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Krzysztof �yjewskiNonloal Robin problem in a plane domain witha boundary orner pointAbstrat. We investigate the behavior of weak solutions to the nonlocal Robin

problem for linear elliptic divergence second order equations in a neighbor-
hood of the boundary corner point. We find an exponent of the solution
decreasing rate under the minimal assumptions on the problem coefficients.1. Introdution

Our article is devoted to the linear elliptic divergence second order equations
with the nonlocal Robin boundary condition in a plane bounded domain with
a boundary corner point. The nonlocal condition means that the values of the
unknown function u on the lateral side of a domain are connected with the values
of u inside a domain. This problem appears often in different fields of physics and
engineering. For example, nonlocal elliptic boundary value problems have impor-
tant applications to the theory of diffusion processes, in the theory of turbulence
etc. Various problems in this field have been studied by many mathematicians. We
refer for the history of this problem and the extensive citation to [4, 11]. Questions
of the solvability to nonlocal elliptic value boundary problems were considered by
Skubachevskii [11]. In the same place there were obtained a priori estimates of
solutions in the Sobolev spaces: both weighted and unweighted. All results in
[11] relate to equations with infinite–differentiable coefficients. Gurevich [4] con-
sidered asymptotics of solutions for nonlocal elliptic problems for equations with
constant coefficients in plane angles.

The aim of our article is the type |u(x)| = O(|x|α) estimate of the weak solu-
tion modulus for our problem near an angular boundary point. A principal new
feature of our work is the establishing of the weak solution decrease rate exponent
under the consideration of the minimal smoothness required on the coefficients of
the problem. Moreover, we derive global and local estimates for weighted and un-
weighted Dirichlet integrals applying different methods from those in [4, 11] that
allows us to obtain more detailed and exact estimates of these integrals than pre-
viously known. We investigate the behavior of weak solutions for the considered

AMS (2000) Subject Classification: 35J25, 35J60, 35J85, 35B65.
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problem in a neighborhood of the boundary corner point by integro–differential
inequalities and Kondratiev’s ring methods developed in [1]. For this purpose we
use the Friedrichs–Wirtinger type inequality which is adapted to the our problem.
All obtained results are new and distinguishes our work from cited above.

Setting of nonlocal problem. Let G ⊂ R
2 be a bounded domain with boundary

∂G = Γ+ ∪ Γ− being a smooth curve everywhere except at the origin O ∈ ∂G,
where near the point O curves Γ± are lateral sides of an angle with the measure
ω0 ∈ [0, 2π) and the vertex at O. Let Σ0 = G ∩ {x2 = 0}, where O ∈ Σ0 .

We will use the following notations:

• S1: the unit circle in R
2 centered at O;

• (r, ω): the polar coordinates of x = (x1, x2) ∈ R
2 with pole O: x1 = r cosω,

x2 = r sinω;

• C: the angle {x1 > r cos ω0

2 ; −∞ < x2 <∞} with vertex O;

• ∂C: the lateral sides of C: x1 = r cos ω0

2 , x2 = ±r sin ω0

2 ;

• Ω: an arc obtained by intersecting the angle C with S1: Ω = C ∩ S1;

• Gba = {(r, ω); 0 ≤ a < r < b; ω ∈ Ω} ∩G: a ring domain in R
2;

• Γba± = {(r, ω); 0 ≤ a < r < b; ω = ±ω0

2 } ∩ ∂G: the lateral sides of Gba;

• Gd = G \Gd0; Γd± = Γ± \ Γd0±, d > 0;

• Ωρ = Gd0 ∩ {|x| = ̺}; 0 < ̺ < d;

• measG: the Lebesgue measure of the set G.



Nonloal Robin problem in a plane domain with a boundary orner point [7℄
We shall consider an elliptic equation with nonlocal boundary condition con-

necting the values of the unknown function u on the curve Γ+ with its values of u
on the Σ0:





L[u] ≡ ∂

∂xi
(aij(x)uxj ) + bi(x)uxi + c(x)u = f(x), x ∈ G;

B+[u] ≡
∂u

∂ν
+ β+

u(x)

|x| +
b

|x|u(γ(x)) = g(x), x ∈ Γ+;

B−[u] ≡
∂u

∂ν
+ β−

u(x)

|x| = h(x), x ∈ Γ−;

(L)

here:

• ∂
∂ν

= aij(x) cos(−→n , xi) ∂
∂xj

and −→n denotes the unit vector outwards with
respect to G normal to ∂G \ O (summation over repeated indices from 1 to
2 is understood);

• γ is a diffeomorphism mapping of Γ+ onto Σ0; we assume that there exists
d > 0 such that in the neighborhood Γd0+ of the point O the mapping γ is
the rotation by the angle −ω0

2 , that is γ(Γd0+) = Σd0.

Remark 1.1
We observe that

u(γ(x))|Γd
0+

= u(r, 0), 0 < r < d.

In fact, γ(x) = γ(x1, x2) = γ(r cos ω0

2 , r sin
ω0

2 ) = (r, 0), because of in the neigh-
borhood Γd0+ of the point O the mapping γ is the rotation by the angle −ω0

2 .

We use also standard function spaces: Ck(G) with the norm |u|k,G, Lebesgue
space Lp(G), p ≥ 1 with the norm ‖u‖p,G, the Sobolev space W k,p(G) with the

norm ‖u‖p,k,(G) = (
∫
G

∑k
|β|=0 |Dβu|p dx) 1

p . We define the weighted Sobolev space:

V kp,α(G) for integer k ≥ 0 and real α as the closure of C∞
0 (G) with respect to the

norm

‖u‖V k
p,α(G) =

( ∫

G

k∑

|β|=0

rα+p(|β|−k)|Dβu|p dx
) 1

p

.

We write W k(G) for W k,2(G) and W
◦
k
α(G) for V k2,α(G).

Let us recall some well known formulae related to polar coordinates (r, ω)
centered at the point O:

• dx = rdrdω,

• dΩρ = ρdω,

• ds denotes the length element on ∂G,

• |∇u|2 = (∂u
∂r

)2 + 1
r2
( ∂u
∂ω

)2,
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• △u = ∂2u

∂r2
+ 1

r
∂u
∂r

+ 1
r2
∂2u
∂ω2 .

C = C(. . .), c = c(. . .) denote constants depending only on the quantities
appearing in parentheses. In what follows, the same letters C, c will (generally)
be used to denote different constants depending on the same set of arguments.

Without loss of generality we can assume that there exists d > 0 such that Gd0
is an angle with the vertex at O and the measure ω0 ∈ (0, 2π), thus

Γd0± =
{(
r,±ω0

2

)∣∣∣ x1 = ± cot
ω0

2
· x2; r ∈ (0, d)

}
.

By means of the direct calculation we obtain

Lemma 1.2

cos(~n, x1)|Γd
0±

= − sin
ω0

2
; xi cos(~n, xi)|Γd

0±
= 0; xi cos(~n, xi)|Ω̺ = ̺.

Definition 1.3
A function u(x) is called a weak solution of problem (L) provided that u(x) ∈
C0(G) ∩W

◦
1
0(G) and satisfies the integral identity

∫

G

{aij(x)uxjηxi − bi(x)uxiη(x) − c(x)u(x)η(x)} dx

+

∫

Γ+

(
β+

u(x)

r
+
b

r
u(γ(x))

)
η(x) ds + β−

∫

Γ−

u(x)

r
η(x) ds

=

∫

Γ+

g(x)η(x) ds +

∫

Γ−

h(x)η(x) ds −
∫

G

f(x)η(x) dx

(II)

for all functions η(x) ∈ C0(G) ∩W
◦

1
0(G).

Lemma 1.4
Let u(x) be a weak solution of (L). For any function η(x) ∈ C0(G) ∩W

◦
1
0(G) the

equality
∫

G
̺
0

{aij(x)uxjηxi + (f(x)− bi(x)uxi − c(x)u(x))η(x)} dx

=

∫

Ω̺

aij(x)uxjη(x) cos(r, xi) dΩ̺

+

∫

Γ̺
0+

(
g(x)− β+

u(x)

r
− b

r
u(γ(x))

)
η(x) ds

+

∫

Γ̺
0−

(
h(x)− β−

u(x)

r

)
η(x) ds

(II)loc

holds for almost every ̺ ∈ (0, d).
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Proof. Let χ̺(x) be the characteristic function of the set G̺0. We consider the

integral identity (II) replacing η(x) by η(x)χ̺(x). As the result we obtain
∫

G
̺
0

{aij(x)uxjηxi + (f(x) − bi(x)uxi − c(x)u(x))η(x)} dx

= −
∫

G
̺
0

aij(x)uxjη(x)χxi dx+

∫

Γ̺
0+

(
g(x)− β+

u(x)

r
− b

r
u(γ(x))

)
η(x) ds

+

∫

Γ̺
0−

(
h(x)− β−

u(x)

r

)
η(x) ds.

Because of formula (7’) of subsection 3 §1 chapter 3 in [2]

χxi = −xi
r
δ(̺− r),

where δ(̺ − r) is the Dirac distribution lumped on the circle r = ̺, we get (see
Example 4 of subsection 3 §1 chapter 3 [2])

−
∫

G
̺
0

aij(x)uxjη(x)χxi dx =

∫

G
̺
0

aij(x)uxjη(x)
xi

r
δ(̺− r) dx

=

∫

Ω̺

aijuxjη(x) cos(r, xi) dΩ̺.

Thus the required statement follows.

We will make the following assumptions:

(a) the condition of the uniform ellipticity:

νξ2 ≤ aij(x)ξiξj ≤ µξ2, ∀x ∈ G, ∀ξ ∈ R
2;

ν, µ = const > 0 and aij(0) = δ
j
i ,

where δji is the Kronecker symbol;

(b) aij(x) ∈ C0(G), bi(x) ∈ Lp(G), c(x) ∈ L p
2
(G) ∩ L2(G); ∀p > ñ, ∀ñ > 2; for

them the inequalities

( 2∑

i,j=1

|aij(x) − aij(y)|2
) 1

2

≤ A(|x− y|);

|x|
( 2∑

i=1

|bi(x)|2
) 1

2

+ |x|2|c(x)| ≤ A(|x|)

hold for x, y ∈ G, where A(r) is a monotonically increasing function, con-

tinuous at 0, with A(0) = 0;
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(c) c(x) ≤ 0 in G; b > 0, β± ≥ β0 > 0 and β+ > max{0; b2ω0

4 − b; b
2ω0

4ν − b;
4b2ω0

ν
− 2b};

(d) f(x) ∈ L p
2
(G) ∩ L2(G), g(x) ∈ L2(Γ+), h(x) ∈ L2(Γ−) and there exist

numbers f0 ≥ 0, g0 ≥ 0, h0 ≥ 0, s > 2− 2
p

such that

|f(x)| ≤ f0|x|s−2, |g(x)| ≤ g0|x|s−1, |h(x)| ≤ h0|x|s−1;

(e) M0 = maxx∈G |u(x)| is known.

Our main result is the following theorem. Let

λ =

√
ϑ
(
1 +

b

4β+

(
2 +

√
4 + 2ω0β+

))
, (1.1)

where ϑ is the smallest positive eigenvalue of problem (EV P ) (see Subsection 2.1).

Theorem 1.5
Let u be a weak solution of problem (L), satisfying the assumptions (a)− (e) with
A(r) Dini-continuous at zero. Then there are d ∈ (0, 1

e
), where e is the Euler

number, and a constant C > 0 depending only on ν, µ, p, λ, ‖
∑2
i=1 |bi(x)|2‖L p

2
(G),

ω0, b, β+, β−, M0, f0, h0, g0, β0, s, measG, meas Γ+, measΓ− and on the

quantity
∫ 1

e

0
A(r)
r

dr such that for all x ∈ Gd0

|u(x)| ≤ C





|x|
λk√

q , if s >
λk√
q
,

|x|
λk√

q ln

(
1

|x|

)
, if s =

λk√
q
,

|x|s, if s <
λk√
q
,

(1.2)

where

k = 1 +
b

2β+
− b
√
1 + ω0β+

2β+
and q = 1 +

b

4β+

(
2 +

√
4 + 2ω0β+

)
. (1.3)

To prove the main theorem (see Section 6) one ought to derive the following
statements:

- the local estimate of the maximum modulus (see Section 3),

- the global estimate of the weighted Dirichlet integral (see Section 4),

- the local estimate of the weighted Dirichlet integral (see Section 5).
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In what follows we need some statements and inequalities.
The eigenvalue problem. Let Ω = (−ω0

2 ,
ω0

2 ). We consider the following eigen-
value problem:






ψ′′(ω) + ϑψ(ω) = 0, ω ∈ Ω,

ψ′
(ω0

2

)
+ β+ψ

(ω0

2

)
= 0,

−ψ′
(
− ω0

2

)
+ β−ψ

(
− ω0

2

)
= 0,

(EV P )

with β± > 0, which consist of the determination of all values ϑ (eigenvalues) for
which (EV P ) has nonzero weak solutions (eigenfunctions).

Definition 2.1
Function ψ is called a weak solution of problem (EV P ) provided that ψ ∈W 1(Ω)∩
C0(Ω) and satisfies the integral identity

∫

Ω

(ψ′(ω)η′(ω)− ϑψ(ω)η(ω)) dω + β+ψ
(ω0

2

)
η
(ω0

2

)

+β−ψ
(
− ω0

2

)
η
(
− ω0

2

)
= 0

(2.1)

for all η(ω) ∈W 1(Ω) ∩C0(Ω).

Remark 2.2
We observe that ϑ = 0 is not an eigenvalue of (EV P ). In fact, setting in (2.1)
η = ψ and ϑ = 0 we have

∫

Ω

|ψ′(ω)|2 dω + β+

∣∣∣ψ
(ω0

2

)∣∣∣
2

+ β−
∣∣∣ψ
(
− ω0

2

)∣∣∣
2

= 0 =⇒ ψ(ω) ≡ 0,

since β± > 0.

Now, let us introduce the following functionals on W 1(Ω) ∩C0(Ω)

F [ψ] =

∫

Ω

(ψ′(ω))2 dω + β+ψ
2
(ω0

2

)
+ β−ψ

2
(
− ω0

2

)
,

G[ψ] =

∫

Ω

ψ2(ω) dω,

H [ψ] =

∫

Ω

((ψ′(ω))2 − ϑψ2(ω)) dω + β+ψ
2
(ω0

2

)
+ β−ψ

2
(
− ω0

2

)
.
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We introduce also corresponding bilinear forms

F [ψ, η] =

∫

Ω

(ψ′(ω)η′(ω)) dω + β+ψ
(ω0

2

)
η
(ω0

2

)
+ β−ψ

(
− ω0

2

)
η
(
− ω0

2

)
,

G[ψ, η] =
∫

Ω

ψ(ω)η(ω) dω.

We define the setK = {ψ ∈W 1(Ω)∩C0(Ω)|G[ψ] = 1}. SinceK ⊂W 1(Ω)∩C0(Ω),
F [ψ] is bounded from below for ψ ∈ K. We denote by ϑ the greatest lower bound
of F [ψ] for this family:

ϑ := inf
ψ∈K

F [ψ].

We formulate the following statement:

Theorem 2.3
Let Ω ⊂ S1 be an arc. Then there exist ϑ > 0 and a function ψ ∈ K such that

F [ψ, η]− ϑG[ψ, η] = 0 for arbitrary η ∈W 1(Ω) ∩ C0(Ω).

In particular F [ψ] = ϑ.

Proof. The proof is similar to Theorem 2.18 [1].

Now from the variational principle we obtain the Friedrichs–Wirtinger

type inequality:

Theorem 2.4
Let ϑ be the smallest positive eigenvalue of problem (EV P ) (it exists according to
Theorem 2.3). Let Ω ⊂ S1 and assume that ψ ∈ W 1(Ω) ∩ C0(Ω) satisfies in the
weak sense boundary conditions from (EV P ). Then

ϑ

∫

Ω

ψ2(ω) dω ≤
∫

Ω

(∂ψ
∂ω

)2
dω + β+ψ

2
(ω0

2

)
+ β−ψ

2
(
− ω0

2

)
.

Because of (1.1) and the definition of q by (1.3), the Friedrichs–Wirtinger
inequality will be written in the following form

∫

Ω

ψ2(ω) dω ≤ q

λ2

{ ∫

Ω

(∂ψ
∂ω

)2
dω + β+ψ

2
(ω0

2

)
+ β−ψ

2
(
− ω0

2

)}
(2.2)

for all ψ(ω) ∈ W 1(Ω) ∩C0(Ω) satisfying boundary conditions from (EV P ) in the
weak sense.

We formulate the classical Hardy inequality (see Theorem 330 [5]).
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Proposition 2.5
Let v ∈ C0[0, d] ∩W 1(0, d), d > 0 with v(0) = 0.Then

d∫

0

rα−3v2(r) dr ≤ 4

(2− α)2

d∫

0

rα−1
(∂v
∂r

)2
dr (2.3)

for α < 2, provided that the integral on the right hand side is finite.

Proof. It is the corollary of the classical Hardy inequality (see e.g. §2.1 [1]).

Now we use the Hardy inequality and then we get:

Proposition 2.6 (The Hardy–Friedrichs–Wirtinger inequality)

Let u ∈ C0(Gd0) ∩W
◦

1
α−2(G

d
0), α ≤ 2. Then

∫

Gd
0

rα−4u2(x) dx ≤ 1
(2−α)2

4 + λ2

q

·
{ ∫

Gd
0

rα−2|∇u|2 dx

+ β+

∫

Γd
0+

rα−3u2(x) ds+ β−

∫

Γd
0−

rα−3u2(x) ds

}
.

(2.4)

Proof. Multiplying inequality (2.2) by rα−3 and integrating over r ∈ (0, d) we
obtain

∫

Gd
0

rα−4u2(x) dx ≤ q

λ2

{ ∫

Gd
0

rα−2 1

r2

( ∂u
∂ω

)2
dx

+ β+

∫

Γd
0+

rα−3u2(x) ds+ β−

∫

Γd
0−

rα−3u2(x) ds

}
.

(2.5)

Hence (2.4) follows for α = 2. Now, let α < 2. We shall show that u(0) = 0.
In fact, from u(0) = u(x) − (u(x) − u(0)) using the Cauchy inequality we have
1
2 |u(0)|2 ≤ |u(x)|2+|u(x)−u(0)|2. Multiplying this inequality by rα−4, integrating
over Gd0 and using v(x) = u(x)− u(0) we obtain

1

2
|u(0)|2

∫

Gd
0

rα−4 dx ≤
∫

Gd
0

rα−4u2(x) dx +

∫

Gd
0

rα−4|v(x)|2 dx <∞ (2.6)

(the first integral from the right is finite by (2.5) and the second is finite as well
in virtue of Proposition 2.5). Since

∫

Gd
0

rα−4 dx = measΩ

d∫

0

rα−3 dr = ∞
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because of α − 2 < 0, the assumption u(0) 6= 0 contradicts (2.6). Then u(0) = 0.
Now using Hardy inequality (2.3) we obtain

∫

Gd
0

rα−4u2(x) dx ≤ 4

(2 − α)2

∫

Gd
0

rα−2
(∂u
∂r

)2
dx. (2.7)

Adding inequality (2.5) and (2.7) and using the formula |∇u|2 = (∂u
∂r

)2 + 1
r2
| ∂u
∂ω

|2,
we get the desired (2.4).

Lemma 2.7
Let u(̺, ω) ∈ C0(Ω) and ∇u(̺, ω) ∈ L2(Ω) a.e. ̺ ∈ (0, d). Assume that

U(̺) =

∫

G
̺
0

|∇u|2 dx+ β+

∫

Γ̺
0+

u2(x)

r
ds+ β−

∫

Γ̺
0−

u2(x)

r
ds <∞ (2.8)

for ̺ ∈ (0, d). Then ∫

Ω

̺u
∂u

∂r

∣∣∣
r=̺

dω ≤ ̺
√
q

2λ
U ′(̺),

where q is defined by (1.3).

Proof. Writing U(̺) in polar coordinates,

U(̺) =

̺∫

0

r

∫

Ω

(∣∣∣
∂u

∂r

∣∣∣
2

+
1

r2

∣∣∣
∂u

∂ω

∣∣∣
2)
dω dr+β+

̺∫

0

u2(r, ω0

2 )

r
dr+β−

̺∫

0

u2(r,−ω0

2 )

r
dr

and differentiating with respect to ̺ we obtain

U ′(̺) =

∫

Ω

(
̺
∣∣∣
∂u

∂r

∣∣∣
2

+
1

̺

∣∣∣
∂u

∂ω

∣∣∣
2)∣∣∣

r=̺
dω + β+

u2(̺, ω0

2 )

̺
+ β−

u2(̺,−ω0

2 )

̺
. (2.9)

Moreover, by Cauchy’s inequality, we have

ρu
∂u

∂r
≤ ε

2
u2 +

1

2ε
ρ2
(∂u
∂r

)2

for all ε > 0. Thus, choosing ε = λ√
q
, by Friedrichs–Wirtinger inequality (2.2), we

obtain∫

Ω

̺u
∂u

∂r

∣∣∣
r=̺

dω

≤ εq

2λ2

{ ∫

Ω

∣∣∣
∂u

∂ω

∣∣∣
2

r=̺
dω + β+u

2
(
̺,
ω0

2

)
+ β−u

2
(
̺,−ω0

2

)}
+
̺2

2ε

∫

Ω

∣∣∣
∂u

∂r

∣∣∣
2

r=̺
dω

=
̺
√
q

2λ

{ ∫

Ω

(1
̺

∣∣∣
∂u

∂ω

∣∣∣
2

+ ̺
∣∣∣
∂u

∂r

∣∣∣
2)∣∣∣

r=̺
dω + β+

u2(̺, ω0

2 )

̺
+ β−

u2(̺,−ω0

2 )

̺

}

=
̺
√
q

2λ
U ′(̺).
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We also need in the sequel well known inequalities (see e.g. (6.23), (6.24)

Chapter I [6] or Lemma 6.36 [8])

∫

Γ

υ ds ≤ C

∫

G

(|υ|+ |∇υ|) dx, ∀υ(x) ∈ W 1,1(G), ∀Γ ⊆ ∂G,

∫

∂G

υ2 ds ≤
∫

G

(
δ|∇υ|2 + 1

δ
c0υ

2
)
dx, ∀υ(x) ∈ W 1,2(G), ∀δ > 0. (2.10)2.2. The Cauhy problem for differential inequality

Theorem 2.8
Let U(̺) be monotonically increasing, nonnegative differentiable function defined
on [0, d] and satisfying the problem

{
U ′(̺)− P(̺)U(̺) +Q(̺) ≥ 0, 0 < ̺ < d,

U(d) ≤ U0,
(CP )

where P(̺),Q(̺) are nonnegative continuous functions defined on [0, d], and U0

is a constant. Then

U(̺) ≤ U0 exp

(
−

d∫

̺

P(τ) dτ

)
+

d∫

̺

Q(τ) exp

(
−

τ∫

̺

P(σ) dσ

)
dτ. (2.11)

Proof. For the proof see §1.10 (Theorem 1.57) [1].3. Loal estimate at the boundary
Here we derive the local boundedness (near the boundary corner point) of a

weak solution of problem (L).

Theorem 3.1
Let u(x) be a weak solution of problem (L) and assumptions (a)− (c) be satisfied.
Suppose, in addition, that g(x) ∈ L∞(Γ+), h(x) ∈ L∞(Γ−). Then the inequality

sup
G

κ̺
0

|u(x)|

≤ C

(1 − κ)
ñ
2

{
̺−1||u||2,G̺

0
+ ̺2(1−

2
p )||f || p

2 ,G
̺
0
+ ̺
(
‖g‖∞,Γ̺

0+
+ ‖h‖∞,Γ̺

0−

)}

holds for any p > ñ > 2, κ ∈ (0, 1) and ̺ ∈ (0, d), where C is a positive constant
depending only on µ, ν, p, ‖

∑2
i=1 |bi(x)|2‖L p

2
(G)

and G.

Proof. We apply the Moser iteration method. We consider the integral identity
(II) and make the coordinate transformation x = ̺x′. Let G′ be the image of



[16℄ Krzysztof �yjewski
G, Γ

′
+ be the image of Γ+, Γ

′
− be the image of Γ−, then we have dx = ̺2dx′,

ds = ̺ds′. In addition, we denote

v(x′) = u(̺x′), η(x′) = η(̺x′), F(x′) = ̺2f(̺x′),

G(x′) = ̺g(̺x′), H(x′) = ̺h(̺x′).
(3.1)

Then from (II) we get
∫

G
′

{aij(̺x′)vx′
j
ηx′

i
− ̺bi(̺x′)v

x
′
i
η(x′)− ̺2c(̺x′)v(x′)η(x′)} dx′

+

∫

Γ
′
+

( β+
|x′|v(x

′) +
b

|x′|v(γ(x
′))
)
η(x′) ds′ + β−

∫

Γ
′
−

v(x′)

|x′| η(x
′) ds′

=

∫

Γ
′
+

G(x′)η(x′) ds′ +
∫

Γ
′
−

H(x′)η(x′) ds′ −
∫

G
′

F(x′)η(x′) dx′

(II)′

for all η(x′) ∈ C0(G′) ∩W
◦

1
0(G

′). We define quantity m by

m = m(̺) =
1

ν

(
‖F‖ p

2 ,G
1
0
+ ‖G‖∞,Γ1

0+
+ ‖H‖∞,Γ1

0−

)
(3.2)

and we set

v(x′) = |v(x′)|+m. (3.3)

We observe that

|F(x′)|v(x′) = 1

m
|F(x′)| ·mv(x′) = 1

m
|F(x′)|(v(x′)− |v(x′)|) · v(x′)

=
1

m
|F(x′)| · v2(x′)− 1

m
|F(x′)| · |v(x′)|v(x′)

≤ 1

m
|F(x′)| · v2(x′); (3.4)

|H(x′)|v(x′) ≤ 1

m
|H(x′)| · v2(x′);

|G(x′)|v(x′) ≤ 1

m
|G(x′)| · v2(x′)

in the same way. As the test function in the integral identity (II)′ we choose
η(x′) = ζ2(|x′|)v(x′), where ζ(|x′|) ∈ C∞

0 ([0, 1]) is nonnegative function to be
further specified. By the chain and product rules η(x) is a valid test function in
(II)′ and also ηx′

i
= vx′

i
ζ2(|x′|)+2ζ(|x′|)ζx′

i
v(x′), so that by substitution into (II)′

with regard to c(̺x′) ≤ 0 in G′ and v ≤ |v| ≤ v, we obtain
∫

G1
0

aij(̺x′)vx′
i
vx′

j
ζ2(|x′|) dx′ + β+

∫

Γ1
0+

v2(x′)

|x′| ζ2(|x′|) ds′

+ b

∫

Γ1
0+

v(x′)

|x′| v(γ(x
′))ζ2(|x′|) ds′ + β−

∫

Γ1
0−

v2(x′)

|x′| ζ2(|x′|) ds′
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≤ ̺

∫

G1
0

|bi(̺x′)vxi |v(x′)ζ2(|x′|) dx′ + 2

∫

G1
0

|aij(̺x′)ζx′
i
vx′

j
|v(x′)ζ(|x′|) dx′

+

∫

Γ1
0−

H(x′)v(x′)ζ2(|x′|) ds′ +
∫

Γ1
0+

G(x′)v(x′)ζ2(|x′|) ds′

+

∫

G1
0

F(x′)v(x′)ζ2(|x′|) dx′.

By the elliptic conditions and with regard to (3.4), hence it follows
∫

G1
0

ν|∇′v|2ζ2(|x′|) dx′ + β+

∫

Γ1
0+

v2(x′)

|x′| ζ2(|x′|) ds′

+ b

∫

Γ1
0+

v(x′)

|x′| v(γ(x
′))ζ2(|x′|) ds′ + β−

∫

Γ1
0−

v2(x′)

|x′| ζ2 ds′

≤
∫

G1
0

̺

( 2∑

i=1

|bi(̺x′)|2
) 1

2

|∇′v|v(x′)ζ2(|x′|) dx′ (3.5)

+ 2µ

∫

G1
0

|∇′v| · |∇′ζ|v(x′)ζ(|x′|) dx′ + 1

m
‖G‖∞,Γ1

0+

∫

Γ1
0+

v2(x′)ζ2(|x′|) ds′

+
1

m
‖H‖∞,Γ1

0−

∫

Γ1
0−

v2(x′)ζ2(|x′|) ds′ + 1

m

∫

G1
0

∣∣F(x′)
∣∣v2(x′)ζ2(|x′|) dx′.

We shall estimate the third integral on the left hand side inequality (3.5). Be-
cause of v|Γ1

0+
= v(r′, ω0

2 ) and, by Remark 1.1, v(γ(x′))|Γ1
0+

= v(r′, 0), using the

representation v(r′, 0) = v(r′, ω0

2 )−
∫ ω0

2

0
∂v(r′,ω)
∂ω

dω we obtain:
∫

Γ1
0+

v(x′)

|x′| v(γ(x
′))ζ2(|x′|) ds′

=

1∫

0

v2(r′, ω0

2 )

r′
ζ2(r′) dr′ −

1∫

0

v(r′, ω0

2 )

r′
ζ2(r′)

( ω0
2∫

0

∂v(r′, ω)

∂ω
dω

)
dr′.

