function $Q: G \to H$ *, an additive function* $A: G \to H$ and a $B \in H$ such that $(m-3n+3)B = 0$, $Q = 0$ whenever $m \neq 1$ or $n \neq 1$ *; and f is of the form (8).*

COROLLARY 2

Let m, n be positive integers, $(G, +)$ be a commutative group uniquely divisible *by m and n, and* $(H, +)$ *be a commutative group uniquely divisible by 2. Then a function* $f: G \to H$ satisfies equation (3) for all $x, y, z \in G$ if and only if there *exist a quadratic function Q: G* \rightarrow *H, an additive function A: G* \rightarrow *H and a B* \in *H such that* $(m^2 - 3n^2 + 3)B = 0$, $A = 0$ *whenever* $m + 1 \neq 2n$; and f is of the *form* (8).

References

- [1] J. Brzdęk, A note on stability of the Popoviciu functional equation on restricted *dom ain,* **Demonstratio Math., in press.**
- [2] P. Kannappan, *Quadratic functional equation and inner product spaces*, Results **Math. 27 (1995), 368-372.**
- [3] Y.W. Lee, On the stability on a quadratic Jensen type functional equation, J. **Math. Anal. Appl. 270 (2002), 590-601.**
- [4] Y.W. Lee, *Stability of a generalized quadratic functional equation with Jensen type.* **Buli. Korean Math. Soc. 42 (2005), 57-73.**
- [5] T. Popoviciu, Sur certaines inégalités qui caractérisentes fonctions convexes, An. Şti. Univ. "Al. I. Cuza" Iași Sect. I a Mat. (N.S.) **11** (1965), 155-164.
- [6] W. Smajdor, *Note on a Jensen type functional equation*, Publ. Math. Debrecen **63 (2003), 703-714.**
- [7] T. Trif, *Hyers-Ulam-Rassias stability of a Jensen type functional equation*, J. **Math. Anal. Appl. 250 (2000), 579-588.**
- [8] T. Trif, *On the stability of a functional equation deriving from an inequality of Р орогісіи for convex functions, J. Math. Anal. Appl. 272 (2002), 604-616.*

D e p a rtm e n t o f M a th e m a tics U n iu e rs ity o f Rzeszów ul. Rejtana 16 C 35-959 Rzeszów P o la n d E -m a il: **mchudziak@univ.rzeszow.pl**

Received: 13 October 2009; final version: 29 March 2010; available online: 27 April 2010.

 $\mathcal{F}(\mathcal{F})$.