Next, by the Cauchy inequality, we have

1∫

0

v(r′, ω0

2 )

r′
ζ2(r′)

( ω0
2∫

0

∂v(r′, ω)

∂ω
dω

)
dr′

≤
∫

G1
0

ζ2(r′)

r′2

∣∣∣
∂v(r′, ω)

∂ω

∣∣∣
∣∣∣v
(
r′,

ω0

2

)∣∣∣ dx′
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≤
∫

G1
0

ζ2(r′)

r′2

(ε
2

∣∣∣
∂v(r′, ω)

∂ω

∣∣∣
2

+
1

2ε
v2
(
r′,

ω0

2

))
dx′ (3.6)

≤ ε

2

∫

G1
0

|∇′v|2ζ2(|x′|) dx′ + 1

2ε

1∫

0

ζ2(r′)

r′

ω0
2∫

−ω0
2

v2
(
r′,

ω0

2

)
dω dr′

≤ ε

2

∫

G1
0

|∇′v|2ζ2(|x′|) dx′ + ω0

2ε

∫

Γ1
0+

v2(x′)

|x′| ζ2(|x′|) ds′, ∀ε > 0.

Choosing in inequality (3.6) ε = ν
b
, from (3.5) we have

1

2
ν

∫

G1
0

|∇′v|2ζ2(|x′|) dx′

+
(
β+ + b − b2ω0

2ν

) ∫

Γ1
0+

v2(x′)

|x′| ζ2(|x′|) ds′ + β−

∫

Γ1
0−

v2(x′)

|x′| ζ2(|x′|) ds′

≤
∫

G1
0

̺

( 2∑

i=1

|bi(̺x′)|2
) 1

2

|∇′v|v(x′)ζ2(|x′|) dx′ (3.7)

+ 2µ

∫

G1
0

|∇′v| · |∇′ζ|v(x′)ζ(|x′|) dx′ + 1

m
||G||∞,Γ1

0+

∫

Γ1
0+

v2(x′)ζ2(|x′|) ds′

+
1

m
||H||∞,Γ1

0−

∫

Γ1
0−

v2(x′)ζ2(|x′|) ds′ + 1

m

∫

G1
0

∣∣F(x′)
∣∣v2(x′)ζ2(|x′|) dx′.

Thus, by the assumption (c) for β+, from (3.7) it follows that

1

2
ν

∫

G1
0

|∇′v|2ζ2(|x′|) dx′

≤
∫

G1
0

̺

( 2∑

i=1

|bi(̺x′)|2
) 1

2

|∇′v|v(x′)ζ2(|x′|) dx′

+ 2µ

∫

G1
0

|∇′v| · |∇′ζ|v(x′)ζ(|x′|) dx′ (3.8)

+
1

m
||G||∞,Γ1

0+

∫

Γ1
0+

v2(x′)ζ2(|x′|) ds′ + 1

m
||H||∞,Γ1

0−

∫

Γ1
0−

v2(x′)ζ2(|x′|) ds′

+
1

m

∫

G1
0

∣∣F(x′)
∣∣v2(x′)ζ2(|x′|) dx′.
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We estimate every term by the Cauchy inequality for any ε > 0:

2µ|∇′v||∇′ζ|ζ(|x′|)v(x′) = 2(|∇′v| · ζ(|x′|))(µv(x′)|∇′ζ|)

≤ ε|∇′v|2ζ2(|x′|) + µ2

ε
v2(x′)|∇′ζ|2;

̺

( 2∑

i=1

|bi(̺x′)|2
) 1

2

|∇′v|v(x′)ζ2(|x′|)

= ζ2(|x′|)
(
̺v(x′)

( 2∑

i=1

|bi(̺x′)|2
) 1

2
)
× |∇′v|

≤ ̺2

2ε
v2(x′)ζ2(|x′|) ·

( 2∑

i=1

|bi(̺x′)|2
)
+
ε

2
|∇′v|2ζ2(|x′|).

For the estimating integrals over the boundaries on the right in (3.8) we apply
inequality (2.10). Thus we get

1

2
ν

∫

G1
0

|∇′v|2ζ2(|x′|) dx′

≤ 3ε

2

∫

G1
0

|∇′v|2ζ2(|x′|) dx′ + µ2

ε

∫

G1
0

|∇′ζ|2v2(x′) dx′

+
̺2

2ε

∫

G1
0

( 2∑

i=1

|bi(̺x′)|2
)
v2(x′)ζ2(|x′|) dx′ (3.9)

+
1

m

∫

G1
0

∣∣F(|x′|)
∣∣v2(x′)ζ2(|x′|) dx′

+
1

m

(
‖G‖∞,Γ1

0−
+ ‖H‖∞,Γ1

0+

) ∫

G1
0

(
δ|∇′(ζv)|2 + 1

δ
c0v

2(x′)ζ2(|x′|)
)
dx′,

∀ε, δ > 0.

From relations

|∇′(ζv)|2 ≤ 2(ζ2|∇′v|2 + v2(x′)|∇′ζ|2), |∇′v|2 = |∇′v|2 (3.10)

it follows the inequality

|∇′(ζv)|2 ≤ 2|∇′v|2ζ2 + 2v2(x′)|∇′ζ|2. (3.11)

Now, by (3.9)–(3.11), choosing ε = ν
6 in (3.9) and, by virtue of (3.2), we find that

ν

4

∫

G1
0

|∇′v|2ζ2(|x′|) dx′
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≤ 6µ2

ν

∫

G1
0

|∇′ζ|2v2(x′) dx′ + 3̺2

ν

∫

G1
0

( 2∑

i=1

|bi(̺x′)|2
)
v2(x′)ζ2(|x′|) dx′

+ 2δν

∫

G1
0

|∇′v|2ζ2(|x′|) dx′ + 2δν

∫

G1
0

v2(x′)|∇′ζ|2 dx′

+
c0ν

δ

∫

G1
0

v2(x′)ζ2(|x′|) dx′ + 1

m

∫

G1
0

∣∣F(x′)
∣∣v2(x′)ζ2(|x′|) dx′, ∀δ > 0.

Now we choose δ = 1
16 , then by (3.10), the last inequality means

∫

G1
0

|∇′v|2ζ2(|x′|) dx′ ≤ 48µ2

ν2

∫

G1
0

|∇′ζ|2v2(x′) dx′

+
24̺2

ν2

∫

G1
0

( 2∑

i=1

|bi(̺x′)|2
)
v2(x′)ζ2(|x′|) dx′

+

∫

G1
0

v2(x′)|∇′ζ|2 dx′ + 128c0

∫

G1
0

v2(x′)ζ2(|x′|) dx′

+
8

mν

∫

G1
0

|F(x′)|v2(x′)ζ2(|x′|) dx′.

The above inequality we can rewrite as the following
∫

G1
0

|∇′v|2ζ2(|x′|) dx′

≤ C1

∫

G1
0

(|∇′ζ|2 + ζ2(|x′|))v2(x′) dx′ (3.12)

+ C2

∫

G1
0

(
̺2

2∑

i=1

|bi(̺x′)|2 + |F(x′)|
m

)
v2(x′)ζ2(|x′|) dx′,

where constants C1, C2 depend only on c0, µ, ν. The desired iteration process can
now be developed from (3.12). By the Sobolev imbedding theorem (see §2 ch. II
[7]) we have

‖ζv‖22ñ
ñ−2 ,G

1
0
≤ C∗

∫

G1
0

((|∇′ζ|2 + ζ2)v2(x′) + ζ2|∇′v|2) dx′, ñ > 2, (3.13)

where constant C∗ depends only on ñ and the domain G. Using the Hölder
inequality for integrals
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∫

G1
0

(
̺2

2∑

i=1

|bi(̺x′)|2 + |F(x′)|
m

)
· v2(x′)ζ2(x′) dx′

≤
∥∥∥∥̺

2
2∑

i=1

|bi(̺x′)|2 + |F(x′)|
m

∥∥∥∥
p
2 ,G

1
0

× ‖ζv‖22p
p−2 ,G

1
0
, p > 2

(3.14)

and from (3.12)–(3.14) we get

‖ζv‖22ñ
ñ−2 ,G

1
0

≤ C3

∫

G1
0

(|∇′ζ|2 + ζ2(|x′|))v2(x′) dx′ (3.15)

+ C4

∥∥∥∥̺
2

2∑

i=1

|bi(̺x′)|2 + |F(x′)|
m

∥∥∥∥
p
2 ,G

1
0

· ‖ζv‖22p
p−2 ,G

1
0
, p > ñ > 2.

By the interpolation inequality for Lp-norms

‖ζv‖ 2p
p−2 ,G

1
0
≤ ε‖ζv‖ 2ñ

ñ−2 ,G
1
0
+ c̃ε

ñ
ñ−p ‖ζv‖2,G1

0
, p > ñ > 2, ∀ε > 0,

c̃ =
p− ñ

p

(
ñ

p

) ñ
p−ñ

,

and, by virtue of definition (3.2), from (3.16) it follows that

‖ζv‖ 2ñ
ñ−2 ,G

1
0
≤
√
C3 · ‖(ζ + |∇′ζ|)v‖2,G1

0

+
√
C4

(∥∥∥∥̺
2

2∑

i=1

|bi(̺x′)|2
∥∥∥∥

p
2 ,G

1
0

+ ν

) 1
2

(3.16)

×
(
ε||ζv|| 2ñ

ñ−2 ,G
1
0
+ c̃ε

ñ
ñ−p ‖ζv‖2,G1

0

)
, p > ñ, ∀ε > 0.

Choosing

ε =
1

2
√
C4

(∥∥∥∥̺
2

2∑

i=1

|bi(̺x′)|2
∥∥∥∥

p
2 ,G

1
0

+ ν

)− 1
2

from (3.16) we obtain

‖ζv‖ 2ñ
ñ−2 ,G

1
0
≤ C‖(ζ + |∇′ζ|)v‖2,G1

0
, 2ñ ≥ p > ñ > 2, (3.17)

where C depends only on c0, µ, ν, p, diamG, ‖∑2
i=1 |bi(x)|2‖ p

2 ,G
. This inequality

can now be iterated to yield the desired estimate.

For all κ ∈ (0, 1) we define sets G′
(j) ≡ G

κ+(1−κ)2−j

0 , j = 0, 1, 2 . . . . It is easy

to verify that Gκ

0 ≡ G′
(∞) ⊂ . . . ⊂ G′

(j+1) ⊂ G′
j ⊂ . . . ⊂ G′

(0) ≡ G1
0. Now we

consider the sequence of cut-off function ζj(x′) ∈ C∞(G′
(j)) such that

0 ≤ ζj(x
′) ≤ 1 in G′

(j) and ζj(x
′) ≡ 1 in G′

(j+1),
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ζj(x

′) ≡ 0 for |x′| > κ + 2−j(1− κ),

|∇′ζj | ≤
2j+1

1− κ
for κ + 2−j−1(1− κ) < |x′| < κ + 2−j(1− κ).

We also define the number sequence tj = 2( ñ
ñ−2 )

j , j = 0, 1, 2 . . . . Now we rewrite
inequality (3.17) replacing ζ(|x′|) by ζj(x′); then, we obtain

‖v‖ 2ñ
ñ−2 ,G

′
(j+1)

≤ C
2j+2

1− κ
‖v‖2,G′

(j)
. (3.18)

Putting w = |v|( ñ
ñ−2 )

j

, by (3.18) and the definition on the number sequence tj , we
get

‖v‖tj+1,G
′
(j+1)

=

( ∫

G
(j+1)

′

w
2ñ

ñ−2 dx′
) ñ−2

2ñ ·( ñ−2
ñ )j

≤
(
C

2j+2

1− κ

)( ñ−2
ñ )j

‖w‖(
ñ−2
ñ )j

2,G
′
(j)

=

(
C

1− κ

) 2
tj

4
j+2
tj ‖v‖

tj ,G
′
(j)
.

After iteration, we find that

‖v‖tj+1,G
′
(j+1)

≤
{

C

1− κ

}2
∑∞

j=0
1
tj

· 4
∑∞

j=0
j+2
tj · ‖v‖2,G1

0
. (3.19)

Notice that the series
∑∞
j=0

j+2
tj

is convergent by the d’Alembert ratio test, and

the series
∑∞
j=0

1
tj

= ñ
4 as a geometric series. Therefore from (3.19) we get

‖v‖
tj+1,G

′
(j+1)

≤ C

(1− κ)
ñ
2

‖v‖2,G1
0
.

Consequently, letting j → ∞, we have

sup
x′∈Gκ

0

|v(x′)| ≤ C

(1− κ)
ñ
2

‖v‖2,G1
0
.

Hence, because of definition of function v(x′) by (3.3) and definition of number m
by (3.2), we get:

sup
x′∈Gκ

0

|v(x′)| ≤ C

(1− κ)
ñ
2

(
‖v‖2,G1

0
+ ‖F‖ p

2 ,G
1
0
+ ‖G‖∞,Γ1

0+
+ ‖H‖∞,Γ1

0−

)
.

Returning to the variables x and u we obtain the required estimate (3.1).
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In this section we obtain the global estimate for the weighted Dirichlet integral.

Theorem 4.1
Let u(x) be a weak solution of problem (L). Let assumptions (a) − (c), (e) be
satisfied. Suppose, in addition, that g(x) ∈ L2(Γ+), h(x) ∈ L2(Γ−). Then the
inequality

∫

G

|∇u|2 dx+

∫

G

u2(x)

r2
dx+

∫

∂G

u2(x)

r
ds

≤ C

{ ∫

G

f2(x) dx +

∫

Γ+

g2(x) ds+

∫

Γ−

h2(x) ds

} (4.1)

holds, where constant C > 0 depends only on b, β+, ω0, β0, p, ν, M0, G,
‖∑2

i=1 |bi(x)|2‖L p
2
(G).

Proof. Setting in (II) η(x) = u(x) and using the classical Hölder inequality,
by assumptions (a), (c), we get

ν

∫

G

|∇u|2 dx+

∫

Γ+

(
β+

u2(x)

r
+ b

u(x)

r
u(γ(x))

)
ds+ β−

∫

Γ−

u(x)

r
ds

≤
∫

G

√√√√
2∑

i=1

|bi(x)|2|u||∇u| dx (4.2)

+

∫

Γ+

|u||g(x)| ds+
∫

Γ−

|u||h(x)| ds+
∫

G

|u||f(x)| dx.

Now, by assumptions (b), (c), the Cauchy inequality and the Hölder inequality for
integrals with q = p

2 , q′ = p
p−2 , p > 2, we have:

∫

G

√√√√
2∑

i=1

|bi(x)|2|u||∇u| dx

=

∫

G

|∇u|
(√√√√

2∑

i=1

|bi(x)|2|u|
)
dx

≤ ν

2

∫

G

|∇u|2 dx+
1

2ν

∫

G

2∑

i=1

|bi(x)|2u2 dx

≤ ν

2

∫

G

|∇u|2 dx+
1

2ν

( ∫

G

( 2∑

i=1

|bi(x)|2
) p

2

dx

) 2
p

· ||u||22p
p−2 (G)

.
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Next, we apply the inequality

‖u‖2L 2p
p−2

(G) ≤ δ‖∇u‖2L2(G) + c(δ, p,G)‖u‖2L2(G), p > 2, ∀δ > 0

(see for example (2.19) §2, chapter II in [7]); hence it follows that

∫

G

√√√√
2∑

i=1

|bi(x)|2|u||∇u| dx

≤ ν

2

∫

G

|∇u|2 dx+
1

2ν

∥∥∥
2∑

i=1

|bi(x)|2
∥∥∥
L p

2
(G)

(4.3)

×
∫

G

(δ|∇u|2 + c(δ, p,G)u2(x)) dx, ∀ε > 0, ∀δ > 0.

We choose δ = ν2

2‖∑2
i=1 |bi(x)|2‖Lp

2
(G)

. As a result from (4.2)–(4.3) we obtain

ν

4

∫

G

|∇u|2 dx+

∫

Γ+

(
β+

u2(x)

r
+ b

u(x)

r
u(γ(x))

)
ds+ β−

∫

Γ−

u(x)

r
ds

≤ C

∫

G

u2(x) dx +

∫

Γ+

|u||g(x)| ds+
∫

Γ−

|u||h(x)| ds+
∫

G

|u||f(x)| dx,
(4.4)

where C = const(p, ν, ‖
∑2
i=1 |bi(x)|2‖L p

2
(G), G). Further, by the Cauchy inequal-

ity, in virtue of the assumption (c), we obtain

∫

Γ+

|u||g(x)| ds =
∫

Γ+

(√
β+

r
|u|
)(√

r

β+
|g(x)|

)
ds

≤ 1

2
β+

∫

Γ+

u2(x)

r
ds+

1

2β0

∫

Γ+

rg2(x) ds;

∫

Γ−

|u||h(x)| ds =
∫

Γ−

(√
β−
r
|u|
)(√

r

β−
|h(x)|

)
ds

≤ 1

2
β−

∫

Γ−

u2(x)

r
ds+

1

2β0

∫

Γ−

rg2(x) ds;

∫

G

|u||f(x)| dx ≤ 1

2

∫

G

|u|2 dx+
1

2

∫

G

|f |2 dx.



Nonloal Robin problem in a plane domain with a boundary orner point [25℄
Hence and from (4.4) we have

ν

4

∫

G

|∇u|2 dx+
1

2
β+

∫

Γ+

u2(x)

r
ds+ b

∫

Γ+

u(x)

r
u(γ(x)) ds+

1

2
β−

∫

Γ−

u(x)

r
ds

≤ C

∫

G

u2(x) dx +
1

2β0

∫

Γ+

rg2(x) ds+
1

2β0

∫

Γ−

rh2(x) ds +
1

2

∫

G

f2(x) dx.

(4.5)

Now we write Γ+ = Γd0+ ∪ Γd+. At first, we estimate b
∫
Γd
0+

u(x)
r
u(γ(x)) ds. Be-

cause of u|Γd
0+

= u(r, ω0

2 ) and by Remark 1.1 u(γ(x))|Γd
0+

= u(r, 0), using the

representation u(r, 0) = u(r, ω0

2 )−
∫ ω0

2

0
∂u(r,ω)
∂ω

dω, we obtain:

b

∫

Γd
0+

u(x)

r
u(γ(x)) ds = b

d∫

0

u(r, ω0

2 )u(r, 0)

r
dr (4.6)

= b

d∫

0

u2(r, ω0

2 )

r
dr − b

d∫

0

u(r, ω0

2 )

r

( ω0
2∫

0

∂u(r, ω)

∂ω
dω

)
dr.

Next, by the Cauchy inequality, we have

b

d∫

0

u(r, ω0

2 )

r

( ω0
2∫

0

∂u(r, ω)

∂ω
dω

)
dr

≤ b

∫

Gd
0

1

r2

∣∣∣u
(
r,
ω0

2

)∣∣∣
∣∣∣
∂u(r, ω)

∂ω

∣∣∣ dx

≤ b

∫

Gd
0

1

r2

(
ε

2

∣∣∣
∂u(r, ω)

∂ω

∣∣∣
2

+
1

2ε
u2
(
r,
ω0

2

))
dx (4.7)

≤ bε

2

∫

Gd
0

|∇u|2 dx+
b

2ε

d∫

0

ω0
2∫

−ω0
2

u2(r, ω0

2 )

r
dω dr

≤ bε

2

∫

Gd
0

|∇u|2 dx+
bω0

2ε

∫

Γd
0+

u2(x)

r
ds, ∀ε > 0.

By the assumption (e) the integral over Γd+ we estimate as below:

b

∫

Γd+

u(x)

r
u(γ(x)) ds ≤ b

measΓ+

d
M2

0 .

Thus, from the assumption (e) and (4.5)–(4.7) we get
(ν
4
− bε

2

)∫

G

|∇u|2 dx+
(1
2
β+ + b− bω0

2ε

) ∫

Γ+

u2(x)

r
ds+

1

2
β−

∫

Γ−

u2(x)

r
ds



[26℄ Krzysztof �yjewski
≤ C(M0, b, d, G) +

1

2β0

∫

Γ+

rg2(x) ds +
1

2β0

∫

Γ−

rh2(x) ds+
1

2

∫

G

f2(x) dx,

∀ε > 0.

If we choose ε = ν
4b , then, in virtue of assumption (c) for β+, we obtain

∫

G

|∇u|2 dx+

∫

∂G

u2(x)

r
ds ≤ C

{ ∫

G

f2(x) dx +

∫

Γ+

g2(x) ds +

∫

Γ−

h2(x) ds

}
.

Finally, by Hardy–Friedrichs–Wirtinger inequality (2.4) with α = 2, we get the
desired estimate (4.1).5. Loal integral weighted estimates
Theorem 5.1
Let u(x) be a weak solution of problem (L) and λ be as in (1.1). Let assumptions
(a) − (e) be satisfied with A(r) being Dini-continuous at zero. Then there are
d ∈ (0, 1

e
) and a constant C > 0 depending only on s, λ, ν, b, β+, d, G, M0 and

on
∫ 1

e

0
A(r)
r

dr such that ∀̺ ∈ (0, d)

∫

G
̺
0

(
|∇u|2 + u2(x)

r2

)
dx+ β+

∫

Γ̺
0+

u2(x)

r
ds+ β−

∫

Γ̺
0−

u2(x)

r
ds

≤ C
(
ω0f

2
0 +

1

β0
(g20 + h20) + ‖f‖22,G + ‖g‖22,Γ+

+ ‖h‖22,Γ−

)

·






̺
2λk√

q , if s >
λk√
q
,

̺
2λk√

q ln2
(
1

̺

)
, if s =

λk√
q
,

̺2s, if 1 < s <
λk√
q
,

(5.1)

where k and q are defined by (1.3).

Proof. Setting η(x) = u(x) in (II)loc, we obtain

∫

G
̺
0

|∇u|2 dx+ β+

∫

Γ̺
0+

u2(x)

r
ds+ β−

∫

Γ̺
0−

u2(x)

r
ds

= ̺

∫

Ω

u(x)
∂u

∂r

∣∣∣∣
r=̺

dω +

∫

Ω̺

(aij(x) − aij(0))u(x)uxj cos(r, xi) dΩ̺

+

∫

Γ̺
0+

u(x)g(x) ds− b

∫

Γ̺
0+

u(x)

r
u(γ(x)) ds+

∫

Γ̺
0−

u(x)h(x) ds
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+

∫

G
̺
0

{−(aij(x) − aij(0))uxiuxj + bi(x)u(x)uxi + c(x)u2(x)− u(x)f(x)} dx.

To estimate the integral b ·
∫
Γ̺
0+

u(x)
r
u(γ(x)) ds we behave similarly to (4.6)–(4.7).

Then we get:

(
1− bε

2

) ∫

G
̺
0

|∇u|2 dx+ β+

(
1 +

b

β+
− bω0

2β+ε

) ∫

Γ̺
0+

u2(x)

r
ds+ β−

∫

Γ̺
0−

u2(x)

r
ds

≤ ̺

∫

Ω

u(x)
∂u

∂r

∣∣∣∣
r=̺

dω +

∫

Ω̺

(aij(x) − aij(0))u(x)uxj cos(r, xi) dΩ̺ (5.2)

+

∫

Γ̺
0+

u(x)g(x) ds+

∫

Γ̺
0−

u(x)h(x) ds

+

∫

G
̺
0

{−(aij(x) − aij(0))uxiuxj + bi(x)u(x)uxi + c(x)u2(x)− u(x)f(x)} dx.

By assumption (c) β+ > b2ω0

4 −b. Therefore we can choose in (5.3) ε =
√

1+ω0β+−1

β+
.

Hence it follows that

0 < 1− bε

2
= 1 +

b

β+
− bω0

2εβ+
= 1 +

b

2β+
− b
√
1 + ω0β+

2β+
= k (5.3)

(see (1.3)) and recalling (2.8) we obtain

kU(̺)

≤ ̺

∫

Ω

u(x)
∂u

∂r

∣∣∣∣
r=̺

dΩ +

∫

Ω̺

(aij(x) − aij(0))u(x)uxj cos(r, xi) dΩ̺

+

∫

Γ̺
0+

u(x)g(x) ds+

∫

Γ̺
0−

u(x)h(x) ds (5.4)

+

∫

G
̺
0

{
− (aij(x)− aij(0))uxiuxj + bi(x)u(x)uxi + c(x)u2(x) − u(x)f(x)

}
dx.

Now, we shall derive an upper bound for the each integral from the right hand
side of (5.4). The first integral we estimate by Lemma 2.7; next, in virtue of
assumption (b) and the Cauchy inequality,

∫

Ω̺

(aij(x)− aij(0))u(x)uxj cos(r, xi) dΩ̺ ≤ ̺A(̺)

∫

Ω

|u(x)||∇u| dω,

∫

G
̺
0

{(aij(x)− aij(0))uxiuxj + bi(x)uxiu(x) + c(x)u2(x)} dx (5.5)
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≤ A(̺)

∫

G
̺
0

{
|∇u|2 + u2(x)

r2

}
dx.

Thus, from (5.4)–(5.5) it follows that

kU(̺) ≤ ̺
√
q

2λ
U ′(̺) + ̺A(̺)

∫

Ω

|u(x)||∇u| dω

+

∫

Γ̺
0+

|u(x)||g(x)| ds +
∫

Γ̺
0−

|u(x)||h(x)| ds (5.6)

+A(̺)

∫

G
̺
0

(
|∇u|2 + u2(x)

r2

)
dx+

∫

G
̺
0

|u(x)||f(x)| dx.

Further, we derive an upper bound for each integral on the right hand side of
(5.6). At first, applying the Cauchy and Friedrichs–Wirtinger inequalities (see
(2.2)) with regard to (2.9), we have

A(̺)

∫

Ω

̺|u(x)||∇u| dω

≤ 1

2
A(̺)

∫

Ω

(̺2|∇u|2 + |u(x)|2) dω

≤ 1

2
A(̺)

∫

Ω

̺2
[(∂u
∂r

)2
+

1

̺2

( ∂u
∂ω

)2]
∣∣
r=̺

dω

+
1

2
A(̺)

q

λ2

{ ∫

Ω

( ∂u
∂ω

)2
dω + β+u

2
(
̺,
ω0

2

)
+ β−u

2
(
̺,−ω0

2

)}

≤ 1

2
̺A(̺)

(
1 +

q

λ2

){ ∫

Ω

[
̺
(∂u
∂r

)2
+

1

̺

( ∂u
∂ω

)2]
∣∣
r=̺

dω

+ β+
u2(̺, ω0

2 )

̺
+ β−

u2(̺,−ω0

2 )

̺

}

≤ c1(b, β+, ω0, λ)̺A(̺)U ′(̺).

(5.7)

Next, using the Cauchy and Hardy–Friedrichs–Wirtinger (see (2.4) for α = 2)
inequalities, by (2.8), we obtain

A(̺)

∫

G
̺
0

(
|∇u|2 + |u|2

r2

)
dx

≤ c(b, β+, ω0λ)A(̺)

{ ∫

G
̺
0

|∇u|2 dx+ β+

∫

Γ̺
0+

u2(x)

r
ds+ β−

∫

Γ̺
0−

u2(x)

r
ds

}
(5.8)

≤ c2(b, β+, ω0, λ)A(̺)U(̺),
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and for all δ > 0

∫

Γ̺
0+

|u(x)||g(x)| ds =

∫

Γ̺
0+

(√
β+

r
|u(x)|

)(√
r

β+
|g(x)|

)
ds

≤ δβ+

2

∫

Γ̺
0+

u2(x)

r
ds+

1

2δβ0

∫

Γ̺
0+

rg2(x) ds;

∫

Γ̺
0−

|u(x)||h(x)| ds =

∫

Γ̺
0−

(√
β−
r
|u(x)|

)(√
r

β−
|h(x)|

)
ds

≤ δβ−
2

∫

Γ̺
0−

u2(x)

r
ds+

1

2δβ0

∫

Γ̺
0−

rh2(x) ds;

∫

G
̺
0

|u(x)||f(x)|dx ≤ δ

2

∫

G
̺
0

u2(x)

r2
dx+

1

2δ

∫

G
̺
0

r2f2(x) dx

≤ δ

2
c3(b, β+, ω0, λ)U(̺) +

1

2δ

∫

G
̺
0

r2f2(x) dx

(5.9)

in virtue of inequality (2.4). From (5.6)–(5.9) it follows

〈k − c4(δ +A(̺))〉U(̺)

≤ ̺
√
q

2λ
(1 + c5A(̺))U ′(̺) (5.10)

+
1

2δ

{ ∫

G
̺
0

r2f2(x) dx +
1

β0

∫

Γ̺
0+

rg2(x) ds +
1

β0

∫

Γ̺
0−

rh2(x) ds

}
, ∀δ > 0.

But, by condition (d),
∫

G
̺
0

r2f2(x) dx+
1

β0

∫

Γ̺
0+

rg2(x) ds+
1

β0

∫

Γ̺
0−

rh2(x) ds ≤ 1

2s

(
ω0f

2
0+

1

β0
g20+

1

β0
h20

)
·̺2s.

Now we take into account that, by (5.3), 0 < k < 1 and therefore

k − c4(δ +A(̺))

1 + c5A(̺)
= 1− 1− k + c4(δ +A(̺)) + c5A(̺)

1 + c5A(̺)

≥ k[1− c6δ − c7A(̺)], ∀δ > 0.

Thus, from (5.10) we have differential inequality (CP ) of Subsection 2.2 with

P(̺) =
2λk

̺
√
q
· [1− c6δ − c7A(̺)], ∀δ > 0;

Q(̺) =
λ

2s
√
q

(
ω0f

2
0 +

1

β0
(g20 + h20)

)
· δ−1̺2s−1, ∀δ > 0;

(5.11)
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and, by (2.8) and Theorem 4.1,

U0 = C(1 + β+ + β−)

{ ∫

G

f2(x) dx +

∫

Γ+

g2(x)ds +

∫

Γ−

h2(x) ds

}
.

We shall consider three cases:

1) s >
λk
√

q
.

Choosing δ = ̺ε, ∀ε > 0,

P(̺) =
2λk

̺
√
q
· [1− c6̺

ε − c7A(̺)];

Q(̺) =
λ

2s
√
q

(
ω0f

2
0 +

1

β0
(g20 + h20)

)
· ̺2s−1−ε.

Since P(̺) = 2λk
̺
√
q
− K(̺)

̺
, where K(̺) satisfies the Dini condition at zero, we have

−
τ∫

̺

P(s) ds = −2λk√
q
ln
(τ
̺

)
+

τ∫

̺

K(s)

s
ds ≤ ln

(̺
τ

) 2λk√
q

+

d∫

0

K(r)

r
dr

=⇒ exp

(
−

τ∫

̺

P(σ) dσ

)
≤
(̺
τ

) 2λk√
q

exp

( d∫

0

K(τ)

τ
dτ

)
= K0

(̺
τ

) 2λk√
q

;

exp

(
−

d∫

̺

P(τ) dτ

)
≤
(̺
d

) 2λk√
q

exp

( d∫

0

K(τ)

τ
dτ

)
= K0

(̺
d

) 2λk√
q

.

As well we have:

d∫

̺

Q(τ) exp

(
−

τ∫

̺

P(σ) dσ

)
dτ

≤ λK0

2s
√
q

(
ω0f

2
0 +

1

β0
(g20 + h20)

)
̺

2λk√
q

d∫

̺

τ
2s− 2λk√

q −ε−1
dτ

≤ λK0

2s
√
q

(
ω0f

2
0 +

1

β0

(
g20 + h20

))
· d

s− λk√
q

s− λk√
q

̺
2 λk√

q ,

since s > λk√
q

and we can choose ε = s− λk√
q
.

Now we apply Theorem 2.8: from (2.11), by virtue of the deduced inequalities
and with regard to (2.4) for α = 2, we obtain the required statement for s > λk√

q
.
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2) s =

λk
√

q
.

Taking in (5.11) any function δ(̺) > 0 instead of δ > 0, we obtain problem
(CP ) with

P(̺) =
2λk(1− c6δ(̺))

̺
√
q

− c8
A(̺)

̺
;

Q(̺) =
λ

2s
√
q

(
ω0f

2
0 +

1

β0
(g20 + h20)

)
· δ−1(̺)̺

2 λk√
q−1

.

We choose δ(̺) =
√
q

2c6λk ln( ed
̺ )

, 0 < ̺ < d, where e is the Euler number. Then we

obtain

−
τ∫

̺

P(σ) dσ ≤ −2λk√
q
ln
τ

̺
+

τ∫

̺

dσ

σ ln( ed
σ
)
+ c8

d∫

0

A(σ)

σ
dσ

= ln
(̺
τ

)2 λk√
q

+ ln

(
ln ed

̺

ln ed
τ

)
+ c8

d∫

0

A(σ)

σ
dσ

=⇒ exp

(
−

τ∫

̺

P(σ) dσ

)
≤
(̺
τ

)2 λk√
q ·

ln ed
̺

ln ed
τ

· exp
(
c8

d∫

0

A(σ)

σ
dσ

)
,

exp

(
−

d∫

̺

P(τ) dτ

)
≤
(̺
d

)2 λk√
q · ln ed

̺
· exp

(
c8

d∫

0

A(τ)

τ
dτ

)
.

In this case we also have

d∫

̺

Q(τ) exp

(
−

τ∫

̺

P(σ) dσ

)
dτ

≤ λ

2s
√
q

(
ω0f

2
0 +

1

β0
(g20 + h20)

)
· ̺2

λk√
q exp

(
c8

d∫

0

A(τ)

τ
dτ

)
ln
ed

̺

×
d∫

̺

δ−1(τ)τ−1 1

ln( ed
τ
)
dτ

≤ c9

(
ω0f

2
0 +

1

β0
(g20 + h20)

)
· ̺2

λk√
q ln2

(ed
̺

)
.

Now we apply Theorem 2.8, and from (2.11), by virtue of the deduced inequal-
ities, we obtain

U(̺) ≤ c10

(
U0 + ω0f

2
0 +

1

β0
(g20 + h20)

)
̺
2 λk√

q ln2
1

̺
, 0 < ̺ < d <

1

e
.

Thus, we proved the required statement for s = λk√
q
.
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3) 0 < s <

λk
√

q
.

Now, similar to case 1) with regard to (5.11) we have

exp

(
−

τ∫

̺

P(σ) dσ

)
≤
(̺
τ

) 2λk(1−c6δ)√
q

exp

( d∫

0

A(σ)

σ
dτ

)
= c11

(̺
τ

) 2λk(1−c6δ)√
q

,

and

exp

(
−

d∫

̺

P(τ) dτ

)
≤
(̺
d

) 2λk(1−c6δ)√
q

exp

( d∫

0

A(τ)

τ
dτ

)
= c11

(̺
d

) 2λk(1−c6δ)√
q

.

In this case we also have

d∫

̺

Q(τ) exp

(
−

τ∫

̺

P(σ) dσ

)
dτ

≤ λ

2s
√
q

(
ω0f

2
0 +

1

β0
(g20 + h20)

)
· δ−1̺

2λk(1−c6δ)√
q ×

d∫

̺

τ
2s− 2λk(1−c6δ)√

q −1
dτ

≤ c12

(
ω0f

2
0 +

1

ν0
g20 +

1

ν0
h20

)
· ̺2s,

if we choose δ ∈ (0, 1
c6
(1− s

√
q

λk
)).

We again apply Theorem 2.8 and from (2.11), by virtue of the deduced in-
equalities, we obtain

U(̺) ≤ c13

{
U0̺

2λk(1−c5δ)√
q +

(
ω0f

2
0 +

1

β0
(g20 + h20)

)
· ̺2s

}

≤ c14

(
U0 + f2

0 +
1

β0
(g20 + h20)

)
̺2s.

Thus, we proved the required statement of Theorem 5.1 for 0 < s < λk√
q
.6. The power modulus of ontinuity at the onial point for weak solu-tions

Proof of Theorem 1.5. We define the function

ψ(̺) =





̺
λk√
q , if s >

λk√
q
,

̺
λk√
q ln

(
1

̺

)
, if s =

λk√
q
,

̺s, if 1 < s <
λk√
q

for 0 < ̺ < d.
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For the proof we apply theorem 3.1 about the local bound of the weak solution

modulus

sup
G

κ̺
0

|u(x)| ≤ C

(1− κ)
ñ
2

{
̺−1||u||2,G̺

0
+̺2(1−

2
p )||f || p

2 ,G
̺
0
+̺
(
||g||∞,Γ̺

0+
+||h||∞,Γ̺

0−

)}
.

Then, by Theorem 5.1, we obtain

̺−1‖u‖2,G̺
0
≤
( ∫

G
̺
0

u2(x)

r2
dx

) 1
2

(6.1)

≤ C(‖f‖2,G + ‖g‖2,Γ+ + ‖h‖2,Γ− +
√
ω0f0 +

1√
β0

(g0 + h0))ψ(̺).

Further, by the assumption (d), we get

̺2(1−
2
p )‖f‖ p

2 ,G
̺
0
+ ̺(‖g‖∞,Γ̺

0+
+ ‖h‖∞,Γ̺

0−
)

≤ c
(
f0 +

1√
β0

(g0 + h0)
)
ψ(̺),

(6.2)

for ñ < p < 2ñ, ∀ñ > 2. From (3.1), (6.1)–(6.2) it follows that

sup
G

̺/2

̺/4

|u(x)| ≤ C
(
‖f‖2,G + ‖g‖2,Γ+ + ‖h‖2,Γ− + f0 +

1√
β0

(g0 + h0)
)
ψ(̺).

Putting |x| = 1
3̺ we obtain finally the desired estimate (1.2).Aknowledgement
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Abstrat. Let X(t, ω)
△

= {xt(ω); t ≥ 0} be a Markov process defined on
a probability space (Ω,F , P ) and valued in a measurable space (E,E). In
this paper, we give the definitions of σ-algebras prior to α and post-α and
discuss their properties. At the same time, we prove that the strong Markov
property holds for an arbitrary Markov process, that is, we prove that the
Markov property is equivalent to the strong Markov property.1. Introdution

Let X(t, ω)
△
= {xt(ω); t ≥ 0} be a stochastic process defined on a probability

space (Ω,F , P ) and valued in a measurable space (E, E). So for every A ∈ E ,
{ω : xt(ω) ∈ A} ∈ F , where (E, E) is an abstract space and t is the time pa-
rameter. The points of E are denoted as x, y, . . . . The sets of E are denoted as
A,B, . . . . For convenience, suppose that E contains all sets of simple points of E,
that is, {x} ∈ E for every x ∈ E.

Throughout this paper, suppose that X(t, ω) is non-interruptive Markov pro-
cess unless mentioned. Otherwise, we may enlarge the state space E to Ẽ = E∪{d}
by joining a single point d with d 6∈ E into E, and change X(t, ω) into non-
interruptive process X̃(t, ω) on Ẽ. It does not affect all conclusions in this paper.

Let α(ω) be a random variable which might be ∞. In order to show that xα

is well defined when α = ∞, choose a random variable β(ω) valued in (E, E), and

define x∞(ω)
△
= β(ω). Then xα(ω)(ω) is well defined for all ω ∈ Ω. Now, define

F(xα) as

F(xα)
△
= {{ω : (xα(ω)(ω), α(ω)) ∈ A} : A ∈ E × B([0,∞])}, (1.1)

where B([0,∞]) is a Borel σ-algebra generated by [0,∞]. {(x, s)} is an atom of
E × B([0,∞]) for every x ∈ E, s ∈ [0,∞], namely, {(x, s)} ∈ E × B([0,∞]), and
does not contain any proper subsets of E × B([0,∞]). It follows that {xα(ω)(ω) =

x} ∩ {α(ω) = s} is an atom of F(xα). Since α(ω): Ω → R̄
+ △
= [0,∞] is a mapping

from Ω to R̄
+
, and xt(ω): Ω → E is also a mapping from Ω to E for every fixed

AMS (2000) Subject Classification: 60J25, 60J27.
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t ≥ 0, it follows that xα(ω)(ω) is a mapping from Ω to E × R̄

+
. Note that

E ×B([0,∞]) is a σ-algebra, therefore F(xα) is a σ-algebra by [2, Property 2.2.2].

Definition 1.1
F(xα) is called the σ-algebra generated by xα(ω)(ω).

The core of the Markov process is the Markov property which is the base of
theoretic and applied research on Markov process. But we often need a stronger
property: “the strong Markov property”. We know that “present” in the explana-
tion of the Markov property is a fixed time t which has nothing to do with ω. But
in many problems, “present” is required to be a random time α(ω) which may take
different values according to different ω, such as hitting time. Let ηA(ω) be the
hitting time of A ∈ E . Whether X(t, ω) satisfies Markov property at time ηA(ω).
Note that ηA(ω) depends on ω. So the strong Markov property is distinct from
the Markov property.

More precisely, this problem is explained as follows: Let X(t, ω)
△
= {xt(ω); t ≥

0} be a Markov process defined on a probability space (Ω,F , P ) and valued in
a measurable space (E, E), f(x) be a E-measurable bounded real-valued function
defined on (E, E), that is, for any Borel subset B of (−∞,∞), we have

{x : f(x) ∈ B} ∈ E . (1.2)

Let α(ω) be a random variable. Does the following equality

E[f(xt+α)|N+
α ] = E[f(xt+α)|F(xα)], PΩα–a.e.

hold? Here N+
α is a σ-algebra prior to α generated by X(t, ω), which is defined

in Section 2.1; Ωα = {ω : α(ω) < ∞}; F(·) denotes the smallest σ-algebra on Ω
generated by all sets of bracket.

In order to prove (1.2), many scholars made great efforts, and obtained many
fine results. The first one who thought (1.2) should be seriously proven is Doob
(1945). To make (1.2) hold, what should we do?

(1) What restricted conditions should α(ω) have?

(2) How to define the σ-algebra prior to α(ω) so that it includes the special case
α(ω) ≡ constant?

(3) How to define the function f(x) so that f(xt) is a random variable and
E[f(xt)|F(xα)] is N+

α -measurable?

The questions above were mentioned in [1, P106].



The researh on the strong Markov property [37℄2. σ-algebra prior to α(ω) and its properties2.1. The definition of the σ-algebra prior to α(ω)

Recall the σ-algebras NT
△
= F(xs(ω); s < T ) and N+

T

△
= F(xs(ω); s ≤ T ),

generated by the trajectory of X(t, ω) prior to T , are defined by

NT
△
= F(xs(ω); s < T )

△
= F

( ⋃

s<T

x−1
s (E)

)
(2.1)

and

N+
T

△
= F(xs(ω); s ≤ T )

△
= F

( ⋃

s≤T

x−1
s (E)

)
, (2.2)

respectively. In particular, taking T = ∞, we have

N∞ = F
( ⋃

s<∞
x−1
s (E)

)
and N+

∞ = F
( ⋃

s≤∞
x−1
s (E)

)
.

Here x−1
s (E) △

= {{xs(ω) ∈ B} : B ∈ E}. Intuitively, F(xs(ω); s < T ) or
F(xs(ω); s ≤ T ) is the σ-algebra generated by the stochastic process prior to
T of X(t, ω), that is, generated by the two stochastic precesses (xs(ω); s < T )
and (xs(ω); s ≤ T ), respectively. Of course, here T is a constant that has nothing
to do with ω. How to define the Nα(ω) and N+

α(ω) if α is a random variable?

Similarly to the way of defining NT and N+
T , they are defined as follows: Let

yt(ω) = xt(ω) if t < α(ω); ȳt(ω) = xt(ω) if t ≤ α(ω). Put Y (t, ω) = {yt(ω); t ≥ 0}
and Ȳ (t, ω)

△
= {ȳt(ω); t ≥ 0}. Then they satisfy:

Y (t, ω) = (X(t, ω); t < α(ω))

and

Ȳ (t, ω) = (X(t, ω); t ≤ α(ω)).

That is, {yt(ω) ∈ B} = {xt(ω) ∈ B, t < α(ω)} and {ȳt(ω) ∈ B} = {xt(ω) ∈
B, t ≤ α(ω)} for any t ≥ 0 and B ∈ E , where when t = ∞, {xt(ω) ∈ B, t <

α(ω)} = ∅ and {xt(ω) ∈ B, t ≤ α(ω)} = {β(ω) ∈ B, α(ω) = ∞}, respectively.
By the definition of a stochastic process, Y (t, ω) and Ȳ (t, ω) are two stochastic
processes prior to α(ω) of x(t, ω), that is, the two processes end at time t < α(ω)
and t ≤ α(ω), respectively.

From (2.1), (2.2) it follows that the σ-algebras prior to α of X(t, ω) are defined
by

Nα
△
= F(yt(ω); t < ∞)

△
= F

( ⋃

t<∞
y−1
t (E)

)
(2.3)

and

N+
α

△
= F(ȳt(ω); t ≤ ∞)

△
= F

( ⋃

t≤∞
ȳ−1
t (E)

)
, (2.4)

respectively. When t = ∞, ȳ−1
t (E) is defined by ȳ−1

t (E) △
= {{ω : β(ω) ∈ B, α(ω) =

∞} : B ∈ E}. Obviously, if α(ω) ≡ T (constant), Nα = NT and N+
α = N+

T .
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Definition 2.1
Nα and N+

α defined by (2.3) and (2.4), respectively, are called σ-algebras prior to
α of X(t, ω).2.2. The properties of σ-algebra prior to α(ω)

We now discuss the properties of Nα and N+
α , which are the foundations of

studying the strong Markov property.

Theorem 2.2

F(α) ⊆ Nα; F(α) ⊆ N+
α .

Proof. The proofs of both statements are similar, we only prove the first re-
lation. Since {xs(ω) ∈ E} = Ω, we have

{α(ω) > s} = {xs(ω) ∈ E, α(ω) > s} = {ys(ω) ∈ E} ∈ Nα.

It is well known that F(α) = F(α(ω) > s; s ≥ 0). Hence, the theorem is valid.

Theorem 2.3
Let

Π = {{xt1 ∈ A1, . . . , xtn ∈ An, α > s} :

n ≥ 1; t1 ≤ . . . ≤ tn ≤ s; A1, . . . , An ∈ E};
Π+ = {{xt1 ∈ A1, . . . , xtn ∈ An, α ≥ s} :

n ≥ 1; t1 ≤ . . . ≤ tn ≤ s ≤ ∞; A1, . . . , An ∈ E},

where for s = ∞, {xt1 ∈ A1, . . . , xtn ∈ An, α > s} = ∅ and {xt1 ∈ A1, . . . , xtn ∈
An, α ≥ s} = {xt1 ∈ A1, . . . , xtn ∈ An, α = ∞}. Then

F(Π) = Nα and F(Π+) = N+
α .

Proof. {xt1 ∈ A1, . . . , xtn ∈ An, α > s} = {yt1 ∈ A1, . . . , ytn ∈ An, ys ∈
E} ∈ Nα, hence, F(Π) ⊆ Nα. Again, for every t ≥ 0 and A ∈ E , obviously,
{yt ∈ A} = {xt ∈ A, α > t} ∈ Π. Therefore, Nα = F(

⋃
t<∞ y−1

t (E)) ⊆ F(Π),
from which and above it follows that F(Π) = Nα. Similarly as above we obtain
F(Π+) = N+

α .

Theorem 2.4
Let α(ω) be a nonnegative random variable. Then

Nα ⊆ N+
α .

Proof. For any t1 ≤ t2 ≤ . . . ≤ tm ≤ s < t, from {xt1 ∈ A1, . . . , xtm ∈
Am, α ≥ t} ∈ N+

α we get

{xt1 ∈ A1, . . . , xtm ∈ Am, α > s} = lim
t↓s

{xt1 ∈ A1, . . . , xtm ∈ Am}∩{α ≥ t} ∈ N+
α .

Here limt↓s{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α ≥ t} is defined by
⋃∞

n=1{xt1 ∈
A1, . . . , xtm ∈ Am} ∩ {α ≥ an} for an arbitrary sequence of number {an}n≥1,
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an ↓ s as n ↑ ∞. We easily verify that limt↓s{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α ≥ t}
has nothing to do with the chosen {an}n≥1. Hence, by Theorem 2.3, the theorem
is proven.

Theorem 2.5
Let α(ω) be a stopping time with respect to N+

t , that is, {α ≤ t} ∈ N+
t for every

t ≥ 0. Then A ∩ {α ≤ t} ∈ N+
t and A ∩ {α < t} ∈ N+

t for every A ∈ N+
α .

Proof. Suppose that A has the following shape

A = {xt1 ∈ A1, . . . , xtn ∈ An, α ≥ s}
for any n ≥ 1 and t1 ≤ . . . ≤ tn ≤ s and A1, . . . , An ∈ E . Obviously, A∩{α ≤ t} =
{xt1 ∈ A1, . . . , xtn ∈ An} ∩ {s ≤ α ≤ t} ∈ N+

t . So, by λ-π-system method and
Theorem 2.3, the first assertion is obtained. Again, A∩{α < t} = limu↑t A∩{α ≤
u} ∈ N+

t , which is the other assertion.3. σ-algebra post-α(ω) and its properties3.1. The definition of the σ-algebra post-α(ω)

Let wt(ω) = xt(ω) if α(ω) < t and w̄t(ω) = xt(ω) if α(ω) ≤ t. Set W (t, ω)
△
=

{wt(ω); t ≥ 0} = (X(t, ω); α(ω) < t). W̄ (t, ω)
△
= {w̄t(ω); t ≥ 0} = (X(t, ω);

α(ω) ≤ t). That is, {wt(ω) ∈ B} = {xt(ω) ∈ B, α(ω) < t} and {w̄t(ω) ∈
B} = {xt(ω) ∈ B, α(ω) ≤ t} for any t ≥ 0 and B ∈ E . Here for t = ∞,
{xt(ω) ∈ B, α(ω) < t} = {β(ω) ∈ B, α(ω) < ∞} and {xt(ω) ∈ B, α(ω) ≤ t} =
{β(ω) ∈ B}, respectively. We adjoin a point ∆ with ∆ 6∈ E to E to expand E into

Ê = E ∪ {∆}, and set Ê △
= F(E , {∆}). Let

w̃t(ω)
△
=

{
wt(ω), t > α(ω),
∆, t ≤ α(ω)

=

{
xt(ω), t > α(ω),
∆, t ≤ α(ω);

˜̄wt(ω)
△
=

{
w̄t(ω), t ≥ α(ω),
∆, t < α(ω)

=

{
xt(ω), t ≥ α(ω),
∆, t < α(ω).

Then W̃ (t, ω)
△
= {w̃t(ω); t ≥ 0} and ˜̄W (t, ω)

△
= { ˜̄wt(ω); t ≥ 0} are changed into

non-interruptive processes on (Ê, Ê), respectively. The state ∆ is the starting point

of W̃ (t, ω) and ˜̄W (t, ω), that is, for all ω ∈ Ω, W̃ (t, ω) and ˜̄W (t, ω) start from state
∆, and stay time at ∆ is α(ω), then the ω enter into E to move according to the
primary trajectory. The σ-algebras post-α αN and αN+ are defined by

αN
△
= F(w̃t(ω); t ≤ ∞)

△
= F

( ⋃

t≤∞
w̃−1

t (E)
)

(3.1)

and

αN+ △
= F( ˜̄wt(ω); t ≤ ∞)

△
= F

( ⋃

t≤∞

˜̄w
−1
t (E)

)
, (3.2)

respectively. Here when t = ∞, w̃−1
t (E) and ˜̄w

−1
t (E) are defined by w̃−1

t (E) △
=



[40℄ Tang Rong, Huang Yonghui
{{β ∈ B, α < ∞} : B ∈ E} and ˜̄w

−1
t (E) △

= {{β ∈ B} : B ∈ E}, respectively. By
the definition of F(·) on Ω, obviously,

αN = F
( ⋃

t≤∞
w−1

t (Ê)
)
; αN+ = F

( ⋃

t≤∞
w̄−1

t (Ê)
)
.

Definition 3.1

αN and αN+ defined by (3.1) and (3.2) are called σ-algebras post-α of X(t, ω),
respectively.

Intuitively, αN or αN+ is the σ-algebra generated by the stochastic process
post-α of X(t, ω).3.2. The properties of the σ-algebra post-α(ω)

Similarly to the proof of Theorem 2.2 we obtain the following theorem.

Theorem 3.2

F(α) ⊆ αN ; F(α) ⊆ αN+.

Theorem 3.3

F(α) ⊆ F(xα).

Proof. Since {xα(ω)(ω) ∈ E} = Ω, from (1.1), it follows that {α ∈ B} ∈
F(xα).

Theorem 3.4
Let

Γ = {{α < s, xt1 ∈ A1, . . . , xtn ∈ An} : n ≥ 1, s ≤ t1 ≤ . . . ≤ tn, A1, . . . , An ∈ E}
and

Γ+ = {{α ≤ s, xt1 ∈ A1, . . . , xtn ∈ An} : n ≥ 1, s ≤ t1 ≤ . . . ≤ tn,

A1, . . . , An ∈ E},

where when s = ∞, {α < s, xt1 ∈ A1, . . . , xtn ∈ An} = {α < ∞, β ∈ A1, . . . , β ∈
An} and {α ≤ s, xt1 ∈ A1, . . . , xtn ∈ An} = {β ∈ A1, . . . , β ∈ An}. Then

F(Γ) = αN and F(Γ+) = αN+.

Proof. The proof is analogous to the proof of Theorem 2.3.

Theorem 3.5

αN ⊆ αN+.

Proof. By Theorem 3.4, {α ≤ u, xt1 ∈ A1, . . . , xtn ∈ An} ∈ αN+. So
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{α < s, xt1 ∈ A1, . . . , xtn ∈ An} = lim

u↑s
{α ≤ u, xt1 ∈ A1, . . . , xtn ∈ An} ∈ αN+,

where limu↑s{α ≤ u, xt1 ∈ A1, . . . , xtn ∈ An} is defined by
⋃∞

i=1{α ≤ ai, xt1 ∈
A1, . . . , xtn ∈ An} for any sequence of number {an}n≥1, an ↑ s as n ↑ ∞. When
s = ∞, {α < s, xt1 ∈ A1, . . . , xtn ∈ An} = {α < ∞, β ∈ A1, . . . , β ∈ An} ∈ αN+

from the definition of αN+ and Theorem 3.2. So {α < s, xt1 ∈ A1, . . . , xtn ∈
An} ∈ αN+ for every s ≤ ∞. By Theorem 3.4 the proof is accomplished.

Theorem 3.6
Let X(t, ω) be an arbitrary stochastic process defined on a probability space
(Ω,F , P ) and valued in measurable space (E, E). Then

F(xα) ⊆ N+
α ; F(xα) ⊆ αN+.

Proof. For any A ∈ E , obviously,

{ω : xα(ω)(ω) ∈ A} = {ω : xα(ω)(ω) ∈ A} ∩ {ω : α(ω) ≤ ∞}
=
⋃

s<∞
({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s}) (3.3)

+ {ω : β(ω) ∈ A} ∩ {ω : α(ω) = ∞}.
By Theorem 2.3 and Theorem 2.4, for every s ≥ 0,

{ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s}
= {ω : xs(ω) ∈ A} ∩ {ω : α(ω) ≥ s} (3.4)

− {ω : xs(ω) ∈ A} ∩ {ω : α(ω) > s} ∈ N+
α .

Now we prove
⋃

s<∞
({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s}) ∈ N+

α (3.5)

by virtue of transfinite induction. Suppose that � is well ordering on [0,∞) with
the first element a0. By (3.4),

⋃

s�a0

({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s})

= {ω : xa0(ω) ∈ A} ∩ {ω : α(ω) = a0} ∈ N+
α .

Suppose that ⋃

s�a

({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s}) ∈ N+
α

for any a with a ≺ T . Chosen an increasing sequence {ai : i ≥ 1, ai ≺ T }
satisfying that for any given number t ≺ T , there exists ai such that t � ai. So

⋃

s≺T

({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s})

=
∞⋃

i=1

[ ⋃

s�ai

({ω : xs ∈ A} ∩ {ω : α = s})
]
∈ N+

α .
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Hence,

⋃

s�T

({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s})

=
⋃

s≺T

({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s}) (3.6)

+ {ω : xT (ω) ∈ A} ∩ {ω : α(ω) = T } ∈ N+
α .

Transfinite induction implies that (3.6) holds for any T ∈ [0,∞). Again, take an
increasing sequence {Ti : i ≥ 1} satisfying that for any given number s ∈ [0,∞),
there exists a Ti such that s � Ti. So

⋃

s<∞
({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s})

=

∞⋃

i=1

[ ⋃

s�Ti

({ω : xs ∈ A} ∩ {ω : α = s})
]
∈ N+

α .

Again, {ω : β(ω) ∈ A}∩{ω : α(ω) = ∞} ∈ N+
α from the definition of N+

α . Hence,
by (3.3), {ω : xα(ω)(ω) ∈ A} ∈ N+

α . By Theorem 2.2,

{ω : (xα(ω), α(ω)) ∈ A×B} = {xα(ω)(ω) ∈ A} ∩ {α(ω) ∈ B} ∈ N+
α

for every B ∈ B([0,∞]). Note that E×B([0,∞]) = F(A×B; A ∈ E , B ∈ B([0,∞]),
and {A × B; A ∈ E , B ∈ B([0,∞])} is a π-system. So, by λ-π-system method,
it follows that F(xα) ⊆ N+

α . Again, {ω : β(ω) ∈ A} ∩ {ω : α(ω) = ∞} ∈ αN+

from the definition of αN+ and Theorem 3.2. Similarly to the proof of the fact
F(xα) ⊆ N+

α , we get F(xα) ⊆ αN+.4. The strong Markov property
Suppose that Θs denotes the shift operator, that is

Θs(f(t1 + s, . . . , tn + s)) = f(t1, . . . , tn)

for any natural number n and function f(t1, . . . , tn) of n-variables defined on n-
dimensional real number space R

n. Generally, if s = s(ω) is a function of ω, then,
for |s(ω)| < ∞, Θs(ω) denotes the shift as follows:

Θs(ω)(f(t1, . . . , tn)) = f(t1 − s(ω), . . . , tn − s(ω))

=
∑

−∞<u<∞
f(t1 − u, . . . , tn − u)X{s(ω)=u}.

More generally, if f = f(t1, . . . , tn, xs(ω)(ω)) is also a function of xs(ω)(ω), then,
for |s(ω)| < ∞, Θs(ω) denotes the shift as follows:

Θs(ω)(f(t1, . . . , tn, xs(ω)(ω)))

= f(t1 − s(ω), . . . , tn − s(ω), xs(ω)(ω))

=
∑

−∞<u<∞

∑

x∈E

f(t1 − u, . . . , tn − u, x)X{s(ω)=u,xs(ω)(ω)=x}(ω),
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where X{s(ω)=u,xs(ω)(ω)=x}(ω) is an indicator relative to {s(ω) = u, xs(ω)(ω) =
x}, that is, X{s(ω)=u, xs(ω)(ω)=x}(ω) = 1 if ω ∈ {s(ω) = u, xs(ω)(ω) = x} and
X{s(ω)=u, xs(ω)(ω)=x}(ω) = 0 otherwise.

Definition 4.1
X(t, ω) is called a homogeneous Markov process if

p(s, t+ s;x,A) = p(0, t;x,A),

where p(s, t;x,A) is the transition probability function of X(t, ω).

Let ω0 ∈ {xs = x}. For an arbitrary E-measurable bounded real-valued

function f(x), by [2, Theorem 5.2.5], E[f(xt+s)|xs](ω0)(
△
= E[f(xt+s)|F(xs)](ω0))

may be denoted by K(s, t + s;x, f(xt+s)). So E[f(xt+s)|xs](ω) may be denoted
as
∑

x∈E K(s, t+ s;x, f(xt+s))X{xs=x}(ω) = K(s, t+ s;xs(ω), f(xt+s)).

Definition 4.1’
X(t, ω) is called a homogeneous Markov process if for an arbitrary E-measurable
bounded real-valued function f(x), such that

E[f(xt+s)|xs] = ΘsE[f(xt+s)|xs] = K(0, t;xs(ω), f(xt))
△
= Exs [f(xt)]. (4.1)

Let f = XA(x), A ∈ F . By Markov property, (4.1) holds if and only if

E[XA(xt+s)|xs](ω) = p(s, t+ s;xs(ω), A) =
∑

x∈E

p(s, t+ s;x,A)X{xs=x}(ω)

=
∑

x∈E

p(0, t;x,A)X{xs=x}(ω)

= p(0, t;xs(ω), A), PF(xs)–a.e..

So, by L-system method (Appendix B, Theorem B.5), it follows that the two
definitions are equivalent.

Lemma 4.2
f(xt) is x−1

t (E)-measurable real-valued function if and only if f(x) is a E-measu-
rable real-valued function defined on a measurable space (E, E). So f(xt) is a
random variable if f(x) is a E-measurable real-valued function defined on a mea-
surable space (E, E).

Proof. Let g(ω)
△
= xt(ω). Then g(ω) is a measurable mapping from (Ω,F)

to (E, E) for any fixed t ≥ 0. If we rewrite f(xt(ω))(ω)
△
= f ◦ g(ω), from [2,

Theorem 2.2.13] f(xt(ω)) is a x−1
t (E)-measurable (so it is also F -measurable)

mapping from Ω to R̄(
△
= R ∪ {∞}) if and only if there exists a E-measurable

real-valued function f(x) such that f(xt(ω)) = f ◦ g(ω).
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Lemma 4.3
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), f be a E-measurable bounded real-valued

function defined on a measurable space (E, E). Put zs(ω)
△
= E[f(xt+s)|xs] =

K(s, t+ s;xs(ω), f(xt+s)). Set

Hs = {zs(ω)}, H =
⋃

s≤∞
Hs.

Let B(H) denote the σ-algebra generated by all Borel subsets in H. Then:

(1) Z(s, ω)
△
= {zs(ω) : s ≥ 0} is a stochastic process defined on a probability

space (Ω,F , P ) and valued in a measurable space (H,B(H)).

(2) Z(s, ω) is a martingale relative to σ-algebra filtration {N+
s ; 0 ≤ s ≤ t}.

Proof. (1) First, we prove zs(ω) is a random variable for any fixed s.

zs(ω): Ω → R̄
△
= {∞} ∪ R is a F(xs)-measurable real-valued function (here as-

sume without loss of generality that the mathematical expectation may only value
+∞) by the definition of conditional mathematical expectation, namely, for every
Borel subset A of R̄,

{ω : zs(ω) ∈ A} ∈ x−1
s (E) ⊆ F . (4.2)

Let B(R̄) be the Borel σ-algebra generated by R∪{∞}. Then B(H) ⊆ B(R̄), from
which and (4.2) it follows that

{ω : zs(ω) ∈ A} ∈ F (4.3)

for every A ∈ B(H). From (4.3) it follows zs(ω) is a random variable valued
in a measurable space (H,B(H)) for every fixed s ≥ 0. Therefore, Z(s, ω) is a
stochastic process valued in a measurable space (H,B(H)) from the definition of
stochastic process.

(2) Since Z(s, ω) = E[f(xt)|N+
s ](ω) by Markov property, for any s ≤ u,

E[Z(u, ω)|N+
s ] = E{E[f(xt)|N+

u ]|N+
s } = E[f(xt)|N+

s ] = Z(s, ω), PN+
s

–a.e.,

from which it follows (2) is valid.

Note. zs(ω) is also regarded as a composite mapping with xs(ω) as interme-
diate variable and ω as independent variable.

Lemma 4.4
Let α(ω) be an arbitrary nonnegative random variable. Set

α(n)(ω) =

n2n∑

k=1

k

2n
X{ k−1

2n <α≤ k
2n }(ω) + (n+ 1)X{α>n}(ω);

α
(n)
− (ω) =

n2n∑

k=1

k − 1

2n
X{ k−1

2n <α≤ k
2n }(ω) + nX{α>n}(ω).

Then
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(1) α(n)(ω) ↓ α(ω), α(n)

− (ω) ↑ α(ω) as n ↑ ∞,

(2) F(α(n)) ⊆ F(α(n+1)), F(α
(n)
− ) ⊆ F(α

(n+1)
− ) for every n ≥ 1,

(3) F(α) = F(α(∞)) = F(α
(∞)
− ).

Here F(α(∞))
△
= F(

⋃∞
n=1 F(α(n))); F(α

(∞)
− )

△
= F(

⋃∞
n=1 F(α

(n)
− )).

For the convenience of representation, [0, 1
2n ] and X{ 0

2n ≤α≤ 1
2n } are marked by

(0, 1
2n ] and X{ 0

2n <α≤ 1
2n }, respectively throughout this paper.

Proof. (1) By the property of construction of measurable function it fol-
lows (1).

(2) Set A(n)
k = {k−1

2n < α ≤ k
2n } for every k = 1, 2, . . . , n2n, A(n)

n2n+1 = {α > n}.
Obviously,

F(α(n)) = F
(
A

(n)
k ; 1 ≤ k ≤ n2n + 1

)
. (4.4)

For 1 ≤ k ≤ n2n,

A
(n)
k =

{2(k − 1)

2n+1
< α ≤ 2k − 1

2n+1

}
+
{2k − 1

2n+1
< α ≤ 2k

2n+1

}
∈ F(α(n+1)),(4.5)

{α > n} =

(n+1)2n+1+1∑

k=n2n+1+1

A
(n+1)
k ∈ F(α(n+1)). (4.6)

The first assertion of (2) follows from (4.4)–(4.6). Similarly we get the second
assertion of (2).

(3) Obviously, F(α(n)) ⊆ F(α) for every n ≥ 1, hence, F(α(∞)) ⊆ F(α). Next
we prove F(α) ⊆ F(α(∞)). It is well known that F(α) = F({α ≥ s}; s ≥ 0).
Hence, it is sufficient to prove {α ≥ s} ∈ F(α(∞)) for any s ≥ 0. Set an =
min(s− k

2n ; s− k
2n ≥ 0, 1 ≤ k ≤ n2n) and Kn = s−an, Obviously, (Kn,∞) ↓ [s,∞)

as n ↑ ∞, where (Kn,∞) ↓ [s,∞) is defined by
⋂∞

n=1(Kn,∞) = [s,∞). Hence
{α ≥ s} =

⋂∞
n=1{α > Kn} ∈ F(α(∞)) since {α > Kn} ∈ F(α(n)) ⊆ F(α(∞)). In

the same manner as above it follows the rest part of (3).

The intuitive idea of Lemma 4.4 is that: the interval [0,∞) is partitioned
into n2n + 1 many pairwise disjoint little intervals [0, 1

2n ], (
1
2n ,

2
2n ], . . . , (

n2n−1
2n , n],

(n,∞). We then construct two simple function α(n)(ω) and α
(n)
− (ω), whose val-

ues in every little interval are taken the maximum and the infimum values of
α(ω) in the corresponding little interval. (But α(n)(ω) take value n + 1 in lit-
tle interval (n,∞)), respectively. We have the same conclusion as Lemma 4.4 if
[0, n] =

⋃n2n

k=1(a
(n)
k−1, a

(n)
k ] is an arbitrary partition of [0, n] into a sequence of pair-

wise disjoint little intervals. This partition method is given a token “B(2(n))”,
called it partition method “B(2(n))”. Let d(n) = max1≤k≤n2n (a

(n)
k − a

(n)
k−1). d(n)

is called the distance of B(2(n)).
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Lemma 4.4’
Let α(ω) be a nonnegative random variable. For every n ≥ 1, [0, n] is partitioned

into n2n many pairwise disjoint little intervals [0, a
(n)
1 ], (a

(n)
1 , a

(n)
2 ], . . . , (a

(n)
n2n−1, n]

△
= (a

(n)
n2n−1, a

(n)
n2n ], and these partitions satisfy the following conditions:

(a) For every n ≥ 1, every such a little interval of partition method “B(2(n))”
is equal to the sum of such two disjoint little intervals of partition method
B(2(n+1)).

(b) limn→∞ d(n) = 0.

Let

ᾱ(n)(ω) =

n2n∑

k=1

a
(n)
k X{a(n)

k−1<α≤a
(n)
k }(ω) + (n+ 1)X{α>n}(ω);

ᾱ
(n)
− (ω) =

n2n∑

k=1

a
(n)
k−1X{a(n)

k−1<α≤a
(n)
k }(ω) + nX{α>n}(ω).

Then

(1) ᾱ(n)(ω) ↓ α(ω), ᾱ(n)
− (ω) ↑ α(ω) as n ↑ ∞,

(2) F(ᾱ(n)) ⊆ F(ᾱ(n+1)), F(ᾱ
(n)
− ) ⊆ F(ᾱ

(n+1)
− ) for every n ≥ 1,

(3) F(α) = F(ᾱ(∞)) = F(ᾱ
(∞)
− ).

Here F(ᾱ(∞))
△
= F(

⋃∞
n=1 F(ᾱ(n))); F(ᾱ

(∞)
− )

△
= F(

⋃∞
n=1 F(ᾱ

(n)
− )).

Lemma 4.5
Let α(ω) be a nonnegative random variable. Then

(1) N
α

(n)
−

⊆ N
α

(n+1)
−

for every n ≥ 1,

(2) N
ᾱ

(n)
−

⊆ N
ᾱ

(n+1)
−

for every n ≥ 1,

(3) Nα = N
α

(∞)
−

= N
ᾱ

(∞)
−

.

Proof. (1) Let Πn = {{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α(n)
− > s} : m ≥ 1;

t1 ≤ . . . ≤ tm ≤ s; A1, . . . , Am ∈ E} for every n = 1, 2, . . . . By Theorem 2.3
it follows that N

α
(n)
−

= F(Πn) for every n = 1, 2, . . . . Suppose, without loss of

generality, that s ∈ (k−1
2n , k

2n ]. Then s must lie in either the interval (2(k−1)
2n+1 , 2k−1

2n+1 )

or the interval [ 2k−1
2n+1 ,

2k
2n+1 ].

If s ∈ (2(k−1)
2n+1 , 2k−1

2n+1 ), then

{α(n)
− > s} =

{
α
(n)
− ≥ k

2n

}
=
{
α >

k

2n

}
,

{α(n+1)
− > s} =

{
α
(n+1)
− ≥ 2k − 1

2n+1

}
=
{
α >

2k − 1

2n+1

}
.
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Hence,

{α(n+1)
− > s} = {α(n)

− > s}+
{
α
(n+1)
− =

2k − 1

2n+1

}
,

from which it follows that

{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α(n)
− > s}

= {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α(n+1)
− > s}

− {xt1 ∈ A1, . . . , xtm ∈ Am} ∩
{
α
(n+1)
− =

2k − 1

2n+1

}
(4.7)

= {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α(n+1)
− > s}

− {xt1 ∈ A1, . . . , xtm ∈ Am} ∩
{
s < α

(n+1)
− ≤ 2k − 1

2n+1

}
.

By Theorem 2.2 and Theorem 2.3 as tm ≤ s < 2k−1
2n+1 it follows

{xt1 ∈ A1, . . . , xtm ∈ Am} ∩
{
s < α

(n+1)
− ≤ 2k − 1

2n+1

}

= {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α(n+1)
− > s} ∩

{
α
(n+1)
− ≤ 2k − 1

2n+1

}

∈ N
α

(n+1)
−

,

this and (4.7) yield

{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α(n)
− > s} ∈ N

α
(n+1)
−

(4.8)

for every s ∈ (2(k−1)
2n+1 , 2k−1

2n+1 ).

If s ∈ [ 2k−1
2n+1 ,

2k
2n+1 ), obviously,

{α(n+1)
− > s} =

{
α
(n+1)
− ≥ 2k

2n+1

}
=
{
α >

k

2n

}
=
{
α
(n)
− ≥ k

2n

}
= {α(n)

− > s},

from which it follows that

{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α(n)
− > s} ∈ N

α
(n+1)
−

(4.9)

for every s ∈ [ 2k−1
2n+1 ,

2k
2n+1 ).

If s = k
2n , an analogous treatment of (4.8) implies

{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α(n)
− > s} ∈ N

α
(n+1)
−

, (4.10)

from (4.8)–(4.10) it follows that Πn ⊆ N
α

(n+1)
−

. Hence, by Theorem 2.3, we get

N
α

(n)
−

= F(Πn) ⊆ N
α

(n+1)
−

for every n ≥ 1.

(2) By an analogous treatment of (1) we complete the proof of (2).
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(3) Obviously, N

α
(∞)
−

⊆ Nα by N
α

(n)
−

⊆ Nα for every n. Next we prove Nα ⊆
N

α
(∞)
−

. Set an = min( k
2n − s : k

2n − s ≥ 0, 1 ≤ k ≤ n2n); Kn = s + an, from

which it follows (Kn,∞) ↑ (s,∞) as n ↑ ∞, where (Kn,∞) ↑ (s,∞) is defined by⋃∞
n=1(Kn,∞) = (s,∞). Therefore, by {xt1 ∈ A1, . . . , xtm ∈ Am}∩{α(n)

− > Kn} ∈
N

α
(n)
−

⊆ N
α

(∞)
−

and {α(n)
− > Kn} ↑ as n ↑, it follows that

{xt1 ∈ A1, . . . , xtm ∈ Am, α > s}
= lim

n↑∞
{xt1 ∈ A1, . . . , xtm ∈ Am, α

(n)
− > Kn} ∈ N

α
(∞)
−

,

this and Theorem 2.3 gives Nα ⊆ N
α

(∞)
−

. Finally, Nα = N
α

(∞)
−

. In the same

manner one can prove Nα = N
α

(∞)
−

, Nα = N
ᾱ

(∞)
−

.

Lemma 4.6
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), f be a E-measurable bounded real-valued
function defined on a measurable space (E, E), α(ω) be a stopping time, that is,
{α ≤ t} ∈ N+

t for every t ≥ 0. Put

Z(s, ω)
△
= E[f(xt)|xs](ω).

Suppose that Z̄(s, ω) is a N+
s+(

△
=
⋂

u>s N+
u )-adaptive process which is uniquely

determined by Z(s, ω) according to [7, Theorem 3.5]. Then

E[f(xt)|xα] = Z̄(α(ω), ω), P{α≤t}–a.e.

that is,

X{α≤t}E[f(xt)|xα] = X{α≤t}Z̄(α(ω), ω), PF(xα)–a.e..

Proof. Take

ᾱ(n)(ω) =

n2n∑

k=1

a
(n)
k X{a(n)

k−1<α≤a
(n)
k }(ω) + (n+ 1)X{α(ω)>n}(ω),

and the corresponding to partition of [0, n] =
∑n2n

k=1(a
(n)
k−1, a

(n)
k ] satisfies that t is

a partition point when n > t. So there exists Kn with 1 ≤ Kn ≤ n2n such that
{α ≤ t} =

∑Kn

k=1{a
(n)
k−1 < α ≤ a

(n)
k }. Take {a(n)k : n ≥ 1, 1 ≤ k ≤ n2n} ⊆ D,

where D is defined as that in [7, Theorem 3.5], for every A ∈ E ,
∫

x
−1
α (A){α≤t}

E[f(xt)|xα]P (dω)

=

∫

x
−1
α (A){α≤t}

f(xt)P (dω)
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=

Kn∑

k=1

∫

x
−1
α (A){a(n)

k−1<α≤a
(n)
k }

E
[
f(xt)|N+

a
(n)
k

]
P (dω)

=

Kn∑

k=1

∫

x
−1
α (A){a(n)

k−1<α≤a
(n)
k }

E
[
f(xt)|xa

(n)
k

]
P (dω)

=

∫

x
−1
α (A){α≤t}

Kn∑

k=1

Z
(
a
(n)
k , ω

)
X{a(n)

k−1<α≤a
(n)
k }(ω)P (dω)

=

∫

x
−1
α (A){α≤t}

Kn∑

k=1

Z
(
a
(n)
k , ω

)
X{ᾱ(n)=a

(n)
k }(ω)P (dω)

=

∫

x
−1
α (A){α≤t}

Z(ᾱ(n), ω)P (dω)

=

∫

x
−1
α (A){α≤t}

lim
n↑∞

Z(ᾱ(n), ω)P (dω)

=

∫

x
−1
α (A){α≤t}

Z̄(α(ω), ω)P (dω),

where x−1
α (A) = {ω : xα ∈ A}. The first equality follows from the definition of

conditional expectation; the second equality follows from x−1
α (A) ∩ {a(n)k−1 < α ≤

a
(n)
k } ∈ F(xα) ⊆ N+

α and Theorem 2.5; the third equality follows from Markov
property; the seventh equality follows from dominated convergence theorem; the
last equality follows from [7, Theorem 3.5]. Similarly to the above proof we obtain

∫

x
−1
α (A){α≤u}

X{α≤t}E[f(xt)|xα]P (dω)

=

∫

x
−1
α (A){α≤u}

X{α≤t}Z̄(α(ω), ω)P (dω)

for every u ≥ 0, from which and λ-π-system method it follows
∫

x
−1
α (A){α∈B}

X{α≤t}E[f(xt)|xα]P (dω) =
∫

x
−1
α (A){α∈B}

X{α≤t}Z̄(α(ω), ω)P (dω)

for every B ∈ B([0,∞]), Note that F(xα) = F(x−1
α (A){α ∈ B}; A ∈ E , B ∈

B([0,∞])). From which and λ-π-system method it follows, for every C ∈ F(xα),
∫

C

X{α≤t}E[f(xt)|xα]P (dω) =
∫

C

X{α≤t}Z̄(α(ω), ω)P (dω). (4.11)
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Since E[f(xt)|xa

(n)
k

] is a measurable function with x
a
(n)
k

(ω) as intermediate variable

and ω as independent variable, that is, there exists a function K(a
(n)
k , t;x, f(xt))

on (E, E) such that E[f(xt)|xa
(n)
k

] = K(a
(n)
k , t;x

a
(n)
k

, f(xt)). So, by [2, The-

orem 2.2.13], we have that E[f(xt)|xa
(n)
k

] is both E-measurable (in this case,

E[f(xt)|xa
(n)
k

] is regarded as defined on space (E, E)) and F(x
a
(n)
k

)-measurable (in

this case, E[f(xt)|xa
(n)
k

] is regarded as defined on space (Ω,F(x
a
(n)
k

))). Rewrite

Z(x, a
(n)
k )

△
= K(a

(n)
k , t;x, f(xt)). Let Z(n)(x, s) =

∑Kn

k=1 Z(x, a
(n)
k )X{a(n)

k−1<s≤a
(n)
k }.

Hence Z(n)(x, s) is E × B([0,∞])-measurable (see [9, Section 2.6, Problem 8]). So
limn↑∞ Z(n)(x, s) is also E × B([0,∞])-measurable. Since {a(n)k : n ≥ 1, 1 ≤ k ≤
n2n} ⊆ D, and Z̄(s, ω) is right continuous and Z̄(ᾱ(n)(ω), ω) =∑Kn

k=1 Z(x, a
(n)
k )X{a(n)

k−1<α(ω)≤a
(n)
k } by [7, Theorem 3.5], then

Z̄(α(ω), ω) = lim
n↑∞

Z̄(ᾱ(n)(ω), ω) = lim
n↑∞

Z(n)(x, α(ω)).

Thus Z̄(α(ω), ω) is F(xα)-measurable by [2, Theorem 2.2.13]. By Radon–Nikodym
Theorem and (4.11) the proof of theorem is comleted.

Remark 4.7
We easily verify α(n)(ω) and ᾱ(n)(ω) are stopping times if α(ω) is a stopping time.

In fact, for any t ≥ 0, if 1
2n ≤ t < n+ 1, letting an = max(a

(n)
k : t ≥ k

2n , 1 ≤ k ≤
n2n), then {α(n) ≤ t} = {α(n) ≤ an} = {α ≤ an} ∈ N+

t ; if t ≥ n+ 1, obviously,
{α(n) ≤ t} = Ω ∈ N+

t ; if t < 1
2n , obviously, {α(n) ≤ t} = ∅ ∈ N+

t . So α(n)(ω) is a
stopping time. Similarly as above we obtain that ᾱ(n)(ω) is also a stopping time.

Lemma 4.8
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), let f(x) be a E-measurable bounded real-
valued function defined on (E, E), α(ω) be a stopping time. Then

E
[
f(xt)|Nᾱ

(n)
−

]
= E

[
Z(ᾱ(n)(ω), ω)|N

ᾱ
(n)
−

]
, P{α≤T̄n}–a.e..

Namely,

X{α≤T̄n}E
[
f(xt)|Nᾱ

(n)
−

]
= X{α≤T̄n}E

[
Z(ᾱ(n)(ω), ω)|N

ᾱ
(n)
−

]
, PN

ᾱ
(n)
−

–a.e.. (4.12)

In particular, if X(t, ω) is a homogeneous Markov process,

E
[
f(xt)|Nᾱ

(n)
−

]
= E

{
Θᾱ(n)Z(ᾱ(n)(ω), ω)|N

ᾱ
(n)
−

}
, P{α≤T̄n}–a.e..

Namely,

X{α≤T̄n}E
[
f(xt)|Nᾱ

(n)
−

]
= X{α≤T̄n}E

{
Θᾱ(n)Z(ᾱ(n)(ω), ω)|N

ᾱ
(n)
−

}
, PN

ᾱ
(n)
−

–a.e..

Here T̄n = max(a
(n)
k : t ≥ a

(n)
k , 1 ≤ k ≤ n2n); Θᾱ(n)Z(ᾱ(n)(ω), ω) =

∑
x∈E K(0,

t− ᾱ(n)(ω);x, f(xt−ᾱ(n)(ω))X{x
ᾱ(n)=x}(ω) = K(0, t− ᾱ(n)(ω);xᾱ(n) , f(xt−ᾱ(n)(ω)).
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Remark 4.9
If ᾱ(n)(ω) > t for some ω, then Θᾱ(n)(ω)Z(ᾱ(n)(ω), ω) might not be well defined.
In this case, we may give Θᾱ(n)(ω)Z(ᾱ(n)(ω), ω) an arbitrary value. Obviously, it
does not affect our conclusion. So we plight it in this way throughout this paper.

Proof. For every n ≥ 1, set

B
(n)
(t1,A1)(t2,A2)...(tm,Am)s = {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {ᾱ(n)

− > s},

Πn = {B(n)
(t1,A1)(t2,A2)...(tm,Am)s : m ≥ 1, t1 ≤ . . . ≤ tm ≤ s,

A1, . . . , Am ∈ E},

N = max
(
k : t ≥ a

(n)
k , 1 ≤ k ≤ n2n

)
.

Using the abbreviation B
△
= {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {ᾱ(n)

− > s} we have

∫

B{ᾱ(n)
− <T̄n}

f(xt)P (dω) =
N∑

k=1

∫

B{a(n)
k−1<α≤a

(n)
k }

f(xt)P (dω). (4.13)

Since α(ω) is a stopping time,
{
a
(n)
k−1 < α ≤ a

(n)
k

}
=
{
α ≤ a

(n)
k

}
−
{
α ≤ a

(n)
k−1

}
∈ N+

a
(n)
k

. (4.14)

Let Kn = min(k : 1 ≤ k ≤ n2n, a
(n)
k ≥ s). When k ≥ Kn, by t1 ≤ t2 ≤ . . . tm ≤

s ≤ a
(n)
k , it follows that {xt1 ∈ A1, . . . , xtm ∈ Am} ∈ N+

a
(n)
k

. This and (4.14) give

{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {a(n)k−1 < α ≤ a
(n)
k } ∈ N+

a
(n)
k

for every k ≥ Kn. Again,

for k < Kn, we obviously have B{a(n)k−1 < α ≤ a
(n)
k } = ∅ ∈ N+

a
(n)
k

. Therefore, using

Markov property, (4.13) is changed into
∫

B{ᾱ(n)
− <T̄n}

f(xt)P (dω)

=

N∑

k=1

∫

B{a(n)
k−1<α≤a

(n)
k }

E
[
f(xt)|N+

a
(n)
k

]
P (dω)

=

N∑

k=1

∫

B{a(n)
k−1<α≤a

(n)
k }

E
[
f(xt)|xa

(n)
k

]
P (dω) (4.15)

=
N∑

k=1

∫

B{a(n)
k−1<α≤a

(n)
k }

Z(ᾱ(n)(ω), ω)P (dω)

=

∫

B{ᾱ(n)
− <T̄n}

Z(ᾱ(n)(ω), ω)P (dω).
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Let

Λ =

{
B :

∫

B{ᾱ(n)
− <T̄n}

f(xt)P (dω) =

∫

B{ᾱ(n)
− <T̄n}

Z(ᾱ(n)(ω), ω)P (dω), B ∈ N
ᾱ

(n)
−

}
.

If B = Ω,

∫

{ᾱ(n)
− <T̄n}

f(xt)P (dω) =
N∑

k=1

∫

{a(n)
k−1<α≤a

(n)
k }

E
[
f(xt)|xa

(n)
k

]
P (dω)

=

∫

{ᾱ(n)
− <T̄n}

Z(ᾱ(n)(ω), ω)P (dω),

where the first equality follows from the Markov property and the definition of
conditional expectation and (4.14). Again it could be easily verified that Λ satisfies
the other conditions of λ-system. Therefore, Λ is a λ-system. Hence, by λ-π-system
method, it follows that Λ ⊇ F(Πn) = N

ᾱ
(n)
−

, namely,

∫

B{ᾱ(n)
− <T̄n}

f(xt)P (dω) =

∫

B{ᾱ(n)
− <T̄n}

Z(ᾱ(n)(ω), ω)P (dω)

for any B ∈ N
ᾱ

(n)
−

. From which and definition of conditional expectation we get

∫

B{ᾱ(n)
− <T̄n}

E
[
f(xt)|Nᾱ

(n)
−

]
P (dω)

=

∫

B{ᾱ(n)
− <T̄n}

E
[
Z(ᾱ(n)(ω), ω)|N

ᾱ
(n)
−

]
P (dω).

(4.16)

If X(t, ω) satisfies homogeneity, the last integrand of (4.15) is Θᾱ(n)Z(ᾱ(n)(ω), ω).
So the last integrand of (4.16) is changed into E{Θᾱ(n)Z(ᾱ(n)(ω), ω)|N

ᾱ
(n)
−

}. By

Radon–Nikodym Theorem we obtain the lemma.

Lemma 4.10
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), f be a E-measurable bounded real-valued
function defined on a measurable space (E, E) and let α(ω) be a stopping time.
Then, for any t1 ≤ . . . ≤ tm ≤ s and A1, . . . , Am ∈ E,

∫

{xt1∈A1,...,xtm∈Am,α=s}

E[f(xt)|xs]P (dω)

=

∫

{xt1∈A1,...,xtm∈Am,α=s}

E[f(xt)|xα]P (dω).
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Proof. Since E[f(xt)|xs](ω) = Z(s, ω) is a martingale relative to σ-algebra

filtration {N+
s ; s ≤ t}, by [7, Theorem 3.5], E[f(xt)|xs] = E[Z̄(s, ω)|N+

s ]. Again,
{xt1 ∈ A1, . . . , xtm ∈ Am, α = s} ∈ N+

s , so
∫

{xt1∈A1,...,xtm∈Am,α=s}

E[f(xt)|xs]P (dω)

=

∫

{xt1∈A1,...,xtm∈Am,α=s}

E[Z̄(s, ω)|N+
s ]P (dω)

=

∫

{xt1∈A1,...,xtm∈Am,α=s}

Z̄(s, ω)P (dω)

=

∫

{xt1∈A1,...,xtm∈Am,α=s}

E[f(xt)|xα]P (dω),

where the last equality follows from Lemma 4.6.

Lemma 4.11
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), f be a E-measurable bounded real-valued
function defined on a measurable space (E, E) and let α(ω) be a stopping time.
Then

E[f(xt)|Nα] = E[Z̄(α(ω), ω)|Nα], P{α≤t}–a.e.. (4.17)
Namely,

X{α≤t}E[f(xt)|Nα] = X{α≤t}E[Z̄(α(ω), ω)|Nα], PNα–a.e.. (4.18)

In particular, if X(t, ω) is a homogeneous Markov process, then

E[f(xt)|Nα] = E{Θα(ω)Z̄(α(ω), ω)|Nα}, P{α≤t}–a.e..

Namely,

X{α≤t}E[f(xt)|Nα] = X{α≤t}E{Θα(ω)Z̄(α(ω), ω)|Nα}, PNα–a.e..

Proof. N
ᾱ

(n)
−

⊆ N
ᾱ

(n+1)
−

for every n ≥ 1 by Lemma 4.5. Set

Zn = X{α≤T̄N}E
[
f(xt)|Nᾱ

(n)
−

]
; Xn = X{α≤T̄N}E

[
Z(ᾱ(n)(ω), ω)|N

ᾱ
(n)
−

]
.

Then {Zn; n ≥ N} is a martingale with respect to σ-algebra family {N
ᾱ

(n)
−

; n ≥
N}. From above and (4.12) it follows that {Xn; n ≥ N} is also a martingale with
respect to σ-algebra family {N

ᾱ
(n)
−

; n ≥ N}. So, by the property of conditional

expectation we get, for any n ≥ m ≥ N ,

Xm = E
[
Xn|Nᾱ

(m)
−

]
= E

{
X{α≤T̄N}E

[
Z(ᾱ(n)(ω), ω)|N

ᾱ
(n)
−

]
|N

ᾱ
(m)
−

}

= X{α≤T̄N}E
[
Z(ᾱ(n)(ω), ω)|N

ᾱ
(m)
−

]
.

(4.19)
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Here the third equality is a consequence of the fact that X{α≤T̄N} is N

ᾱ
(m)
−

-

measurable if m ≥ N . Next, take {a(n)k : n ≥ 1, 1 ≤ k ≤ n2n} ⊆ D, where
D is given by [7, Theorem 3.5], then

lim
n→∞

X{α≤T̄N}Z(ᾱ(n)(ω), ω) = X{α≤T̄N}Z̄(α(ω), ω), P–a.e.. (4.20)

By the convergence theorem of a martingale (see [3, Corollary 2.13]) and Lem-
ma 4.5,

lim
N→∞

lim
n→∞

Zn = X{α≤t}E[f(xt)|Nα], P–a.e.. (4.21)

Again, from (4.19), (4.20) and the convergence theorem of a martingale it follows
that

lim
N→∞

lim
m→∞

Xm

= lim
N→∞

lim
m→∞

lim
n→∞

X{α≤T̄N}E
[
Z(ᾱ(n)(ω), ω)|N

ᾱ
(m)
−

]
(4.22)

= X{α≤t}E[Z̄(α(ω), ω)|Nα].

By (4.12), (4.21), (4.22) we obtain (4.17). By (4.17), for any B ∈ Nα,
∫

B

X{α≤t}E[f(xt)|Nα]P (dω) =

∫

B

X{α≤t}E[Z̄(α(ω), ω)|Nα]P (dω),

this yields (4.18). If X(t, ω) is a homogeneous Markov process, then the right-hand
side of (4.19) is changed into

X{α≤T̄N}E
{
Θᾱ(n) Z̄(ᾱ(n)(ω), ω)|N

ᾱ
(m)
−

}
.

Note that Z̄(s, ω) is right continuous, so (4.22) is changed into

lim
N→∞

lim
m→∞

Xm = X{α≤t}E{Θα(ω)Z̄(α(ω), ω)|Nα}.

Theorem 4.12 (the strong Markov property)
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), f be a E-measurable bounded real-valued
function defined on a measurable space (E, E) and let α(ω) be a stopping time.
Then

E[f(xt)|N+
α ] = E[f(xt)|xα], P{α≤t}–a.e..

Further,

X{α≤t}E[f(xt)|N+
α ] = X{α≤t}E[f(xt)|xα], PN+

α
–a.e.. (4.23)

In particular, if X(t, ω) is a homogeneous Markov process, then

E[f(xt)|N+
α ] = [Exα(f(xt−α))], P{α≤t}–a.e.. (4.24)

Further,

X{α≤t}E[f(xt)|N+
α ] = X{α≤t}[Exα(f(xt−α))], PN+

α
–a.e., (4.25)

where Exα(ω)
(f(xt−α(ω))) =

∑
x∈E K(0, t − α(ω);x, f(xt−α(ω)))X{xα(ω)=x}(ω) =

K(0, t− α(ω);xα(ω), f(xt−α(ω))) for every ω ∈ Ω with α(ω) ≤ t.
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Proof. For any t1 ≤ t2 ≤ . . . ≤ tm ≤ s ≤ t set

B+ = {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α ≥ s};
C = {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α = s};
B = {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α > s}.

Then B+ = B +C. From Theorem 2.3 and Theorem 2.2 it follows that B ∩ {α ≤
t} ∈ Nα. Again, C ∩ {α ≤ t} = C ∈ N+

s , from above we have
∫

B+{α≤t}

E[f(xt)|N+
α ]P (dω)

=

∫

B{α≤t}

f(xt)P (dω) +

∫

C{α≤t}

f(xt)P (dω)

=

∫

B{α≤t}

E[f(xt)|Nα]P (dω) +

∫

C{α≤t}

E[f(xt)|N+
s ]P (dω)

=

∫

B{α≤t}

E[Z̄(α(ω), ω)|Nα]P (dω) +

∫

C{α≤t}

E[f(xt)|xs]P (dω)

=

∫

B{α≤t}

Z̄(α(ω), ω)P (dω) +

∫

{xt1∈A1,...,xtm∈Am}∩{α(ω)=s}

E[f(xt)|xs]P (dω)

=

∫

B{α≤t}

E[f(xt)|xα]P (dω) +

∫

C{α≤t}

E[f(xt)|xα]P (dω)

=

∫

B+{α≤t}

E[f(xt)|xα]P (dω),

where the third equality follows from Lemma 4.11 and Markov property; the fifth
equality follows from Lemma 4.6 and Lemma 4.10. By the λ-π-system method,

∫

B{α≤t}

E[f(xt)|N+
α ]P (dω) =

∫

B{α≤t}

E[f(xt)|xα]P (dω)

for any B ∈ N+
α . Next, it is required to verify that E[f(xt)|xα] is N+

α -measurable
by the definition of conditional expectation. Since E[f(xt)|xα] is F(xα)-measu-
rable by the definition of conditional expectation, E[f(xt)|xα] is N+

α -measurable
from F(xα) ⊆ N+

α according to Theorem 3.6. Again, if X(t, ω) is a homogeneous
Markov process, similarly to the above proof we obtain (4.24) and (4.25).

Note that if α(ω) ≡ s (constant), then F(xα) = F(xs) and N+
α = N+

s . The
following corollary is a consequence of Theorem 4.12.

Corollary (Markov property)
Let X(t, ω) be an arbitrary stochastic process defined on a probability space
(Ω,F , P ) and valued in a measurable space (E, E), f be a E-measurable bounded
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real-valued function defined on a measurable space (E, E). If X(t, ω) satisfies
(4.23), then X(t, ω) is a Markov process, that is, X(t, ω) satisfies

E[f(xt)|N+
s ] = E[f(xt)|xs], PN+

s
–a.e.

for any 0 ≤ s ≤ t.
In particular, if X(t, ω) satisfies (4.25), then X(t, ω) is a homogeneous Markov

process, that is, X(t, ω) has property:

E[f(xt)|N+
s ] = Exs [f(xt−s)], PN+

s
–a.e.

for any 0 ≤ s ≤ t.

By the same method used in the proof of Theorem 4.12, Theorem 4.12 is
extended as follows:

Theorem 4.12’ (the strong Markov property)
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in measurable space (E, E), f(x1, . . . , xn) be a n-dimensional En-measu-
rable bounded real-valued function defined on a measurable space (En, En) and let
α(ω) be a stopping time. Then

E[f(xt1 , . . . , xtn)|N+
α ] = E[f(xt1 , . . . , xtn)|xα], P{α≤min(t1,...,tn)}–a.e..

Further,

X{α≤min(t1,...,tn)}E[f(xt1 , . . . , xtn)|N+
α ]

= X{α≤min(t1,...,tn)}E[f(xt1 , . . . , xtn)|xα], PN+
α

–a.e..

In particular, if X(t, ω) is a homogeneous Markov process, then

E[f(xt1 , . . . , xtn)|N+
α ] = [Exα(f(xt1−α, . . . , xtn−α))], P{α≤min(t1,...,tn)}–a.e..

Further,

X{α≤min(t1,...,tn)}E[f(xt1 , . . . , xtn)|N+
α ]

= X{α≤min(t1,...,tn)}[Exα(f(xt1−α, . . . , xtn−α))], PN+
α

–a.e..

Theorem 4.13 (the strong Markov property)
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), ξ(ω) be αN+-measurable, and E|ξ| < ∞.
Then

E[ξ|N+
α ] = E[ξ|xα], PΩα–a.e.. (4.26)

Proof. If ξ(ω) = X{α≤s}X{xt1∈A1}...{xtn∈An}, where s ≤ t1 ≤ . . . ≤ tn, taking
f(xt1 , . . ., xtn) = X{xt1∈A1}...{xtn∈An} in Theorem 4.12’ yields

X{α≤s}E[X{xt1∈A1}...{xtn∈An}|N+
α ]

= X{α≤s}E[X{xt1∈A1}...{xtn∈An}|xα], PΩα–a.e..
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By Theorem 2.2 and Theorem 3.3,

E[X{α≤s,xt1∈A1,...,xtn∈An}|N+
α ]

= E[X{α≤s,xt1∈A1,...,xtn∈An}|xα], PΩα–a.e..
(4.27)

Set

L = {all integrable functions};
H = {all ξ(ω) which satisfy (4.26)}.

Then H is L-system. Since X{α≤s, xt1∈A1,...,xtn∈An} ∈ H for any n ≥ 1 and

0 ≤ s ≤ t1 ≤ . . . ≤ tn and A1, . . . , An ∈ E from (4.27), again, αN+ = F({α ≤
s, xt1 ∈ A1, . . . , xtn ∈ An} : n ≥ 1, 0 ≤ s ≤ t1 ≤ . . . ≤ tn, A1, . . . , An ∈ E) from
Theorem 3.4, by L-system method it follows that H includes all αN+-measurable
functions in L.

Theorem 4.14 (the strong Markov property)
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), f(x) be a E-measurable bounded real-
valued function defined on a measurable space (E, E) and let α(ω) be a stopping
time. Then

E[f(xt+α)|N+
α ] = E[f(xt+α)|xα], PΩα–a.e.. (4.28)

In particular, if X(t, ω) is a homogeneous Markov process, then

E[f(xt+α)|N+
α ] = Exα [f(xt)], PΩα–a.e.. (4.29)

Proof. By Theorem 3.2 and Theorem 3.4, similarly to the proof of (3.5), it
follows that

{xt+α ∈ A} = {α ≤ t+ α, xt+α ∈ A}
=
⋃

s<∞
({α ≤ t+ s, xt+s ∈ A} ∩ {α = s}) + {β ∈ A, α = ∞}

∈ αN+

for every A ∈ E and t ≥ 0, that is, xt+α is αN+-measurable. Therefore, f(xt+α)
is αN+-measurable from [2, Theorem 2.2.13]. So f(xt+α) is also F -measurable.
Hence f(xt+α) is a random variable, that is, for every B ∈ B((−∞,∞)),

{ω : f(xt+α) ∈ B} ∈ F . (4.30)

Again, E|f(xt+α)| < ∞, which follows from f(x) is bounded. Hence, from The-
orem 4.13 we get (4.28). Next, if X(t, ω) is a homogeneous Markov process, we
shall prove (4.29). Set

f (n)(x) =

n2n∑

k=−n2n+1

k

2n
X{ k−1

2n <f(x)≤ k
2n } + (n+ 1)X{f(x)>n} − nX{f(x)≤−n};
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A

(n)
k =

{
x :

k − 1

2n
< f(x) ≤ k

2n

}
(−n2n + 1 ≤ k ≤ n2n);

A
(n)
n2n+1 = {x : f(x) > n};
A

(n)
−n2n = {x : f(x) ≤ −n}.

Since f(x) is E-measurable, then A
(n)
k ∈ E for every −n2n ≤ k ≤ n2n + 1. Again,

because xt(ω) values in a measurable space (E, E), if f(x) is replaced by X
A

(n)
k

(x)

in (4.30), it follows that X{xt+α(ω)∈A
(n)
k } is F -measurable. Again, by (4.28), for

every n and −n2n ≤ k ≤ n2n + 1,

E
[
X{xt+α∈A

(n)
k }|N

+
α

]
= E

[
X{xt+α∈A

(n)
k }|xα

]

for every ω ∈ Ωα − Nnk, where Nnk is a P -null measurable set and satisfies
Nnk ⊆ Ωα, from which it follows that

X{α=s}E
[
X{xt+α∈A

(n)
k }|N

+
α

]
= E

[
X{α=s}X{xt+α∈A

(n)
k }|xα

]

= E
[
X{α=s}X{xt+s∈A

(n)
k

}|xα

]

= X{α=s}E
[
X{xt+s∈A

(n)
k }|xα

]

= X{α=s}Exα

[
X{xt∈A

(n)
k }
]

for every ω 6∈ Nnk, where the first equality follows from (4.28) and X{α=s} is
F(xα)-measurable according to Theorem 3.3; the last equality follows from (4.25).
Note that Nnk does not depend on s. Then

X{α<∞}E
[
X{xt+α∈A

(n)
k }|N

+
α

]
= X{α<∞}Exα

[
X{xt∈A

(n)
k }
]

for every ω ∈ Ωα −Nnk. Hence,

X{α<∞}E[f (n)(xt+α)|N+
α ] = X{α<∞}Exα [f

(n)(xt)]

for every ω ∈ Ωα − N (n), where N (n) is defined by
⋃n2n+1

k=−n2n Nnk. Further, by
monotone convergence theorem we obtain

X{α<∞}E[f(xt+α)|N+
α ] = X{α<∞}Exα [f(xt)]

for every ω ∈ Ωα −N , where N =
⋃∞

n=1 N
(n), thus yields (4.29).

By the above theorem and corollary we have the following statements.

Theorem 4.15
Let X(t, ω) be an arbitrary stochastic process defined on a probability space
(Ω,F , P ) and valued in a measurable space (E, E), f be a E-measurable bounded
real-valued function defined on a measurable space (E, E) and let α(ω) be a stopping
time. Then the following statements are equivalent:
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(1) (Markov property) For any t ≥ 0,

E[f(xt)|N+
s ] = E[f(xt)|xs], PN+

s
–a.e.

for any 0 ≤ s ≤ t.

(2) (the strong Markov property) For any t ≥ 0,

E[f(xt)|N+
α ] = E[f(xt)|xα], P{α≤t}–a.e..

Further, we have

X{α≤t}E[f(xt)|N+
α ] = X{α≤t}E[f(xt)|xα], PN+

α
–a.e.,

(3) (the strong Markov property) Let ξ(ω) be αN+-measurable, and E|ξ| < ∞.
Then

E[ξ|N+
α ] = E[ξ|xα], PΩα–a.e..

(4) (the strong Markov property) For any t ≥ 0,

E[f(xt+α)|N+
α ] = E[f(xt+α)|xα], PΩα–a.e..Appendix A. Theorems and onepts ited in this paper

For convenience of the reader, we list all theorems used in this paper.

Theorem A.1 ([2] Property 2.2.2)
Let f be a mapping from Ω to E, H be a σ-algebra of E. Then f−1(H) is a
σ-algebra of Ω.

Theorem A.2 ([2] Theorem 2.2.13)
Let Ω be a set, (E, E) be a measurable space, f be a mapping from Ω to E. Then

ϕ is a f−1(E)-measurable function from Ω to R̄
△
= R ∪ {∞} if and only if there

exists a E-measurable real-valued function g on (E, E) such that ϕ = g ◦ f . And if
ϕ is bounded or finite, then g is bounded or finite.

Theorem A.3 ([2] Theorem 5.2.5)
Let ξ be a random variable defined on a probability space (Ω,F , P ), C be a σ-
subalgebra of F , B be an arbitrary atom of C. Then, for any ω ∈ B,

E(ξ|C)(ω) ≡ constant.

Further, if P (B) > 0, then

E(ξ|C)(ω) = 1

P (B)

∫

B

ξ dP

for every ω ∈ B.
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Theorem A.4 ([2] Theorem 5.3.1)
Let ξ be a random variable defined on a probability space (Ω,F , P ), Eξ exist, f be
a measurable mapping from (Ω,F) to (E, E). Then, there exists a E-measurable
function g, which is Pf -almost everywhere uniquely determined by E(ξ|F(f)), de-
fined on (E, E) such that

E(ξ|F(f)) = g ◦ f, PF(f)–a.e.,

where g satisfies ∫

A

g Pf (dx) =

∫

f−1(A)

ξ P (dω)

for every A ∈ E, where Pf is a probability measure derived by f , that is, Pf satisfies
Pf (A) = P (f−1(A)) for every A ∈ E.

Theorem A.5 (Integrable Transform Theorem; [2] Theorem 3.4.1)
Let f be a measurable transformation from the a measurable space (Ω,F) to
the measurable space (E, E); g be a measurable function defined on (E, E); µ be

a measure on (Ω,F); µf be a derived measure on (E, E) by f , that is, µf (B)
△
=

µ(f−1(B)) for every B ∈ E. Then
∫

f−1(B)

g ◦ f dµ =

∫

B

g dµf ,

which means: if one of the two integrals exists, then the other also exists, and the
two integrals are equal.

Theorem A.6 (Extended Föllmer Lemma; [7] Theorem 3.5)
Let X(t, ω) be a martingale with respect to σ-algebra filtration {Ft; t ≥ 0}, D be
a countable dense subset of R+. Then there exists a Ft+-adaptive process X̄(t, ω),
which satisfies the following properties:

(1) The every trajectory of X̄(t, ω) is right continuous, and there exists a null
measurable ω-set N such that

X̄(t, ω) = lim
s∈D,s↓t

X(s, ω)

for every t ≥ 0 and ω ∈ Ω−N .

(2) There exists a null measurable ω-set N1 such that, for every t > 0 and
ω ∈ Ω−N1,

X̄(t−, ω) = lim
s∈R+,s↑t

X̄(s, ω)

exists and is finite, and

X̄(t−, ω) = lim
s∈D,s↑t

X(s, ω).
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(3) For every t ≥ 0, X(t, ω) = E[X̄(t, ω)|Ft], P–a.e..

(4) X̄(t, ω) is a martingale with respect to σ-algebra filtration Ft+.

Here R+ = [0,∞); {Ft; t ≥ 0} is a σ-algebra filtration, that is, if s ≤ t, then
Fs ⊆ Ft; Ft+ =

⋂
s>t Fs.

Theorem A.7 ([3] Corollary 2.13)
Let {Fn; n ≥ 0} be a monotone increasing σ-subalgebra family of F , Y be an

integrable random variable, F∞
△
= F(

⋃∞
n=0 Fn). Set

Xn = E[Y |Fn]

for every n ≥ 0. Then we have

(1) {Xn, n ≥ 0} is uniformly integrable.

(2) Xn → E(Y |F∞), P–a.e., and E|Xn − E(Y |F∞)| → 0 as n → ∞.

Theorem A.8 (Radon–Nikodym Theorem; [2] Theorem 3.7.6)
Let µ be a σ-finite measure on σ-algebra A of Ω. If the set function ϕ defined on
A is σ-finite and σ-additive and µ-continuous, then there exists a A-measurable
finite function f defined on (Ω,A) such that ϕ is the indefinite integral of f on
a measurable space (Ω,A, µ), and f is µA-almost surly uniquely determined by ϕ.

Theorem A.9 (Tulcea Theorem; [2] theorem 5.4.5)
Let (Ωn,An), n = 1, 2, . . . be sequence of measurable spaces. Set Ω(n) =

∏n
k=1 Ωk,

A(n) =
∏n

k=1 Ak, Ω(∞) =
∏∞

k=1 Ωk, A(∞) =
∏∞

k=1 Ak. Let Pn(ω1, . . . , ωn−1, An),
(ω1, . . . , ωn−1, An) ∈ Ω(n−1) × An, n = 2, 3, . . . be the transition probabilities;
P1(A), A ∈ A1 be the probability on A1. Then there exists only one probability
measure P (∞) on A(∞) such that

P (∞)(C(B(n))) = P (n)(B(n))

and

P (n)(B(n)) =

∫

Ω1

. . .

∫

Ωn

XB(n)(ω1, . . . , ωn)Pn(ω1, . . . , ωn−1, dωn) . . . P1(dω1).

Here C(B(n)) indicates the cylinder set based on B(n); B(n) ∈ A(n).

Theorem A.10 (Fubini Theorem; [2] Theorem 4.2.1)
Let (Ωi,Ai, µi), i = 1, 2 be two σ-finite measurable spaces, f be nonnegative A1 ×
A2-measurable function. Then

∫

Ω1×Ω2

f dµ1 × µ2 =

∫

Ω1

( ∫

Ω2

f(ω1, ω2) dµ2(ω2)

)
dµ1(ω1)

=

∫

Ω2

( ∫

Ω1

f(ω1, ω2) dµ1(ω1)

)
dµ2(ω2).
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Dfinition A.11 ([2] Definition 5.1.3)
Let (Ω,A, P ) be a probability space, {Bn} ⊆ A be a countable subdivision of Ω,
that is, Ω =

∑∞
n=1 Bn and Bi ∩ Bj = ∅, i 6= j. Put G = F(Bn; n = 1, 2, . . .).

Suppose Eξ exists. The following G-measurable function in the sense of equivalence
(that is, we may give an arbitrary value on null measurable set of G, such as. If
P (Bn) = 0, then E(ξ|Bn) may be given arbitrarily.)

E(ξ|G) =
∞∑

n=1

E(ξ|Bn)XBn(ω)

is called the conditional expectation of ξ given G.Appendix B. The onepts of λ-system andL-system
Here we will introduce the concepts of λ-system and L-system, the λ-π-system

method and L-system method mentioned in this paper, which are taken from [1,
Appendix].

Dfinition B.1
A system Π of subsets of a set Ω is called a π-system, if A1 ∈ Π, A2 ∈ Π =⇒
A1A2 ∈ Π.

Dfinition B.2
A system Λ of subsets of a set Ω is called a λ-system, if it has the following
properties:

(1) Ω ∈ Λ;

(2) A1 ∈ Λ, A2 ∈ Λ, A1 ∩ A2 = ∅ =⇒ A1 ∪ A2 ∈ Λ;

(3) A1 ∈ Λ, A2 ∈ Λ, A1 ⊃ A2 =⇒ A1 −A2 ∈ Λ;

(4) An ∈ Λ, An ↑ A, n = 1, 2, . . . =⇒ A ∈ Λ.

Theorem B.3
(1) If the system M of subsets of a set Ω is a π-system, and is also a λ-system,

then M is a σ-algebra.

(2) If λ-system Λ contains π-system Π, then Λ ⊇ F(Π).

When we make use of Theorem B.3, we call this method λ-π-system method.
Let L be a family of functions defined on Ω, and satisfies:
if ξ(ω) ∈ L, set

η(ω) =

{
ξ(ω) if ξ(ω) ≥ 0,

0 if ξ(ω) < 0,

then η(ω) and η(ω)− ξ(ω) lie in L.

Dfinition B.4
A set L of functions is called L-system, if it satisfies the following conditions:
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(1) 1I ∈ L, where the 1I is the function whose functional value is equal to 1;

(2) For two arbitrary functions in L, their linear combination lies in L;

(3) If ξn(ω) ∈ L, 0 ≤ ξn(ω) ↑ ξ(ω), and ξ(ω) is bounded or lies in L, then
ξ(ω) ∈ L.

Theorem B.5
If a L-system L contains the indicator function XA(ω) of every set A of π-system
Π, then L contains all F(Π)-measurable function in L.

When we make use of Theorem B.5, we call this method L-system method.Appendix C. The onepts of partial ordering
We recall the concepts of partial ordering and three important theorems from

real analysis (such as [8]).

Dfinition C.1
Let S be an arbitrary set. S is said to be a partially ordered set, if there is a binary
relation “�” called a partial ordering, defined on S with the following properties:

(1) x � x for all x ∈ S (reflexive),

(2) x � y, y � z =⇒ x � z for all x, y, z ∈ S (transitive),

(3) x � y, y � x =⇒ x = y for all x, y ∈ S (antisymmetric).

Dfinition C.2
A partially ordered set S is called a totally ordered set if it follows x � y or x � y

for any x, y ∈ S.

Dfinition C.3
Let S be a partially ordered set, x0 lies in S. x0 is said to be the maximal element
of S if it follows x = x0 for every x ∈ S with x0 � x; x0 is said to be the minimal
element of S if it follows x = x0 for every x ∈ S with x � x0.

Dfinition C.4
Let S be a partially ordered set, M be a subset of S, α lies in S. α is said to be
an upper bound of M in S if it follows x � α for all x ∈ M; α is said to be a lower
bound of M in S if it follows α � x for all x ∈ M.

Dfinition C.5
Let S be a partially ordered set, A be a subset of S. α is called a minimum element
of A if α is a lower bound of A and α lies in A; α is called a maximum element of
A if α is an upper bound of A and α lies in A.

Dfinition C.6
A partial ordering “�” on S is said to be a well ordering if for every nonempty
subset of S has the minimum element. S is called well-ordered set if there is a well
ordering defined on S.
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Theorem C.7 (Zorn Lemma)
Let S be a partially ordered set. If every totally ordered subset A of S has an upper
bound in S, then S has a maximal element.

Theorem C.8 (Well Order Theorem)
Every set can be well ordered.

Theorem C.9 (Principle of Transfinite Induction)
Let (W,�) be a well-ordered set. For any a ∈ W , let

I(a) = {x ∈ W : x ≺ a}.

If A is a subset of W such that a ∈ A whenever I(a) ⊂ A, then A = W .Referenes
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Marin KrzywkowskiA more olorful hat problem

Abstrat. The topic is the hat problem in which each of n players is randomly
fitted with a blue or red hat. Then everybody can try to guess simultaneously
his own hat color by looking at the hat colors of the other players. The team
wins if at least one player guesses his hat color correctly, and no one guesses
his hat color wrong; otherwise the team loses. The aim is to maximize the
probability of winning. We consider a generalized hat problem with q ≥ 2
colors. We solve the problem with three players and three colors. Next we
prove some upper bounds on the chance of success of any strategy for the
generalized hat problem with n players and q colors. We also consider the
numbers of strategies that suffice to be examined to solve the hat problem,
or the generalized hat problem.1. Introdution

In the hat problem, a team of n players enters a room and a blue or red hat
is randomly placed on the head of each player. Each player can see the hats of all
of the other players but not his own. No communication of any sort is allowed,
except for an initial strategy session before the game begins. Once they have had
a chance to look at the other hats, each player must simultaneously guess the color
of his own hat or pass. The team wins if at least one player guesses his hat color
correctly and no one guesses his hat color wrong; otherwise the team loses. The
aim is to maximize the probability of winning.

The hat problem with seven players, called the “seven prisoners puzzle”, was
formulated by T. Ebert in his Ph.D. Thesis [13]. The hat problem was also the
subject of articles in The New York Times [22], Die Zeit [7], and abcNews [21]. It
is also one of the Berkeley Riddles [5].

The hat problem with 2k − 1 players was solved in [15], and for 2k players
in [12]. The problem with n players was investigated in [8]. The hat problem
and Hamming codes were the subject of [9]. The generalized hat problem with n

people and q colors was investigated in [20].
There are known many variations of the hat problem. For example in the papers

[1, 11, 19] there was considered a variation in which passing is not allowed, thus

AMS (2000) Subject Classification: 91A12.
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everybody has to guess his hat color. The aim is to maximize the number of correct
guesses. The authors of [17] investigated several variations of the hat problem in
which the aim is to design a strategy guaranteeing a desired number of correct
guesses. In [18] there was considered a variation in which the probabilities of
getting hats of each colors do not have to be equal. The authors of [3] investigated
a problem similar to the hat problem, in that paper there are n players which have
random bits on foreheads, and they have to vote on the parity of the n bits.

The hat problem and its variations have many applications and connections to
different areas of science, for example: information technology [6], linear program-
ming [17], genetic programming [10], economics [1, 19], biology [18], approximating
Boolean functions [3], and autoreducibility of random sequences [4, 13–16].

In this paper we consider a generalized hat problem with q ≥ 2 colors which
was first investigated in [20]. Every player has got a hat of one from q possible
colors, and the probabilities of getting hats of all colors are equal. We solve the
problem with three players and three colors. Next we prove some upper bounds
on the chance of success of any strategy for the generalized hat problem with n

players and q colors. We also consider the numbers of strategies that suffice to be
examined to solve the hat problem, or the generalized hat problem.2. Preliminaries

First, let us observe that we can confine to deterministic strategies (that is,
strategies such that the decision of each player is determined uniquely by the hat
colors of the other players). We can do this since for any randomized (not deter-
ministic) strategy there exists a not worse deterministic one. It is true, because
every randomized strategy is a convex combination of some deterministic strate-
gies. The probability of winning is a linear function on the convex polyhedron
corresponding to the set of all randomized strategies which can be achieved com-
bining those deterministic strategies. It is well known that this function achieves
its maximum on a vertex of the polyhedron which corresponds to a deterministic
strategy.

Let {v1, v2, . . . , vn} mean a set of players. By Sc = {1, 2, . . . , q} we denote the
set of colors.

By a case for the hat problem with n players and q colors we mean a function
c: {v1, v2, . . . , vn} → {1, 2, . . . , q}, where c(vi) means the hat color of player vi.
The set of all cases for the hat problem with n players and q colors we denote by
C(n, q), of course |C(n, q)| = qn. If c ∈ C(n, q), then to simplify notation, we write
c = c(v1)c(v2) . . . c(vn) instead of c = {(v1, c(v1)), (v2, c(v2)), . . . , (vn, c(vn))}. For
example, if a case c ∈ C(4, 3) is such that c(v1) = 2, c(v2) = 3, c(v3) = 1, and
c(v4) = 2, then we write c = 2312.

By a situation of a player vi we mean a function si: {v1, v2, . . . , vn} → Sc∪{0},
where si(vj) ∈ Sc if i 6= j, while si(vi) = 0. The set of all possible situations of vi
in the hat problem with n players and q colors we denote by Sti(n, q), of course
|Sti(n, q)| = qn−1. If si ∈ Sti(n, q), then for simplicity of notation, we write si
= si(v1)si(v2) . . . si(vn) instead of si = {(v1, si(v1)), (v2, si(v2)), . . . , (vn, si(vn))}.
For example, if s2 ∈ St2(4, 3) is such that s2(v1) = 3, s2(v3) = 4, and s2(v4) = 2,
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then we write s2 = 3042.

We say that a case c corresponds to a situation si of player vi if c(vj) = si(vj),
for every j 6= i. This implies that a case corresponds to a situation of vi if every
player excluding vi in the case has a hat of the same color as in the situation. Of
course, to every situation correspond exactly q cases.

By a guessing instruction of a player vi we mean a function gi:Sti(n, q) →
Sc∪{∗}, which for a given situation gives the color vi guesses his hat is if gi(si) 6= ∗,
otherwise vi passes. Thus a guessing instruction is a rule determining the behavior
of a player in every situation.

Let c be a case, and let si be the situation (of player vi) corresponding to this
case. The guess of vi in the case c is correct (wrong, respectively) if gi(si) = c(vi)
(∗ 6= gi(si) 6= c(vi), respectively). By result of the case c we mean a win if at least
one player guesses his hat color correctly, and no player guesses his hat color wrong,
that is, gi(si) = c(vi) (for some i) and there is no j such that ∗ 6= gj(sj) 6= c(vj).
Otherwise the result of the case c is a loss.

By a strategy we mean a sequence (g1, g2, . . . , gn), where gi is the guessing
instruction of player vi. The family of all strategies for the hat problem with n

players and q colors we denote by F(n, q).
If S ∈ F(n, q), then the set of cases for which the team wins using the strategy

S we denote by W (S). Consequently, by the chance of success of the strategy S we
mean the number p(S) = |W (S)|

|C(n,q)| . We define h(n, q) = max{p(S) : S ∈ F(n, q)}.
We say that a strategy S is optimal for the hat problem with n players and q

colors if p(S) = h(n, q).
By solving the hat problem with n players and q colors we mean finding the

number h(n, q).3. Hat problem with three players and three olors
In this section we solve the hat problem with three players and three colors.
We say that a strategy is symmetric if every player makes his decision on the

basis of only numbers of hats of each color seen by him, and all players behave in
the same way. A strategy is nonsymmetric if it is not symmetric.

The authors of [18] solved the hat problem with three players and three colors
by giving a symmetric strategy found by computer, and proving that it is optimal.
We solve this problem by proving the optimality of a nonsymmetric strategy found
without using computer.

Let us consider the following strategy for the hat problem with three players
and three colors.

Strategy 1
Let S = (g1, g2, g3) ∈ F(3, 3) be the strategy as follows:

g1(s1) =

{
s1(v3), if s1(v2) 6= s1(v3),
∗, otherwise;

g2(s2) =

{
s2(v3), if s2(v1) 6= s2(v3),
∗, otherwise;
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g3(s3) =

{
s3(v1), if s3(v1) = s3(v2),
∗, otherwise.

It means that players proceed as follows.

• The player v1. If v2 and v3 have hats of different colors, then he guesses
he has a hat of the color v3 has, otherwise he passes.

• The player v2. If v1 and v3 have hats of different colors, then he guesses
he has a hat of the color v3 has, otherwise he passes.

• The player v3. If v1 and v2 have hats of the same color, then he guesses
he has a hat of the color they have, otherwise he passes.

All cases we present in table, where the symbol + means correct guess (success),
− means wrong guess (loss), and blank square means passing.

No The color of the hat of The guess of Result
v1 v2 v3 v1 v2 v3

1 1 1 1 + +
2 1 1 2 − − − −
3 1 1 3 − − − −
4 1 2 1 + +
5 1 2 2 + +
6 1 2 3 − − −
7 1 3 1 + +
8 1 3 2 − − −
9 1 3 3 + +
10 2 1 1 + +
11 2 1 2 + +
12 2 1 3 − − −
13 2 2 1 − − − −
14 2 2 2 + +
15 2 2 3 − − − −
16 2 3 1 − − −
17 2 3 2 + +
18 2 3 3 + +
19 3 1 1 + +
20 3 1 2 − − −
21 3 1 3 + +
22 3 2 1 − − −
23 3 2 2 + +
24 3 2 3 + +
25 3 3 1 − − − −
26 3 3 2 − − − −
27 3 3 3 + +
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For example, in the first case the player v1 sees two hats of the same color, so

he passes. By the same reason the player v2 also passes. The player v3 sees two
hats of the first color, so he guesses he has a hat of the first color. Since v3 has
a hat of the first color, the guess is correct, and the result of the case is a win.

In the second case the player v1 sees two hats of different colors, so he guesses
he has a hat of the color v3 has. Since v1 and v3 have hats of different colors,
the guess is wrong, and the result of the case is a loss. Additionally, the player v2
guesses his hat color wrong by the same reason as v1. Moreover, the guess of v3
is also wrong. The player v3 sees two hats of the first color, so he guesses he has
a hat of the first color. The guess is wrong, as v3 has a hat of the second color.

In the fourth case the player v1 sees two hats of different colors, so he guesses
he has a hat of the color v3 has. Since v1 and v3 have hats of the same color,
the guess is correct. The player v2 sees two hats of the same color, so he passes.
The player v3 sees two hats of different colors, so he passes. This implies that the
result of the case is a win.

In the sixth case the player v1 sees two hats of different colors, so he guesses
he has a hat of the color v3 has. Since v1 and v3 have hats of different colors,
the guess is wrong, and the result of the case is a loss. Additionally, the player v2
guesses his hat color wrong by reasons similar as v1. The player v3 passes, as he
sees two hats of different colors.

Counting the plusses in the last column, we get the following observation.

Observation 2
Using Strategy 1 the team wins for 15 of 27 cases.

Now, we solve the hat problem with three players and three colors.

Fact 3
h(3, 3) = 5

9 .

Proof. Since using Strategy 1 the team wins for 15 of 27 cases, we have h(3, 3)
≥ 15

27 = 5
9 . Suppose that h(3, 3) > 5

9 , that is, there exists a strategy such that the
team wins for more than 15 cases. Let S be any strategy for the hat problem with
three players and three colors. Any guess made by any player in any situation
is wrong in exactly two cases, because to any situation of any player correspond
three cases, and in exactly two of them this player has a hat of a color different
than the one he guesses. In the strategy S every player guesses his hat color
in at most 5 situations, because if some player guesses his hat color in at least
6 situations, then the team loses for at least 12 cases, and wins for at most 15
cases, a contradiction. Any guess made by any player in any situation is correct
in exactly one case, because to any situation of any player correspond three cases,
and in exactly one of them this player has a hat of the color he guesses. There are
three players, every one of them guesses his hat color in at most five cases, and
every guess is correct in exactly one case. Therefore using the strategy S the team
wins for at most 15 cases, a contradiction.
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Now we consider the generalized hat problem with n players and q colors.

Noga Alon [2] has proven that for this problem there exists a strategy such that
the chance of success is greater than or equal to

1− 1 + (q − 1) logn

n
−

(
1− 1

q

)n

.

First we prove an upper bound on the number of cases for which the team wins
using any strategy for the problem.

Theorem 4
If S is a strategy for the hat problem with n players and q colors, then

|W (S)| ≤ n

⌊
qn − |W (S)|

q − 1

⌋
.

Proof. Any guess made by any player in any situation is wrong in exactly q−1
cases, because to any situation of any player correspond q cases, and in exactly
q − 1 of them this player has a hat of a color different than the one he guesses.
Let us consider any player. The number of situations in which he guesses his hat
color in the strategy S cannot be neither greater than nor equal to

⌊
qn − |W (S)|

q − 1

⌋
+ 1,

otherwise the number of cases in which he guesses his hat color wrong is greater
than or equal to

(q − 1)

(⌊
qn − |W (S)|

q − 1

⌋
+ 1

)
.

It is more than

(q − 1)

(
qn − |W (S)|

q − 1

)
= qn − |W (S)|.

This implies that the team loses for more than qn − |W (S)| cases, and therefore
the number of cases for which the team wins is less than

|C(n, q)| − (qn − |W (S)|) = qn − qn + |W (S)| = |W (S)|.

This is a contradiction, as |W (S)| is the number of cases for which the team wins.
Any guess made by any player in any situation is correct in exactly one case,
because to any situation of any player correspond q cases, and in exactly one of
them this player has a hat of the color he guesses. This implies that the number
of cases for which the team wins using the strategy S is at most

n

⌊
qn − |W (S)|

q − 1

⌋
.
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Now we give an equivalent upper bound on the chance of success of any strategy

for the hat problem with n players and q colors, which is easy to prove.

Theorem 5
Let S be any strategy for the hat problem with n players and q colors. Then

p(S) ≤ n

qn

⌊
qn − qn · p(S)

q − 1

⌋
.

Now we see that Fact 3 follows from Theorem 4, as well as from Theorem 5.
We show that it follows from Theorem 4.

Proof of Fact 3. Since using Strategy 1 the team wins for 15 of 27 cases, by
definition we get h(3, 3) ≥ p(S) = 15

27 = 5
9 . Now we prove that h(3, 3) ≤ 5

9 . Let
S be an optimal strategy for the hat problem with three players and three colors.
By Theorem 4 we have

|W (S)| ≤ 3

⌊
27− |W (S)|

2

⌋
.

This implies that

|W (S)| ≤ 3 · 27− |W (S)|
2

= 40.5− 3|W (S)|
2

.

Now we easily get |W (S)| ≤ 81
5 = 16.2. Since |W (S)| is an integer, we have

|W (S)| ≤ 16. If |W (S)| = 16, then 16 ≤ 3⌊ 27−16
2 ⌋ = 3 · 5 = 15, a contradiction.

This implies that |W (S)| ≤ 15. Since |C(3, 3)| = 27, we get p(S) ≤ 15
27 = 5

9 . Since
S is an optimal strategy for the hat problem with three players and three colors,
by definition we get h(3, 3) = p(S) ≤ 5

9 .

The next result proven in [20, Proposition 3] is a corollary from Theorem 4
or 5.

Corollary 6 ([20, Proposition 3])
If S is a strategy for the hat problem with n players and q colors, then

p(S) ≤ n

n+ q − 1
.

Proof. By Theorem 4 we have

|W (S)| ≤ n

⌊
qn − |W (S)|

q − 1

⌋
.

This implies that

|W (S)| ≤ n · q
n − |W (S)|

q − 1
=

nqn

q − 1
− |W (S)|

( n

q − 1

)
.
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Consequently,

|W (S)|
(
1 +

n

q − 1

)
≤ nqn

q − 1
⇐⇒ |W (S)| ≤ q − 1

n+ q − 1
· nqn

q − 1

⇐⇒ p(S) =
|W (S)|

qn
≤ n

n+ q − 1
.

Now we show that the previous corollary is weaker than Theorem 4, that is,
Theorem 4 does not follow from Corollary 6. Let S be any strategy for the hat
problem with three players and three colors. By Theorem 4 we have |W (S)| ≤ 15
(it is shown in the proof of Fact 3 using Theorem 4). Thus

p(S) =
|W (S)|
|C(3, 3)| ≤

15

33
=

5

9
.

By Corollary 6 we get

p(S) ≤ n

n+ q − 1
=

3

5
.

Since 3
5 > 5

9 , Corollary 6 is weaker than Theorem 4.
Now let us consider the hat problem with two colors (q = 2), and any strategy

S for this problem. By Corollary 6 we get the upper bound

p(S) ≤ n

n+ 1

previously given in [15], which is sharp for n = 2k−1, where k is a positive integer.5. Number of strategies that suffie to be examined
In this section we consider the number of strategies the examination of which

suffices to solve the hat problem, and the generalized hat problem with q colors.
First, we count all possible strategies for the hat problem. We have n players,

there are 2n−1 possible situations of each one of them, and in each situation there
are three possibilities of behavior (to guess the first color, to guess the second
color, or to pass). This implies that the number of possible strategies is equal to

(
32

n−1)n
.

Now we prove that it is not necessary to examine every strategy to solve the
problem.

Fact 7
To solve the hat problem with n players, it suffices to examine

(
32

n−1−2
)n

=
(
32

n−1)n · 1

9n

strategies.
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Proof. Let S be an optimal strategy for the hat problem with n players. If

in this strategy no player guesses his hat color, then obviously p(S) = 0. This is
a contradiction to the optimality of S. Thus in the strategy S some player guesses
his hat color. Without loss of generality we assume that this player is v1, and
he guesses his hat color in the situation 011 . . .1. Additionally, without loss of
generality we assume that in this situation he guesses he has a hat of the second
color. This guess is wrong in the case 11 . . . 1, causing the loss of the team. Thus
the result of this case cannot be made worse. If some player other than v1, say
vi, guesses he has the second color when he sees only hats of the first color, then
his guess is wrong in the case 11 . . .1, and is correct in the case when vi has the
second color and all the remaining vertices have the first color. Since it cannot
make worse the chance of success, we may assume that every player excluding vi
guesses he has a hat of the second color when he sees hats only of the first color.
Assume that some player, say vi, guesses his hat color when he sees one hat of the
second color and n − 2 hats of the first color. If in this situation he guesses he
has a hat of the first color, then in the case corresponding to that situation, and
in which he has a hat of the first color, his guess is correct, as well as the guess of
the player who has a hat of the second color. Since it cannot improve the chance
of success, we may assume that in this situation vi does not guess he has a hat
of the first color. If in that situation he guesses he has a hat of the second color,
then in the case corresponding to that situation, and in which he has a hat of the
first color, his guess is wrong, while at the same time the guess of the player who
has a hat of the second color is correct. Since it makes the guess of this player
pointless, we may assume that in that situation vi does not guess he has a hat of
the second color. This implies that we may assume that every player who sees one
hat of the second color and n− 2 hats of the first color, passes. Now we conclude
that for each player we can assume his behavior in two situations. This implies
that for each player there are two situations less to consider. In this way we get
the desired number.

Now, we count all possible strategies for the generalized hat problem with q

colors. We have n players, there are qn−1 possible situations of each one of them,
and in each situation there are q+1 possibilities of behavior (to guess one of the q

colors, or to pass). This implies that the number of possible strategies is equal to

(
(q + 1)q

n−1)n
.

Now we prove that it is not necessary to examine every strategy to solve the
problem.

Fact 8
To solve the hat problem with n players and q colors, it suffices to examine

(
(q + 1)q

n−1−1
)n

=
(
(q + 1)q

n−1)n · 1

(q + 1)n

strategies.
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Proof. Let S be an optimal strategy for the hat problem with n players and q

colors. If in this strategy no player guesses his hat color, then obviously p(S) = 0.
This is a contradiction to the optimality of S. Thus in the strategy S some player
guesses his hat color. Without loss of generality we assume that this player is v1,
and he guesses his hat color in the situation 011 . . .1. Additionally, without loss of
generality we assume that in this situation he guesses he has a hat of the second
color. Let vi be any player other than v1. If in this situation vi guesses he has a hat
of the first color, then in the case corresponding to that situation, and in which
he has a hat of the first color, his guess is correct, as well as the guess of v1. Since
it cannot improve the chance of success, we may assume that in this situation vi
does not guess he has a hat of the first color. If in that situation vi guesses he
has a hat of any color other than the first, then in the case corresponding to that
situation, and in which he has a hat of the first color, his guess is wrong, while at
the same time the guess of v1 is correct. Since it makes the guess of v1 pointless,
we may assume that in that situation vi does not guess any color other that the
first. This implies that we may assume that every player other than v1 in the
situation in which v1 has a hat of the second color, and all the remaining players
have hats of the first color, passes. Now we conclude that for each player we can
assume his behavior in one situation. This implies that for each player there is
one situation less to consider. In this way we get the desired number.Referenes
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Sebastian LindnerThe regular density on the plane

Abstrat. In the note [1] the notion of the regular density point of the measu-
rable subset of the real line was introduced. Then it was shown that the new
definition is equivalent to the definition of O’Malley points, which has been
examined in [2]. In this note we demonstrate that the analogous definitions
for measurable subsets of the plane are not equivalent.1. Notation

In the sequel we use the following symbols:
χA – the characteristic function of the set A,
µ(A) – the two dimensional Lebesgue measure of the set A,
µ1(B) – the linear Lebesgue measure of the set B ⊂ R,∨b

a f – the total variation of the function f on [a, b],
D(A,B) = µ(A ∩B)/µ(B) – the average density of A on the set B,
Ax0 = {y : (x0, y) ∈ A} – the vertical cut of the set A,
A− (x, y) = {(p− x, q − y) : (p, q) ∈ A} – the translation of the set A,
λA = {(λp, λq) : (p, q) ∈ A} – the homothety of the set A.2. Introdution

In the paper [2] W. Poreda and W. Wilczyński considered the operator ΦOM

defined on the class S of Lebesgue measurable subsets of the real line. The defini-
tion of ΦOM was suggested by R. O’Malley in oral communication:

Definition 1
Let A be a measurable subset of R, x ∈ R. We say that x is an O’Malley point of
A iff

1∫

0

χA′(x+ t) + χA′(x − t)

t
dt < ∞.

AMS (2000) Subject Classification: 26A45.
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The set of all O’Malley points of A we denote by ΦOM (A). In [2] the authors
established, between others that

• every O’Malley point of A is the density point of A,

• the operator ΦOM has the properties similar to the properties of the density
operator Φ, however the analogue of the Lebesgue Theorem does not hold,

• the family T0 = {A ∈ S : A ⊂ ΦOM (A)} forms the topology stronger than
the natural topology but coarser than the density topology on the real line,

• the analogue of the Lusin–Menchoff Theorem for ΦOM holds.

In the note [1] the notion of the regular density was introduced:

Definition 2
Let A ∈ S and x ∈ R. Put fx(h) = µ1(A∩[x−h,x+h])

2h for h > 0 and fx(0) = 1.
We say that x is the regular density point of the set A if and only if the following
conditions are satisfied:

1. x0 ∈ Φ(A),

2.
∨1

0 fx < +∞.

The main result of the paper [1] states, that the notions of the regular density
point and the O’Malley point are equivalent.

In this note we are going to demonstrate, that the situation on the plane is not
analogous. In order to do this we are going to redefine the notions of the regular
density point and the O’Malley point for the planar sets.3. The two dimensional ase
Definition 3
Let A ⊂ R

2 be a measurable set. Let us define the function f : [0, 1] → R as follows

f(x) =

{
D(A, [−x, x]2) for x > 0,
1 for x = 0.

We say, that (0, 0) is the point of the ordinary regular density of A ((0, 0) ∈ ΦR(A))
if

1. the function f is continuous at the point 0,

2.
∨1

0 f < +∞.

We say that (x, y) ∈ ΦR(A) iff (0, 0) ∈ ΦR(A− (x, y)).

The first condition means that (0, 0) is the ordinary density point of A. Let us
examine the second condition:

Proposition 1
For each positive ε the function f restricted to the interval [ε, 1] satisfies the Lip-
schitz condition, so it is absolutely continuous.



The regular density on the plane [81℄
Proof. For x, x + h ∈ [ε, 1], h > 0 we have

f(x+ h)− f(x) =
µ(A ∩ [−x− h, x+ h]2)

4(x+ h)2
− µ(A ∩ [−x, x]2)

4x2

≤ µ(A ∩ [−x, x]2) + 4h(2x+ 2h)

4x2
− µ(A ∩ [−x, x]2)

4x2

=
4h(2x+ 2h)

4x2
≤ 2

h

x2

≤ 2h

ε2
.

At the same time

f(x+ h)− f(x) =
µ(A ∩ [−x− h, x+ h]2)

4(x+ h)2
− µ(A ∩ [−x, x]2)

4x2

≥ µ(A ∩ [−x, x]2)

4(x+ h)2
− µ(A ∩ [−x, x]2)

4x2

=
x2 − (x+ h)2

(x+ h)2
= h

−2x− h

(x+ h)2

≥ −2h

ε2
.

Corollary 1
As f is absolutely continuous on [ε, 1] and f([0, 1]) ⊂ [0, 1], we have

1∨

ε

f =

1∫

ε

|f ′(x)| dx

and, consequently

1∨

0

f ≤
1∫

0

|f ′(x)| dx + 1.

In order to simplify calculations divide the square [−x, x]2 into four triangles:
T1(x) having the vertices (0, 0), (x, x) and (x,−x); T2(x) having the vertices (0, 0),
(−x, x) and (x, x); T3(x) having the vertices (0, 0), (−x,−x) and (−x, x) and T4(x)
having the vertices (0, 0), (x,−x) and (−x,−x). It is easy to observe, that for
x ∈ (0, 1], f(x) is the arithmetic average of the average densities of A on the
corresponding triangles.

Let us consider the triangle T1(x). Let

g1(x) =

{
D(A, T1(x)) for x > 0,
1 for x = 0.

Our objective is to estimate from above the number
∫ 1

0 |g′1(x)| dx.
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Proposition 2
Let x, x + h ∈ (0, 1], h > 0. Let P (x, h) = T1(x + h) \ T1(x). Then

lim
h→0+

µ(A ∩ P (x, h))

h
= µ1(A(x) ∩ [−x, x])

for µ1–a.e. x ∈ (0, 1).

Proof. Let s(x) = µ1(A(x) ∩ [−x, x]) = µ1((A ∩ T1(1))(x)). From the Fubini
Theorem the function s is measurable. As the set A ∩ T1(1) is bounded, the
function s is also summable. Let

S(x) =

x∫

0

s(t) dt.

From the Lebesgue Differentiation Theorem S′(x) = s(x) for µ1–a.e. x ∈ (0, 1).
But

S′(x) = lim
h→0+

S(x+ h)− S(x)

h
= lim

h→0+

µ(A ∩ P (x, h))

h
.

Now we are ready to give a more convenient formula for the function g′1:

Proposition 3
The following formula holds for µ1–almost every x ∈ [0, 1]:

g′1(x) =
2

x

(
µ1(A(x) ∩ [−x, x])

2x
− g1(x)

)
.

Proof. Let the point x ∈ (0, 1] fulfill the thesis of the previous proposition.
Then
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g′1(x) = lim

h→0+

g(x+ h)− g(x)

h
= lim

h→0+

1

h

(
µ(A ∩ T1(x+ h))

(x+ h)2
− µ(A ∩ T1(x))

x2

)

= lim
h→0+

1

h

1

x2

(
µ(A ∩ T1(x+ h))

(
1− h

(x+ h)

)2

− µ(A ∩ T1(x))

)

= lim
h→0+

1

h

1

x2

(
µ(A ∩ P (x, h)) −

(
2h

(x+ h)
+

h2

(x + h)2

)
µ(A ∩ T1(x+ h))

)
.

By virtue of the previous proposition, and the fact that µ(A∩ T1(x+ h)) tends to
µ(A ∩ T1(x)), when h tends to 0 we have that

g′1(x) =
1

x

(
µ1(A(x) ∩ [−x, x])

x
− 2g1(x)

)
=

2

x

(
µ1(A(x) ∩ [−x, x])

2x
− g1(x)

)
.

Using the last proposition we are able to estimate the number
∫ 1

0 |g′1(x)| dx:

1∫

0

|g′1(x)| dx

=

1∫

0

∣∣∣∣
2

x

(
µ1(A(x) ∩ [−x, x])

2x
− g1(x)

)∣∣∣∣ dx =

1∫

0

∣∣∣∣
2

x

( x∫

−x

χA(x, t)

2x
dt− g1(x)

)∣∣∣∣ dx

=

∫ 1

0

∣∣∣∣
2

x

( x∫

−x

χA(x, t)− g1(x)

2x
dt

)∣∣∣∣ dx =

1∫

0

∣∣∣∣
( x∫

−x

χA(x, t)− g1(x)

x2
dt

)∣∣∣∣ dx

≤
1∫

0

x∫

−x

∣∣∣∣
χA(x, t)− g1(x)

x2

∣∣∣∣ dt dx =

∫

T1(1)

∣∣∣∣
χA(x, t)− g1(x)

x2

∣∣∣∣ dµ

=

∫

T1(1)∩A

1− g1(x)

x2
dµ+

∫

T1(1)∩A′

g1(x)

x2
dµ.

Let us denote the last two integrals by C and D, respectively.

Proposition 4

C < +∞ ⇐⇒ D < +∞.

In fact

1 ≥ g(1) =

1∫

0

g′1(x) dx =

1∫

0

x∫

−x

χA(x, t)− g1(x)

x2
dt dx = C −D.

Definition 4
Let A ⊂ R

2 be a measurable set. Let ‖(x, y)‖ = max(|x|, |y|). We say that (0, 0)
is an O’Malley point of the set A ((0, 0) ∈ ΦOM (A)) iff

∫

[−1,1]2∩A′

‖(x, y)‖−2 dµ < +∞.
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We say that (x, y) ∈ ΦOM (A) iff (0, 0) ∈ ΦOM (A− (x, y)).

Theorem 1
Let A ⊂ R

2 be a measurable set. Then

ΦOM (A) ⊂ ΦR(A).

Proof. Assume that (0, 0) ∈ ΦOM (A). At first we are going to show, that (0, 0)
is the ordinary density point of A. Suppose conversely that there exist the sequence
(hn) of positive numbers, tending to 0, and ε > 0 such that D(A, [−hn, hn]

2) <

1 − ε for n = 1, 2, . . . . We can assume that (hn+1

hn
)2 < ε

2 and h0 = 1. Let
Zn = [−hn, hn]

2 \ [−hn+1, hn+1]
2. Then

∫

[−1,1]2∩A′

‖(x, y)‖−2 dµ =

∞∑

n=0

∫

Zn∩A′

‖(x, y)‖−2 dµ.

But ∫

Zn∩A′

‖(x, y)‖−2 dµ > h−2
n

∫

Zn∩A′

dµ ≥ h−2
n · h2

n

ε

2
=

ε

2
.

Hence ∫

[−1,1]2∩A′

‖(x, y)‖−2 dµ = +∞,

the contradiction.

From the assumption that
∫
[−1,1]2∩A′ ‖(x, y)‖−2 dµ < +∞ it follows that∫

T1(1)∩A′ ‖(x, y)‖−2 dµ < +∞. But for (x, y) ∈ T1(1) we have ‖(x, y)‖ = x. Hence

D =

∫

T1(1)∩A′

g1(x)

x2
dµ ≤

∫

T1(1)∩A′

1

x2
dµ < +∞.

Then, by virtue of Proposition 4, C < +∞, and consequently

1∫

0

|g′1(x)| dx < +∞.

The same holds for the functions gi corresponding with triangles Ti, i = 2, 3, 4.
From

f(x) =
1

4
(g1(x) + g2(x) + g3(x) + g4(x))

it follows that

1∨

0

f ≤
1∫

0

|f ′(x)| dx + 1 ≤
1∫

0

1

4
(|g′1(x)| + |g′2(x)|+ |g′3(x)| + |g′4(x)|) dx + 1 < +∞.
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Remark 1
In the one dimensional case the theorem analogous to the Theorem 1 gives the
necessary and sufficient condition for x to be the point of regular density. The
following example shows that in two dimensions the opposite implication does not
hold.

Example 1
In the following example we construct two planar sets, A and B such that

1. A ⊂ B,

2. (0, 0) is the regular density point of A,

3. (0, 0) is not the regular density of B.

Let

xn =
1

2n
, yn =

1

(n+ 1)2n
for n = 0, 1, 2 . . . .

Let h: [0, 1] → [0, 1] be a function such that

a. h(0) = 0,

b. h(xn) = yn for n = 0, 1, 2, . . . ,

c. h is linear on each interval [xn+1, xn].

It is easy to observe, that the function h is convex and continuous on the interval
[0, 1]. Let

A = [−1, 1]2 \ {(x, y) : x ∈ (0, 1) ∧ y ∈ (0, h(x))}
and

Pn =
{
(x, y) : x ∈

[ 1

22n+1
,

1

22n

]}
.

Finally, let B = A ∪⋃∞
n=0 Pn.



[86℄ Sebastian Lindner
Since the function h is convex, for every t ∈ (0, 1) the set {(x, y) : x ∈

(0, t) ∧ y ∈ (0, h(x))} is included in the triangle Zt with vertices (0, 0), (t, 0) and
(t, h(t)). Hence

fA(t) = D(A, [−t, t]2) ≥ 1

4t2
(4t2 − µ(Zt)) −→ 1

when t tends to 0.
We shall show that the function fA is decreasing on the interval (0, 1). Let

t ∈ (0, 1) and λ ∈ (0, 1). We have

fA(λt) = D(A, [−λt, λt]2) = D
( 1

λ
A, [−t, t]2

)

and
1

λ
A =

[
− 1

λ
,
1

λ

]
\
{
(x, y) : x ∈ (0, 1) ∧ y ∈

(
0,

1

λ
h(λx)

)}
.

Since h is convex and h(0) = 0 we have that 1
λ
h(λx) < h(x). Hence 1

λ
A∩ [−t, t]2 ⊃

A ∩ [−t, t]2 and at last fA(λt) ≥ fA(t).
By virtue of the last observation and Proposition 1 we have that the function

fA is of bounded variation on [0, 1]. Hence (0, 0) is the regular density point of A.
Now we shall show that (0, 0) is NOT the regular density point of B. First

we estimate from below the value of the function fB in point 2−2n. In order to
do this we estimate the measure of the complement of B laying on the left of the
point 2−(2n+1) by the area of the triangle △OPQ. (see the picture)

fB(2
−2n) >

(2 · 2−2n)2 − 1
8 · (2−2n)2 · 1

2n+1

(2 · 2−2n)2
= 1− 1

32 · (2n+ 1)
.

Now we shall estimate from above the value of the function fB in the point
2−(2n+1). In order to do this we estimate the measure of the complement of B
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lying on the left of the point 2−(2n+1) by the area of the trapezoid △∇△KLMN .
(again see the picture)

fB(2
−(2n+1)) <

(2 · 2−(2n+1))2 − µ(△∇△KLMN)

(2 · 2−(2n+1))2
=

(2 · 2−(2n+1))2 − 3µ(△OKN)

(2 · 2−(2n+1))2

=
(2 · 2−(2n+1))2 − 3

2 · (2−(2n+2))2 · 1
2n+3

(2 · 2−(2n+1))2
= 1− 3

32 · (2n+ 3)
.

Hence

fB(2
−(2n+2))− fB(2

−(2n+1)) >
1

16 · (2n+ 3)
.

Since the last expression is a term of the divergent series, the total variation of
the function fB is unbounded.

Directly from the definition of an O’Malley point of the set A it follows that
ΦOM (A) ⊂ ΦOM (B) when A ⊂ B. Hence, by virtue of Theorem 1, (0, 0) is not an
O’Malley point of A.Referenes
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Sándor KovásÜber Extrema mit NebenbedingungenZusammenfassung. Zweck der vorliegenden Arbeit is es, eine gut handhabbare

Methode zu zeigen, womit man die hinreichende Bedingung für die Existenz
eines Extremums unter Nebenbedingungen behandeln kann. Das Resultat
ist eigentlich nicht unbekannt, Einzelteile sind in mehreren Arbeiten wie
etwa in [5], [10] oder in [16] enthalten. Es hat aber nicht Eingang in die
neuere Lehrbuchliteratur gefunden (vgl. z. B. [1], [11] oder [13]) und ist
nicht allgemein bekannt. Die Frage ist von einigem Interesse, da zum Beispiel
zahlreiche Probleme in der angewandten Mathematik Extremwertaufgaben
unter Nebenbedingungen sind.1. Einleitung

In vielen Analysisbüchern und auch in vielen Analysisvorlesungen ist die Be-
handlung der hinreichenden Bedingung zweiter Ordnung für lokale Extrema un-
ter Nebenbedingungen bezüglich Funktionen von mehreren Veränderlichen einfach
vernachlässigt. An manchen Stellen dieser Werke gibt es vorsichtige Andeutungen
darauf, daß zusätzliche Überlegungen notwendig sind, um zu entscheiden, ob ein
und welche Art von Extremum vorliegt. In einigen Büchern wird die Überlegung
über diese hinreichenden Bedingungen mit einer Aussage kurz abgeschlossen, nach
der es hierfür kein einfaches allgemein andwendbares Verfahren gebe. In der Tat
werden des öfteren andere Methoden als die hinreichende Bedingung zweiter Ord-
nung zur Rechtfertigung der Existenz eines Extremums herangezogen, wie etwa
Kompaktheitsschluß oder die Tatsache, nach der es bei zahlreichen Abstandsauf-
gaben anschaulich klar ist, daß es eine Lösung gibt, und diese anschauliche Evidenz
wird z. B. durch Ausnutzung der endlichdimensionaler Eigenschaft der gegebener
Aufgabe untermauert. Es kommt aber oft vor, daß die Anzahl der Kandidaten für
Extrema mehr als zwei ist und nicht nach globalen, sondern nach lokalen Extrema
gesucht werden soll. In diesen Fällen ist das Kompaktheitsargument nicht immer
ausreichend, da in diesen Stellen die zu optimierende Funktion recht verschiede-
ne Werte annehmen kann. Unter anderem aus diesem Grunde heraus scheint die
Kenntnis der hinreichenden Bedingung zweiter Ordnung vonnöten zu sein.

Diese Arbeit soll eine einfache und in vielen Aufgaben gut handhabbare Metho-
de zur Anwendung der hinreichenden Bedingung zweiter Ordnung bekanntgeben,

AMS (2000) Subject Classification: 00A35 (97D40).
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wobei vollständigkeitshalber und im Interesse der einheitlichen Behandlung auch
die notwendige Bedingung (erster Ordnung) präsentiert wird. Um die Natur der
Fragestellung zu verdeutlichen, werden mehrere nützliche Aufgaben gestellt und
gelöst. Das Gemeinsame dieser Aufgaben ist das Auffinden einer Stelle, wo eine
Funktion beschränkt auf eine Teilmenge ihres Definitionsbereiches ein (lokales)
Minimum oder Maximum annimt. Dies wird präzisiert in der

Definition 1.1
Es sei Ω eine nichtleere offene Teilmenge des Rn und vorgelegt seien die Funktionen
f : Ω → R (genannt auch Zielfunktion) und g : Ω → R

m, 1 ≤ m, n ∈ N. Wir sagen,
f besitze in c ∈ Ω ein lokales Extremum unter der Nebenbedingung g = 0, wenn
c zur Nebenbedingungsmenge

{g = 0} := {r ∈ Ω : g(r) = 0} 6= ∅

gehört und eine Umgebung U von c vorhanden ist, so daß

f(r) ≤ f(c) bzw. f(r) ≥ f(c), r ∈ U ∩ {g = 0}
gilt.2. Eine notwendige Bedingung

Die vektorielle Nebenbedingung g = 0 zerfällt im Falle von m < n nach Zerle-
gung in Komponenten in m skalare Nebenbedingungen

g1(x1, . . . , xn−m, xn−m+1, . . . , xn) = 0,
...

gm(x1, . . . , xn−m, xn−m+1, . . . , xn) = 0.

Manchmal kann dieses System von m Gleichungen explizit nach m Veränderlichen,
etwa nach xn−m+1, . . . , xn aufgelöst werden, so daß

xn−m+1 = ϕ1(x1, . . . , xn−m), . . . , xn = ϕm(x1, . . . , xn−m)

mit bekannten Funktionen ϕ1, . . . , ϕm ist. In diesem Falle läuft die Aufgabe darauf
hinaus, die „freien“lokalen Extrema der Funktion

Φ(x1, . . . , xn−m)

:= f(x1, . . . , xn−m, ϕ1(x1, . . . , xn−m), . . . , ϕm(x1, . . . , xn−m))

((x1, . . . , xn−m) ∈ R
n−m : (x1, . . . , xn−m, xn−m+1, . . . , xn) ∈ Ω)

zu bestimmen. Dies wird benutzt bei der Lösung der

Aufgabe 2.1
Für eine Bewässerungsanlage soll ein Kanal mit gleichschenklig trapezförmigem
Querschnitt aus drei gleich großen Betonfertigplatten der Breite b gebaut werden.
Man bestimme die Anordnung der Platten, so daß möglichst viel Wasser transpor-
tiert werden kann!
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Durch den Kanal kann möglichst viel Wasser fließen, wenn die Querschnitts-

fläche Q maximal wird. Je nachdem, in welchem Winkel α die Wände zur Hori-
zontalen geneigt sind, ändern sich die Trapezhöhe h, die obere Breite β und mit
ihnen die Querschnittsfläche Q. Für Q gilt nach der Flächenformel für ein Trapez

Q =
β + b

2
· h mit h = b · sin(α), β − b

2
= b · cos(α).

Die Zielfunktion und die Nebenbedingungsmenge sind also

f(r) :=
β + b

2
· b · sin(α), {g = 0} mit g(r) :=

β − b

2
− b · cos(α)

(r = (α, β) ∈ R
2 : 0 < α < π, 0 < β < 3b).

Aus der Nebenbedingung errechnet man dann β = ϕ(α) := b · (1 + 2 cos(α)). So
sind die lokalen Extrema der Funktion

Φ(α) := f(α, ϕ(α)) = b2 · (1 + cos(α)) · sin(α), α ∈ (0, π)

aufzufinden. Wegen

Φ′(α) = b2 · (cos2(α) − sin2(α) + cos(α)) = b2 · (2 cos2(α) + cos(α)− 1),

und

Φ′′(α) = −b2 · sin(α) · (1 + 4 cos(α)),

sowie

Φ′
(π
3

)
= 0 bzw. Φ′′

(π
3

)
= −3

√
3 · b2
2

< 0

haben wir es mit einem Maximum zu tun. Der Kanal hat also den größten Durch-
fluß, wenn die Wände um 60◦ zur Horizontalen geneigt sind.

Im Falle n = 2, m = 1 könnte so eine Aufgabe zum Beispiel auch durch die
Erfüllung der Nebenbedingung g(x1, x2) = 0 durch eine Parameterdarstellung

x1 = ϕ1(t), x2 = ϕ2(t), t ∈ I mit ϕ1, ϕ2 ∈ D(I)

auf einem Intervall I ⊂ R gelöst und die Extremalstellen der Funktion F mit

F (t) := f(ϕ1(t), ϕ2(t)), t ∈ I

mit den üblichen Methoden bestimmt werden, vorausgesetzt f ist differenzierbar.
Dieser Trick wird ausgenutzt bei der Lösung der

Aufgabe 2.2
Es sollen diejenigen Punkte einer durch die Gleichung

x2

a2
+

y2

b2
= 1 (0 < a < b)

gegebenen Ellipse bestimmt werden, die von ihrem Mittelpunkt (0, 0) maximalen
bzw. minimalen Abstand haben.
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Die Parametrisierung

x = ϕ1(t) := a cos(t), y = ϕ2(t) := b sin(t), t ∈ [0, 2π]

der Ellipse führt zu der Funktion

F (t) := a2 cos2(t) + b2 sin2(t), t ∈ [0, 2π]

(statt des Abstandes wird – zur formalen Vereinfachung – das Quadrat des Ab-
standes verwendet: f(x, y) := x2 + y2, (x, y) ∈ R

2; dabei werden dieselben Extre-
malstellen erhalten). Wegen

F ′(t) = (b2 − a2) sin(2t), t ∈ [0, 2π]

und F ′(s) = 0, s ∈ {0, π2 , π, 3π
2 , 2π} sowie

F (0) = F (π) = a2 < b2 = F
(π
2

)
= F

(3π
2

)

sind die gefundenen Punkte die Scheitelpunkte der Ellipse.
In der Praxis sind diese Methoden nur selten anwendbar: die explizite Auf-

lösung ist in den meisten Fällen nicht möglich und auch die Bestimmung einer
Parameterdarstellung ist oft ziemlich mühsam. Man denke nur an die Variante der
Aufgabe 2.2, wo die gegebene Ellipse die Gleichung

ax2 + 2bxy + cy2 = 1 (a > 0, ac− b2 > 0)

hat. Wie die Auflösung nach Variablen oder die Parameterbestimmung umge-
gangen werden kann, wird z. B. aus der folgenden Überlegung ersichtlich. Ist
nämlich bei der Parameterbestimmung τ ∈ I derjenige Parameterwert, wofür
(ϕ1(τ), ϕ2(τ)) = c gilt, so genügt er der Gleichung

0 = F ′(t) = ∂1f(ϕ1(t), ϕ2(t)) · ϕ′
1(t) + ∂2f(ϕ1(t), ϕ2(t)) · ϕ′

2(t), t ∈ I.

Wegen g(ϕ1(t), ϕ2(t)) = 0, t ∈ I gilt weiter

∂1g(ϕ1(t), ϕ2(t)) · ϕ′
1(t) + ∂2g(ϕ1(t), ϕ2(t)) · ϕ′

2(t) = 0, t ∈ I.

Für t = τ sind also die Vektoren f ′(c) und g′(c) linear abhängig, d. h. es gibt
λ ∈ R derart, daß

∂1f(c) + λ∂1g(c) = 0, ∂2f(c) + λ∂2g(c) = 0 und g(c) = 0

gelten.
Das hier skizzierte Verfahren wird für höhere Dimensionen im nächsten Satz

formuliert.

Satz 2.3
Die folgenden drei Bedingungen seien erfüllt.

1. f sei differenzierbar, g sei stetig differenzierbar.
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2. f habe in c ∈ Ω ein lokales Extremum unter der Nebenbedingung g = 0.

3. Es gebe in g
′(c) eine m-reihige Unterdeterminante, die nicht verschwindet,

d. h. der Rang von g
′(c) sei m (Rang- bzw. Regularitätsbedingung).

Dann gibt es einen Vektor λ ∈ R
m (Lagrange-Multiplikator), so daß mit L :=

f + 〈λ,g〉 (Lagrange-Funktion) gilt: L′(c)= 0, d. h.

∂kf(c) +

m∑

l=1

λl∂kgl(c) = 0, 1 ≤ k ≤ n.

Beweis. (vgl. [14]) Aus der Rangbedingung folgt, daß zwischen m und n die
Relation m ≤ n bestehen muß. Im Falle von m = n folgt aus dem Satz über
inverse Funktionen, daß der Punkt c eine Umgebung hat, die gemeinsam mit der
Nebenbedingungsmenge nur den Punkt c innehat. In diesem – hinsichtlich des
Extremums – uninteressanten Fall, ist die Existenz eines λ ∈ R

m wegen der dritten
Bedingung offensichtlich. Des weiteren sei o. B. d. A. angenommen, daß m < n

gilt und die Matrix, die aus den letzten m Spalten von g
′(c) gebildet wird, eine

von Null verschiedene Determinante hat. (Notfalls benennt man die Variablen
entsprechend um.) g

′(c) läßt sich also in der Form g
′(c) = [G1, G2] schreiben,

wobei G1 ∈ R
m×(n−m), G2 ∈ R

m×m mit

G1 := ∂1g(c) := [∂jgi(c)]
m,n−m
i,j=1,1 , G2 := ∂2g(c) := [∂jgi(c)]

m,n
i,j=1,n−m+1

und det(∂2g(c)) 6= 0. Nach dem Satz von der impliziten Funktion (angewandt
auf g) gibt es dann eine Umgebung U von a := (c1, . . . , cn−m) ∈ R

n−m und eine
Umgebung V von b := (cn−m+1, . . . , cn) ∈ R

m mit U × V ⊂ Ω und eine stetig
differenzierbare Funktion ϕ : U → V mit

{g = 0} ∩ (U × V ) = {(r,ϕ(r)) : r ∈ U},
d. h.

g(r,ϕ(r)) = 0, r ∈ U

bzw.

ϕ
′(r)) = −[∂2g(r,ϕ(r)]−1 · ∂1g(r,ϕ(r)), r ∈ U.

Da die Beschränkung von f auf {g = 0}∩(U×V ) im Punkte c = (a,b) (b = ϕ(a))
ein lokales Extremum besitzt, hat auch die Funktion

Φ(r) := f(r,ϕ(r)), r ∈ U

ein (freies) lokales Extremum in c. Nach der notwendigen Bedingung für lokale
Extrema gilt also

0 = Φ′(c) = ∂1f(a,b) + ∂2f(a,b) ·ϕ′(a),

woraus mit

λ := −∂2f(a,b) · [∂2g(a,b)]−1
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die Gleichheit

0 = ∂1f(a,b)− ∂2f(a,b) · [∂2g(a,b)]−1 · ∂1g(a,b) = ∂1f(a,b) + λ∂1g(a,b),

sowie (aus der Definition für λ)

∂2f(a,b) + λ∂2g(a,b) = 0

folgt.

Um die kritische Stelle c zu bestimmen, muß also das System der (m + n)
Gleichungen

∂kf(r) +
m∑

l=1

λl∂kgl(r) = 0, 1 ≤ k ≤ n,

gl(r) = 0, 1 ≤ l ≤ m

(1)

für r und λ gelöst werden. Als Beispiel betrachten wir zwei Aufgaben.

Aufgabe 2.4
Es sei A ∈ R

n×n eine symmetrische Matrix. Gesucht sind die Extrema der Funktion

f(r) := 〈Ar, r〉 =
n∑

i,j=1

aijxixj (r = (x1, . . . , xn) ∈ R
n : ‖r‖2 = 1).

Da g die Form

g(r) :=

n∑

i=1

x2
i − 1, r = (x1, . . . , xn) ∈ R

n

hat, ist die Rangbedingung 2c 6= 0, d. h. c 6= 0 erfüllt, denn 0 /∈ {g = 0}. Anhand
(1) erhalten wir also das folgende Gleichungssystem:

n∑

j=1

akjxj +

n∑

i=1

akixi + 2λxk = 0, 1 ≤ k ≤ n,

n∑

i=1

x2
i − 1 = 0.

c genügt der Gleichung (1), wenn

2
n∑

i=1

akici + 2λck = 0, 1 ≤ k ≤ n und
n∑

i=1

c2i = 1

gelten. Es gibt also ein µ ∈ R, so daß Ac = µc gilt, d. h. c ist ein normierter
Eigenvektor der Matrix A zum Eigenwert −λ.

Aufgabe 2.5
Die lokalen Extrema der Funktion

f(x, y, z) := x+ 2y + 3z ((x, y, z) ∈ R
3 : x2 + y2 = 2, y + z = 1)

sollen bestimmt werden.

Die Rangbedingung ist erfüllt wenn

Rang(g′(c)) = Rang

(
2c1 2c2 0
0 1 1

)
= 2

gilt. Anhand (1) hat das zu lösende Gleichungssystem die Form
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1+2λ1x = 0, 2+2λ1y+λ2 = 0, 3+λ2 = 0, x2+ y2− 2 = 0, y+ z− 1 = 0.

Als Lösung haben wir zwei kritische Stellen: c ∈ {(1,−1, 2); (−1, 1, 0)} (mit λ1 =
− 1

2 , λ1 = 1
2 bzw. λ2 = −3), mit denen die Rangbedingung erfüllt ist.3. Hinreihende Bedingungen3.1. Kompaktheitsargumente

Ist die Nebenbedingungsmenge {g = 0} kompakt und die Zielfunktion f ste-
tig, so ist die Existenz der absoluten Extrema gesichert, wie das in den Auf-
gaben 2.4 und 2.5 der Fall ist. Dort sind nämlich die Nebenbedingungsmengen
die Einheitskugel und eine Ellipse (die sich als Schnitt eines Zylinders und ei-
ner Ebene ergibt), die beschränkt und abgeschlossen, somit kompakt sind. Da
im ersten Falle f(c) = 〈Ac, c〉 = µ gilt, wird das Maximum bzw. das Mini-
mum bei einem Eigenvektor zum größten bzw. zum kleinsten Eigenwert ange-
nommen. (Insbesondere folgt, daß eine reelle symmetrische Matrix mindestens
einen reellen Eigenwert besitzt.) Im zweiten Falle entscheiden die Funktionswerte:
f(−1, 1, 0) = 1 < 5 = f(1,−1, 2).3.2. Abstandsaufgaben

Wenn es um Abstandsaufgaben geht, so erweist sich eine Behauptung, – die
auf der Endlichdimensionalität des euklidischen Raumes R

d (1 ≤ d ∈ N) beruht –
als nützlich:

Satz 3.1
A sei eine kompakte und B eine abgeschlossene Teilmenge des R

d; beide Mengen
seien nicht leer. Dann gibt es in A einen Punkt a und in B einen Punkt b mit

‖a− b‖ ≤ ‖x− y‖, x ∈ A, y ∈ B,

wobei ‖ · ‖ irgendeine Norm auf Rd ist.

Statt des Beweises (siehe z. B. [11]), geben wir einen Fall an, wo dieser Satz
vom Nutzen sein kann:

Aufgabe 3.2
Man bestimme denjenigen Punkt auf dem Schnitt der Ebenen x+2y+ z = 1 und
2x − y − 3z = 4, der von der Koordinatenursprung den kleinsten (euklidischen)
Abstand hat!

Die Zielfunktion und die Nebenbedingungsmenge sind also für r = (x, y, z) ∈
R

3

f(r) := x2 + y2 + z2, {g = 0} mit g(r) :=

[
x+ 2y + z − 1
2x− y − 3z − 4

]
.

Die Rangbedingung ist überall erfüllt, denn

Rang(g′(r)) = Rang

[
1 2 1
2 −1 −3

]
= Rang

[
1 2 1
0 −5 −5

]
= 2, r ∈ R

3



[96℄ Sándor Kovás
gilt. Das Gleichungssystem (1) hat die Form






2x+ λ1 + 2λ2 = 0,

2y + 2λ1 − λ2 = 0,

2z + λ1 − 3λ2 = 0,

x+ 2y + z − 1 = 0,

2x− y − 3z − 4 = 0.

Die einzige kritische Stelle c = (1615 ,
1
3 ),− 11

15 mit λ1 = − 52
75 , λ2 = − 54

75 von L steht
also im Verdacht, die gesuchte Stelle zu sein. Da wegen Satz 3.1 eine solche Stelle
wirklich vorhanden ist, muß c tatsächlich die Lösung der Aufgabe 3.2 sein.3.3. Hinreihende Bedingungen zweiter Ordnung

Es ist offensichtlich, daß im Falle von Funktionen f,g ∈ D
2[c] die Existenz

eines lokalen Extremums unter Nebenbedingungen durch die Definitheit der Hesse-
Matrix L′′(c) gesichert wird. Aus der Definitheit folgt nämlich, daß die Lagrange-
Funktion in c ein lokales Extremum besitzt, also eine Umgebung U ⊂ Ω von c

gibt, wofür

L(r) ≤ L(c) bzw. L(r) ≥ L(c), r ∈ U

gilt. Aus c ∈ {g = 0} folgt sofort die Ungleichung

f(r) = L(r) ≤ L(c) = f(c) bzw. f(r) = L(r) ≥ L(c) = f(c)

(r ∈ U ∩ {g = 0}).

Dieses Resultat kann man z. B. bei der Lösung der folgenden Aufgabe ausnutzen.

Aufgabe 3.3
Man bestimme die Extrema der Funktion

f(r) := x2−2x+2y2+z2+z (r = (x, y, z) ∈ R
3 : x+y+z = 1, 2x−y−z = 5)!

Wie bei der Lösung der Aufgabe 3.2 kommt man hier mit der Kompaktheits-
schluß ebenfalls nicht aus, denn die Nebenbedingunsmenge ist eine – als Schnitt
von zwei Ebenen – ergebende Gerade, die unbeschränkt, somit nicht kompakt ist.
Die Zielfunktion ist auch keine Abstandsfunktion, so scheint die Berechnung der
zweiten Ableitung L′′ in c sinnvoll zu sein. Die Lösung des Gleichungssystems (1)
ist der einzige Vektor c = (2, 0,−1) mit λ1 = λ2 = − 3

2 . Die Rangbedingung ist
überall erfüllt. Die Hesse-Matrix L′′(c) = diag{2, 4, 2} ist positiv definit, demzu-
folge hat f in c unter der Nebenbedingung {g = 0} ein lokales Minimum.

Oft kommt aber vor, daß L′′(c) nicht definit ist, wie das der Fall der folgenden
Aufgabe zeigt.

Aufgabe 3.4
Man bestimme die lokalen Extrema der Funktion

f(r) := xy + xz + xw + yz + yw + zw (r = (x, y, z, w) ∈ (R+)4 : xyzw = 1)!
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Die einzige kritische Stelle von L ist c := (1, 1, 1, 1), mit λ = 4. Die Rangbedin-

gung ist trivialerweise erfüllt, denn g′(c) = (1, 1, 1, 1). Die Eigenwerte von L′′(c)
sind −9 und 3 (dies letzte ist ein dreifacher Eigenwert), so ist L′′(c) nicht definit:
indefinit.

In Fällen also, wo die obigen Hilfsmittel nicht ausreichen, könnte man eine
hinreichende Bedingung zweiter Ordnung benutzen, die der eigentliche Gegenstand
dieser Arbeit ist. Bevor wir aber die diesbezügliche Behauptung formulieren, wollen
wir den folgenden Begriff bestimmen.

Definition 3.5
Es seien 0 < m,n ∈ N mit m < n. Die symmetrische Matrix A ∈ R

n×n bzw.
die quadratische Form Q mit Q(r) := 〈Ar, r〉, r ∈ R

n heißt positiv bzw. negativ
definit bezüglich der Matrix B ∈ R

m×n mit Rang(B) = m, wenn Q positiv bzw.
negativ definit auf dem Kernraum von B ist, d. h. aus 0 6= r ∈ R

n, Br = 0 die
Ungleichung Q(r) > 0 bzw. Q(r) < 0 folgt.

Beispiel 3.6
Im Fall m = 1, n = 2 habe die quadratische Form Q und die Matrix B die Gestalt

Q(r) := ax2 + 2bxy + cy2, r = (x, y) ∈ R
2, B := [d, e].

Der Vektor r = [x, y]T gehört somit genau dann zum Kernraum von B, wenn
dx + ey = 0 gilt. Die Forderung Rang(B) = 1 heißt in diesem Falle, daß eine von
den zwei Komponenten ungleich Null ist: d2 + e2 > 0. Ist z. B. e 6= 0, so bekommt
man durch Einsetzen von y = − dx

e
in Q, daß

Q(r) = ax2 + 2bx
(
− dx

e

)
+ c

(
− dx

e

)2

=
(ae2 − 2bde+ cd2)x2

e2
, r = (x, y) ∈ R

2.

Der Koeffizient von x2 im Zähler lässt sich in der Form

ae2 − 2bde+ cd2 = − det




a b d

b c e

d e 0



 (2)

schreiben. So ist z. B. die positive Definitheit von Q bezüglich B damit gleichwertig,
daß die obige Determinante negativ ist.

Somit kann schon das Resultat über eine hinreichende Bedingung zweiter Ord-
nung für die Existenz eines Extremums unter Nebenbedingungen formuliert wer-
den, das übrigens schon gegen Ende des 19. Jahrhunderts bekannt war.

Satz 3.7
Die Funktionen f bzw. g aus Satz 2.3 seien zweimal differenzierbar, ferner sei
c ∈ {g = 0}, wofür die notwendige Bedingung erster Ordnung erfüllt ist, d. h.
Rang(g′(c)) = m und für den zugehörigen Lagrange-Multiplikator λ ∈ R

m und für
die Lagrange-Funktion L := f + 〈λ,g〉 gilt L′(c) = 0. Ist die quadratische Form

QL
c
(r) : Rn → R, QL

c
(r) := 〈L′′(c)r, r〉

bezüglich g
′(c) positiv bzw. negativ definit, so hat f ein lokales Minimum bzw.

Maximum in c unter der Nebenbedingung g = 0.
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Beweis. (vgl. [10]) Wir werden nur die Behauptung bezüglich Minimum be-

weisen, da offensichtliche Modifikationen der folgenden Argumentation zum Fall
des Maximums führen.

Angenommen, hätte f kein lokales Minimum in c unter der Nebenbedingung
g = 0, so gäbe es eine Folge

rk ∈ {g = 0}\{c}, k ∈ N mit lim(‖rk − c‖) = 0 und f(rk) < f(c),

wobei ‖ · ‖ die euklidische Norm auf Rn bezeichnet: ‖ · ‖ := ‖ · ‖2. Da die Folge

hk :=
rk − c

‖rk − c‖ , k ∈ N

beschränkt ist, hat sie eine konvergente Teilfolge (hνk), k ∈ N mit

lim(hνk) =: h und ‖h‖ = 1.

Wegen g(rνk) = g(c) = 0, k ∈ N folgt

0 = lim
(
g(rk)− g(c)

‖rk − c‖
)
= g

′(c)h also QL
c
(h) > 0, (3)

denn laut Voraussetzung QL
c

ist bezüglich g
′(c) positiv definit. Da die Lagrange-

Funktion L auf der Nebenbedingungsmenge {g = 0} mit f identisch ist, folgt

L(c) = f(c) bzw. L(rk) = f(rk).

Die Taylorsche Formel mit Restglied nach Peano liefert dann für L:

f(c) > f(rk) = L(rk)

= L(c) + 〈L′(c)(rk − c), (rk − c)〉

+
1

2
〈L′′(c)(rk − c), rk − c〉+ η(rk − c) · ‖(rk − c)‖2

= f(c) + 0 +
1

2
QL

c
(rk − c) + η(rk − c)‖rk − c‖2

mit limr→0 η(r) = 0 (vgl. [15]) also

0 > QL
c
(rk − c) + 2η(rk − c)‖rk − c‖2.

Dividiert man diese Ungleichung durch ‖rk − c‖2 und bildet den Grenzübergang
k → ∞, so erhält man 0 ≥ QL

c
(h), was der Ungleichung in (3) widerspricht.

Als Beispiel wollen wir nochmal Aufgabe 2.5 behandeln. Dort ist die zweite
Ableitung der Lagrange-Funktion semidefinit:

L′′(c) =




2λ1 0 0
0 2λ1 0
0 0 0



 .
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Die quadratische Form

QL
c
(r) = 〈L′′(c)r, r〉 = 2λ1(x

2 + y2), r = (x, y, z) ∈ R
3

ist aber bezüglich g
′(c) definit, denn für alle r = (x, y, z) ∈ R

3 gilt

g′(c)r =

[
2c1 2c2 0
0 1 1

]
·




x

y

z



 =

[
2c1x+ 2c2y

y + z

]
=

[
0
0

]

⇐⇒
(
x = −c2

c1
y & y = −z

)
,

also

g′(c)r = 0 ⇐⇒ r = (ξ, ξ,−ξ), ξ ∈ R,

d. h. für ξ 6= 0 gilt

QL
c
(r) =





4λ1ξ
2 > 0 , λ1 =

1

2
,

4λ1ξ
2 < 0 , λ1 = −1

2
.

So hat man in (−1, 1, 0) mit einem Minimum bzw. in (1,−1, 2) mit einem Maxi-
mum zu tun.

Durch Einführung der sog. erweiterten Lagrange-Funktion

L̃(r,λ) := f(r) + 〈λ,g(r)〉, (r,λ) ∈ Ω× R
m

hat die notwendige Bedingung erster Ordnung die Form L̃′(c,λc) = 0. Das Vek-
torpaar (c,λc) genügt also dem Gleichungssystem (1). Ferner gilt für die zweite
Ableitung

L̃′′(c,λc) =

[
L′′(c) g

′(c)T

g
′(c) Om

]
,

wobei Om die Nullmatrix mit m Spalten und m Zeilen bezeichnet. Die Matrix
L̃′′(c,λc) ist nicht definit, da sie mindestens eine Null in der Hauptdiagonale hat.
Wir zeigen aber, daß sie eine entscheidende Rolle bei der Bestimmung der Defini-
theit L′′(c) bezüglich g

′(c) spielt.
Durch Einführung der Matrizen

R1 := [x1, . . . , xn−m]T und R2 := [xn−m+1, . . . , xn]
T

läßt sich die Bedingung g
′(c)r = 0 in der Form G1R1 +G2R2 = 0 aufschreiben,

wobei G1 und G2 die im Beweis des Satzes 2.3 eingeführten Matrizen sind. Unter
Berücksichtigung der Annahme det(G2) 6= 0 folgt

R2 = −G−1
2 ·G1 ·R1, d. h. r =

[
En−m

−G−1
2 ·G1

]
·R1 =: M ·R1,

wobei En−m die Einheitsmatrix mit (n − m) Spalten und (n −m) Zeilen ist. So
hat die quadratische Form QL

c
die Gestalt

〈L′′(c)r, r〉 = R
T
1 ·MT · L′′(c) ·M ·R1, r ∈ R

n.
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Die positive bzw. negative Definitheit von QL

c
bezüglich g

′(c) ist also mit der
(bedingungslosen) positiven bzw. negativen Definitheit der Matrix

Q̂L
c
:= MT · L′′(c) ·M ∈ R

(n−m)×(n−m) (4)

gleichwertig.

Beispiel 3.8
Im Fall m = 1, n = 2 haben L′′(c), g′(c) und somit M die Form

L′′(c) =

[
∂11f(c) + λ∂11g(c) ∂12f(c) + λ∂12g(c)
∂21f(c) + λ∂21g(c) ∂22f(c) + λ∂22g(c)

]
,

g′(c) = [∂1g(c), ∂2g(c)]

und M =
[
1,−∂1g(c)

∂2g(c)

]T
. Demzufolge gilt für MT · L′′(c) ·M in diesem Fall

MT · L′′(c) ·M =
ae2 − 2bde+ cd2

e2

mit

a := ∂11f(c) + λ∂11g(c), b := ∂12f(c) + λ∂12g(c)

c := ∂22f(c) + λ∂22g(c), d := ∂1g(c), e := ∂2g(c).

Somit hat MT · L′′(c) ·M wegen der Identität (2) die Form

MT · L′′(c) ·M = − 1

[∂2g(c)]2
·D(c),

wobei

D(c) := det




∂11f(c) + λ∂11g(c) ∂12f(c) + λ∂12g(c) ∂1g(c)
∂21f(c) + λ∂21g(c) ∂22f(c) + λ∂22g(c) ∂2g(c)

∂1g(c) ∂2g(c) 0


 . (5)

So hat f ein lokales Maximum bzw. Minimum in c unter der Nebenbedingung
g = 0, wenn D(c) > 0 bzw. D(c) < 0 gilt.

Dieses Ergenbis könnte z. B. bei der Lösung der Aufgabe 2.1 nützlich sein. Dort
hat nämlich die Lagrange-Funktion die Form

L(α, β) =
β + b

2
· b · sin(α) + λ

(β − b

2
− b · cos(α)

)
, 0 < α < π, 0 < β < 3b.

Die Rangbedingung ist überall erfüllt, denn 2g′(α, β) ≡ (2b sin(α), 1), und die
einzige kritische Stelle ist c = (π3 , 2b) mit λ = −b

√
3

2 . Die zweite Ableitung der
Lagrange-Funktion ist indefinit:

L′′(c) =




−b2
√
3

2

b

4
b

4
0


 .
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Durch die Berechnung der Determinante in (5) bekommt man

det




−b2
√
3

2

b

4

b
√
3

2
b

4
0

1

2
b
√
3

2

1

2
0



=

b2
√
3

4
> 0,

so gibt es in der gefundenen Stelle ein Maximum.
Die Verallgemeinerung auf die Fälle m,n ∈ N mit 1 ≤ m < n wird formuliert

im

Satz 3.9
Für k ∈ {1, . . . ,m + n} bezeichne Hk die Untermatrix der geränderten Hesse-
Matrix

H :=

[
L′′(c) g

′(c)T

g
′(c) Om

]
,

die aus den Einträgen der ersten k Zeilen und Spalten besteht, und die Vorausset-
zungen des Satzes 3.7 seien erfüllt. So hat f ein lokales Minimum bzw. Maximum
in c unter der Nebenbedingung g = 0, wenn die Ungleichungen

(−1)m det(Hk) > 0 bzw. (−1)m+k det(Hk) > 0, k ∈ {2m+ 1, . . . ,m+ n}

gelten.

Beweis. Da die Matrix in (4) über die Form

Q̂L
c
=

[
En−m (−G−1

2 G1)
T

]
· L′′(c) ·

[
En−m

−G−1
2 G1

]

verfügt, ist es zweckmäßig die Hesse-Matrix L′′(c) als Übermatrix der Blöcke Lij ,
i, j ∈ {1; 2} aufzufassen:

L′′(c) =:

n−m m

n−m
{︷ ︸︸ ︷

L11

︷ ︸︸ ︷
L12

}
n−m

m
{

L21
︸ ︷︷ ︸

L22
︸ ︷︷ ︸

}
m

n−m m

,

wobei L21 = LT
12. So läßt sich die geränderte Hesse-Matrix in Blockgestalt

H =




L11 L12 GT

1

L21 L22 GT
2

G1 G2 Om
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und Q̂L

c
in die Gestalt

Q̂L
c
= L11 − L12(G

−1
2 G1)− (G−1

2 G1)
TL21 + (G−1

2 G1)
TL22(G

−1
2 G1)

= L11 − L12(G
−1
2 G1)−GT

1 (G
−1
2 )TL21 +GT

1 (G
T
2 )

−1L22(G
−1
2 G1)

= L11 − L12(G
−1
2 G1)−GT

1 (G
T
2 )

−1{L21 − L22(G
−1
2 G1)}

schreiben. Laut Determinantensatz für Übermatrizen (vgl. [8]) gilt also

det(Q̂L
c
) =

1

det(G2)
· det

[
L11 − L12(G

−1
2 G1) GT

1

L21 − L22(G
−1
2 G1) GT

2

]

=
1

det(G2)
· 1

det(G2)
· det




L11 − L12G

−1
2 G1 GT

1 L12

L21 − L22G
−1
2 G1 GT

2 L22

On−m Om G2





=
det(A)

(det(G2))2

mit

A :=




L11 GT
1 L12

L21 GT
2 L22

G1 Om G2


 .

So sind das (det(G2))
2-fache der Hauptminoren von Q̂L

c
der Ordnung k gleich den

Hauptminoren von A der Ordnung 2m + k, k ∈ {1, . . . , n − m}. Q̂L
c

ist also ge-
nau dann z. B. positiv definit, wenn diese Hauptminoren von A positiv sind. Diese
Hauptminoren sind aber gleich dem (−1)m-fachen der entsprechenden Hauptmino-
ren von H , denn A bekommt man von H durch die Vertauschung der (n−m+l)-ten
und der (n+ 1 + l)-ten Spalten, l ∈ {1, . . . ,m}.

Beispiel 3.10
Man rechnet leicht nach, daß die geränderte Hesse-Matrix im Falle der Aufgabe
3.4 die Form

H :=




0 −3 −3 −3 1
−3 0 −3 −3 1
−3 −3 0 −3 1
−3 −3 −3 0 1
1 1 1 1 0




(6)

hat. Für das Vorzeichen der entsprechenden Hauptminoren von H gilt wie folgt

(−1)1 det(H3) > 0, (−1)1 det(H4) > 0 bzw. (−1)1 det(H5) > 0,

so haben wir mit einem lokalen Minimum unter Nebenbedingungen zu tun.

Das im Satz 3.9 formulierte Kriterium war zuerst in [12] zu lesen. Etwas ein-
fachere Beweismethode findet sich in [16], woraus die Idee der obigen Herleitung
stammt. Das Besondere an diesem Kriterium war, daß man durch die Berechnung
der Hauptminoren viel einfacher vorgehen konnte als bei dem früher bekannten
Kriterium von H. Hancock (vgl. [9]), nach der die positive bzw. negative Definitheit
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von QL

c
begüglich g

′(c) damit gleichwertig ist, daß die Koeffizienten a0, . . . , an−m

des Polynoms

det

[
L′′(c) − zEn g

′(c)T

g
′(c) Om

]
=

n−m∑

k=0

ak(−z)n−m−k, z ∈ R (7)

das gleiche Vorzeichen haben bzw. alternieren.
Ein anderes Kriterium haben Chabriallac und Crouzeix bewiesen (vgl. [2]),

nach der die positive bzw. negative Definitheit der Hesse-Matrix L′′(c) bezüglich
g
′(c) damit gleichwertig ist, daß die Trägheit der geränderten Hessematrix H (al-

so das Tripel, bestehend aus der Anzahl der negativen, nullgleich bzw. positiven
Eigenwerten) gleich (m, 0, n) bzw. (n, 0,m) ist. So sieht man wiederum, daß im
Falle der Aufgabe 3.4 ein lokales Minimum vorliegt, indem man das Polynom (7)
für die geränderte Hesse-Matrix H in (6) aufschreibt:

−4(−z)3 − 36(−z)2 − 108(−z)− 108, z ∈ R.

Dies beweist auch die Trägheit der Matrix H : (1, 0, 4), denn die Eigenwerte von
H sind: −4− 2

√
5, −4 + 2

√
5, 3, 3, 3.

Abgesehen davon, daß es immer die Frage der Beurteilung im Einzelfall ist,
welche dieser Kriterien einfacher sind, zeichnet sich der Chabriallac-Crouzeix-Test
dadurch aus, daß er gut auf einem Rechner implementierbar ist. Die Berechnung
der Trägheit einer Matrix kann nämlich z. B. mit Hilfe des Rangreduktionsverfah-
rens von J. Egerváry (s. [3], [4]) durchgeführt werden. Eine gute Übersicht über
die verschiedenen Rangreduktionsverfahren findet man z. B. in den Werken [6],
[7].Referenes

[1] M. Barner, F. Flohr, Analysis II, Walter de Gruyter&Co, Berlin, 1989.

[2] Y. Chabrillac, J.-P. Crouzeix, Definiteness and semidefiniteness of quadratic forms

revisited, Linear Algebra Appl. 63 (1984), 283–292.

[3] E. Egerváry, Über die Faktorisation von Matrizen und ihre Anwendung auf die

Lösung von linearen Gleichungssystemen, Z. Angew. Math. Mech. 35 (1955), 111–
118.

[4] E. Egerváry, On rank-diminishing operations and their applications to the solution

of linear equations, Z. Angew. Math. Phys. 11 (1960), 376–386.

[5] M. Farkas, On the conditional extremum, Mat. Lapok 24 (1973), 113–129.

[6] A. Galántai, Rank reduction: theory and applications, Int. J. Math. Game Theory
Algebra 13 (2003), 173–189.

[7] A. Galántai, The rank reduction procedure of Egerváry, CEJOR Cent. Eur. J.
Oper. Res. 18 (2010), 5–24.

[8] F.R. Gantmacher, Matrizentheorie, VEB Deutscher Verlag der Wissenschaften,
Berlin, 1986.

[9] H. Hancock, Theory of maxima and minima, Boston, New York, etc: Ginn and
Company, 1917.



[104℄ Sándor Kovás
[10] M.R. Hestenes, Calculus of variations and optimal control theory. Robert E. Krie-

ger Publishing Co., Inc., Huntington, N.Y., 1980.

[11] H. Heuser, Lehrbuch der Analysis (Teil 2) B. G. Teubner, Stuttgart, 1991.

[12] H.B. Mann, Quadratic Forms with Linear Constraints, Amer. Math. Monthly 50

(1943), 430–433.

[13] K. Meyberg, P. Vachenauer, Höhere Mathematik 1, Berlin, New York, etc: Sprin-
ger Verlag, 1990.

[14] J. Pál, F. Schipp, P. Simon, Analysis II, Budapest: Lehrbuchverlag, 1990.

[15] P. Simon, Kapiteln aus der Analysis, Budapest: Eötvös-Kiadó, 2006.

[16] H. Väliaho, On the definity of quadratic forms subject to linear constrains, J.
Optim. Theory Appl. 38 (1982), 143–145.

Lehrstuhl für Numerische Analysis der

Eötvös-Loránd-Universität,

H-1117 Budapest, Pázmány Péter sétány 1/C, Ungarn

e-Post: alex@ludens.elte.hu

Received: 12 April 2011; final version: 22 October 2011;

available online: 2 January 2012.



FOLIA 102Annales Universitatis Paedagogiae CraoviensisStudia Mathematia X (2011)
Patryja �uszz-�widekaOn Minkowski deomposition of Okounkov bodies ona Del Pezzo surfaeAbstrat. We show that on a blow up of P2 in 3 general points there exists

a finite set of nef divisors P1, . . . , Ps such that the Okounkov body ∆(D) of
an arbitrary effective R–divisor D on X is the Minkowski sum

∆(D) =
s∑

i=1

ai∆(Pi) (1)

with non-negative coefficients ai ∈ R>0.1. Introdution
Okounkov bodies form a new and rapidly developing research area in algebraic

geometry. They are convex bodies associated to algebraic varieties in a very general
setting, and may be viewed as a vast generalization of toric geometry. The idea is
to associate to a big divisor D on a variety X a convex body ∆(D) (the Okounkov
body of D) in such a way that questions about the original variety and D can be
answered from the geometry of this polytope.

A systematic development of the theory has been initiated in [8] and [5] and
we refer to these articles for details and motivations. Here we recall the basic
construction.

Let X be an irreducible projective variety of dimension n and

Y• : X = Y0 ⊃ Y1 ⊃ . . . ⊃ Yn−1 ⊃ Yn = {p}

be a flag of irreducible subvarieties of X such that codimX(Yi) = i and p is
a smooth point of each Yi for i = 0, . . . , n.

Let D be a Cartier divisor on X . The flag Y• defines an order n valuation-type
mapping

νY• : H
0(X, kD) → Z

n ∪ {∞}
in the following way. Given a section 0 6= s ∈ H0(X, kD) we set

ν1 = (νY•)1(s) := ordY1(s).

AMS (2000) Subject Classification: 14C20, 14F05.
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This determines a section

s̃ ∈ H0(X, kD − ν1Y1),

which does not vanish identically along Y1, and thus restricts to a non-zero section

s1 ∈ H0(Y1, (kD − ν1Y1)|Y1).

We repeat the above construction for s1 and so on. In this way we produce
a valuation vector

νY•(s) = ((νY•)1(s), . . . , (νY•)n(s)) ∈ Z
n

and an element

(νY•(s), k) ∈ ΓY•(D) ⊂ Z
n+1

in the graded semigroup of the linear series |D|. Let S(D) ⊂ R
n be the set of all

normalized valuation vectors obtained as above, i.e.,

S(D) =
{ 1

k
νY•(s) : s ∈ H0(X, kD), k = 1, 2, 3, . . .

}
.

Definition 1.1 (Okounkov body)
The Okounkov body ∆Y•(D) associated to the divisor D is the closed convex hull
of the set S(D).

Note that the shape of the Okounkov body depends on the flag Y•. However
some invariants, for example its volume, are independent of Y•. This is in fact the
main result of [8].

Computing the Okounkov body explicitly is in general not an easy task. We
address this question here for Del Pezzo surfaces. First, we need to recall some
properties of Okounkov bodies on arbitrary surfaces.2. Okounkov bodies on surfaes

A remarkable fact about divisors on arbitrary smooth surfaces is the existence
of the Zariski decomposition. This fact goes back to Zariski [11]. We refer to [1]
for a modern proof.

Theorem 2.1 (Zariski decomposition)
Let D be an effective divisor on a smooth projective surface X. Then there are
uniquely determined effective (possibly zero) Q–divisors PD and ND such that

D = PD +ND

and

(i) PD is nef,

(ii) ND is zero or has negative definite intersection matrix,
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(iii) PD · C = 0 for all irreducible components C of N .

Assume that p is the smallest positive integer such that pND is a divisor defined by
the section nD of the line bundle OX(pND). Then, multiplication by the section

n
k
p

D induces an isomorphism

H0(X, kPD) ≃ H0(X, kD) (2)

for all k divisible by p.

We take a flag Y• : X = Y0 ⊃ Y1 ⊃ Y2 = {p} with the curve Y1 not contained
in the augmented base locus B+(D) (which in particular implies that Y1 is not
a component of ND). Then because of (2) we have for an arbitrary section s ∈
H0(X, kD) with k divisible enough

s = t · n
k
p

D

for some section t ∈ H0(X, kPD) and

ν1(s) = ν1(t) + ν1
(
n

k
p

D

)
= ν1(t) +

k

p
ν1(nD) = ν1(t). (3)

Similarly, we have

ν2(s) = ν2(t) + ν2
(
n

k
p

D

)
= ν2(t) + k · 1

p
ν2(nD). (4)

It follows that the Okounkov body of D is up to translation by 1
p
ν2(nD) equal to

that of PD.

Corollary 2.2
Let D be an effective divisor on a smooth algebraic surface X with Zariski decom-
position D = PD +ND and let Y• be a flag as above. Then

∆(D) = ∆(PD) + (0, ordp(ND)).

In the view of the above corollary, it is sufficient to know what Okounkov
bodies of nef effective divisors are. It turns out that on Del Pezzo surfaces there
are only finitely many building blocks. This is made precise in the next section.3. Del Pezzo surfaes

Let r be a fixed integer 0 6 r 6 8. We fix r points p1, . . . , pr in the projective
plane P

2 in general position. More precisely we assume that

a) no three of these points are collinear,

b) no six of them are on the same conic,

c) a cubic curve passing through 6 of them and singular in the seventh point,
is not passing through the eighth.
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Let fr : Xr → P

2 be the blowing up of P1, . . . , Pr with exceptional divisors
E1, . . . , Er. Under the above assumptions, Xr is a smooth Del Pezzo surface,
i.e., the anticanonical divisor −KXr is ample, see [4]. We denote the class of the
pullback by fr of a line in P

2 by H .
From now on, we fix also the following flag. Let Y1 be a line in P

2 not passing
through any of the points P1, . . . , Pr and let p ∈ Y1 be a point not lying on the
image under fr in P

2 of any of the (−1)–curves on Xr. This assumption, in view
of (4) guarantees that

∆(D) = ∆(PD)

for an arbitrary big divisor D on Xr.
Del Pezzo surfaces are two-dimensional Fano varieties. It is well known from

the Mori theory, see [3] and [10, Theorem 1.1.5], that the nef cone of a Fano variety
is finitely generated.

For Del Pezzo surfaces it is easier to write down generators of the pseudo-
effective cone than those of the nef cone. The effective cone is generated by classes
of irreducible (−1)–curves on Xr for r > 2. For r 6 1 one has to include also H

in the set of generators.
One could naively expect, that in order to get the decomposition claimed in

(1), one could take as the divisors Pi the generators of the nef cone. The following
two simple examples show that this wouldn’t work.

Example 3.1
Let X2 be the blowup of P2 in two points. A slice of the effective cone of X2 looks
like in the following picture

E2 E1

H − E1 − E2

H − E1 Nef H − E2

H

Picture 1. A slice of the effective cone of X2.

We consider the generators H − E1 and H − E2 of the nef cone of X2. The
Okounkov bodies, constructed with respect to the flag, given in Section 2 coincide
for both divisors. They are presented in the Picture 2.



On Minkowski deomposition of Okounkov bodies on a Del Pezzo surfae [109℄
1

0

Picture 2. Okounkov body of H − Ei for i = 1, 2.

The Minkowski sum of two such segments is, again, a segment, presented in the
next picture.

2

0

Picture 3. Minkowski sum of ∆(H − E1) and ∆(H −E2).

On the other hand

H − E1 +H − E2 = 2H − E1 − E2 = H + (H − E1 − E2)

is a big (and nef) divisor, so its Okounkov body has in any case some positive
volume. In fact, it is the triangle presented in the Picture 4.

2

10

Picture 4. Okounkov body of 2H − E1 −E2.

One might suspect that the reason for the bad behavior of the generatorsH−E1

and H − E2 is caused by them not being big. The next example shows that even
for big and nef divisors the Okounkov bodies might not be additive.

Example 3.2
Now we look at X3 with the flag fixed as explained in Section 2. We consider
divisors D1 = 3H − 2E1 −E2 and 4H − 2E1 − 2E2 − 2E3. They are both big and
nef, with Okounkov bodies represented on Pictures 5 and 6, respectively.
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3

10

Picture 5. Okounkov body of D1.

4

10

Picture 6. Okounkov body for D2.

The Minkowski sum of ∆(D1) and ∆(D2) is presented in the Picture 7.
On the other hand the Okounkov body of the sum

3H − 2E1 − E2 + 4H − 2E1 − 2E2 − 2E3 = 7H − 4E1 − 3E2 − 2E3

is presented in the Picture 8. The two figures do not agree.

7

20

Picture 7. Minkowski sum of ∆(D1) + ∆(D2).

7

2 1
2

0

Picture 8. Okounkov body of D1 +D2.

These examples show that our main result stated in the next section is by no
means obvious.
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Theorem 4.1 (Minkowski decomposition on Del Pezzo surfaces)
Let X be a smooth Del Pezzo surface, i.e., X = Xr for some r, or X = P

1 × P
1.

Then there exists a finite set of nef divisors P1, . . . , Ps such that for any big R–
divisor D we have

D =

s∑

i=0

aiPi +ND and ∆(D) =

s∑

i=1

ai∆(Pi)

with non-negative real numbers ai ∈ R>0.

Note that in the first equality there is the sum of divisors, whereas in the second
equality the sum stands for the Minkowski sum of convex sets. We call the set
{Pi} the Minkowski basis of Xr, even though this is strictly speaking not a basis.

The complete proof of this theorem will appear in the forthcoming paper [9].
In this announcement we restrict our attention to the case r = 3 as this is already
interesting enough.

Before we can proceed with the actual proof, we need to establish some nota-
tion. Following [2] we write

Null(D) = {C ⊂ X : C irreducible curve with C ·D = 0}

for the set of all irreducible curves orthogonal to a given R–divisor D with respect
to the intersection form on X .

We write

Null∗(D) := Null(D) \ {E1, . . . , Er}

for the set Null(D) with E1, . . . , Er excluded.
The Neron-Severi group on Xr is generated by H and E1, . . . , Er. We abbre-

viate

P (a; b1, . . . , br) := aH − b1E1 − . . .− brEr.5. Proof of Theorem 4.1 for r = 3

We claim that as a set {Pi} we can take the following divisors:

a) P (1; 0, 0, 0),

b) P (1; 1, 0, 0), P (1; 0, 1, 0), P (1; 0, 0, 1),

c) P (2; 1, 1, 0), P (2; 1, 0, 1), P (2; 0, 1, 1),

d) P (2; 1, 1, 1),

e) P (3; 2, 1, 1), P (3; 1, 2, 1), P (3; 1, 1, 2).

The divisors above are grouped in the obvious manner. The Okounkov bodies of
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divisors in each group are the same and they are depicted below. For the Okounkov
bodies of the divisors of type b) see Picture 2 above.

1

10

a) The Okounkov body of H

2

10

c) The Okounkov body of 2H − E1 −E2

2

1
2

0

d) The Okounkov body of

2H − E1 −E2 − E3

3

10

e) The Okounkov body of

3H − 2E1 − E2 −E3

A nef divisor P can be written as a combination with non-negative coefficients
of the divisors above (because the set contains the generators of the nef cone) but
not in a unique way. It is in fact crucial for the Theorem to pick up the right
decomposition. To this end we first list the space Null∗(·) for each type of divisors
in the Minkowski basis.

D Null∗(D)

H ∅
H − Ei H − Ei, H − Ei − Ej , H − Ei − Ek

2H − Ei − Ej H − Ei − Ej

2H − E1 − E2 − E3 H − E1 − E2, H − E1 − E3, H − E2 − E3

3H − 2Ei − Ej − Ek H − Ei − Ej , H − Ei − Ek

The convention in this table is that i, j, k stay for mutually distinct indices.
In order to establish the theorem for arbitrary Q–divisors, it is enough to

work with the integral divisors, as the Okounkov bodies scale well. The claim for
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R–divisors follows then from the existence of the global Okounkov body, see [8,
Theorem 4.5]. So we assume that P is an integral nef divisor on X3. Next we
compute the coefficients {ai} according to the following algorithm.

Let M be the divisor in the Minkowski basis given above with the property

Null∗(M) = Null∗(P ).

Such an element exists and is unique. Indeed, it follows from the Index Theorem
that Null∗(P ) has a negative semi-definite intersection matrix. There are only
finitely many such matrices possible on X3 and each one of them appears in our
list exactly once.

Then we set P ′ := P −M and we claim that

∆(P ) = ∆(P ′) + ∆(M). (5)

Taking this for granted for a moment, we are finished with the proof of the Theo-
rem, as we now apply our algorithm to P ′ and so on. This procedure terminates
since we lower the absolute value of the coefficients of P in the basis H,E1, . . . , Er

in every step.
The equality in (5) follows from observing that P and M lie on the same face

(in the sense of convex geometry) of the nef cone of X3. Moreover, subtracting M

from P results in a divisor P ′ which either lies on the same face or on its boundary.
Hence we can assume that

Null∗(P ) = Null∗(M) = {N1, . . . , Ns}
and

Null∗(P ′) = {N1, . . . , Ns, Ns+1, . . . , Ns+t}.
Then

M = µY1(M) · Y1 +

s∑

i=1

αiNi and P ′ = µY1(P
′) · Y1 +

s+t∑

j=1

βjNj,

where

µY1(F ) := sup{t ∈ R : F − tY1 is effective}.
Note that the exceptional divisors E1, . . . , Er do not appear in decompositions of
nef divisors.

We claim that

µY1(P
′ +M) = µY1(P

′) + µY1(M). (6)

It is clear that we have the > inequality in (6). Assume for the contrary that this
inequality is sharp, i.e., P = P ′+M = γ ·Y1+R with some γ > µY1(P

′)+µY1(M)
and R, a pseudo-effective divisor. Comparing the two presentations of the sum
P ′ +M we have

(γ − µY1(P
′)− µY1(M)) · Y1 +R =

s∑

i=1

(αi + βi)Ni +

s+t∑

i=s+1

βiNi.
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In our case Y1 is a big divisor, whereas the divisor on the right is not big and this
contradiction shows (6).

Then we use the description of Okounkov bodies on surfaces from [8, Theo-
rem 6.4]. For P = P ′ +M we have

∆(P ) = {(x, y) ∈ R
2 : 0 6 x 6 µY1(P ) and α(x) 6 y 6 β(x)}

with

α(x) = ordp(NP−xY1) and β(x) = ordp(NP−xY1) + (Y1 · PP−xY1).

By our choice of the point p in the flag, α(x) is zero for all 0 6 x 6 µY1(D).
The same is true for the α–functions for P ′ and M , so everything amounts to the
computation of PP−xY1 . We have

PP−xY1 =

{
P ′ + PM−xY1 for 0 6 x 6 µY1(M),

PP ′−(x−µY1 (M))Y1
for µY1(M) 6 x 6 µY1(P ) = µY1(P

′) + µY1(M).

This shows the equality

∆(P ′ +M) = ∆(P ′) + ∆(M).Referenes
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The Fourteenth International Conference on Functional Equations and Inequal-
ities was held from September 11 to 17, 2011 in Będlewo, Poland. The series of
ICFEI meetings has been organized by the Department of Mathematics of the Pe-
dagogical University in Cracow since 1984. For the fourth time, the conference
was organized jointly with the Stefan Banach International Mathematical Center
and hosted by the Mathematical Research and Conference Center in Będlewo.

This year’s conference was dedicated to the memory of Professor Marek Kucz-
ma, the founder of the Polish School of Functional Equations and Inequalities, who
died 20 years ago.

The Organizing Committee of the 14th ICFEI consisted of Janusz Brzdęk
as Chairman, Zbigniew Leśniak as Vice-Chairman, Anna Bahyrycz, Magdalena
Piszczek, Paweł Solarz, Janina Wiercioch and Krzysztof Ciepliński, who also acted
as Vice-Chairman and Scientific Secretary.

The Scientific Committee consisted of Professors: Dobiesław Brydak as Ho-
norary Chairman, Janusz Brzdęk as Chairman, Nicole Brillouët-Belluot, Jacek
Chmieliński, Bogdan Choczewski, Roman Ger, Hans-Heinrich Kairies, László
Losonczi, Zsolt Páles and Marek Cezary Zdun.

The 60 participants came from 12 countries: Australia, Austria, Denmark,
France, Germany, Hungary, India, Iran, Israel, Russia, Serbia and Poland.

The conference was opened on Monday, September 12 by Professor Janusz
Brzdęk – the Chairman of the Scientific and Organizing Committees, who wel-
comed the participants on behalf of the Organizing Committee and read a letter
to them from Professor Władysław Błasiak, the Dean of the Faculty of Mathe-
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matics, Physics and Technical Science of the Pedagogical University. The opening
address was given by Professor Jacek Chmieliński, the Head of the Department
of Mathematics. The opening ceremony was followed by the first scientific ses-
sion chaired by Professor Roman Ger. Altogether, during 22 scientific sessions 3
lectures (given by Professors: Karol Baron – opening lecture, Stevo Stević and
Boris Paneah) and 51 talks were delivered. They focused on functional equations
in a single variable and in several variables, functional inequalities, stability the-
ory, convexity, multifunctions, means and other topics. Several contributions have
been made during special Problems and Remarks sessions.

On Tuesday, September 13, a picnic was organized. On the next day afternoon
the participants visited Rogalin Palace with its gallery of paintings from the 19th
and 20th centuries, and collection of horse-drawn vehicles. In the evening the piano
recital was performed by Professor Marek Czerni. On Thursday, September 15,
a banquet was held at the Palace in Będlewo. At the start of the banquet, George
Gershwin’s “Summertime” was performed by Professor Ewelina Mainka-Niemczyk.

The conference was closed on Friday, September 16 by Professor Janusz Brzdęk.
He announced that Professors Ekaterina Shulman and László Székelyhidi had
agreed to join the Scientific Committee. The 15th ICFEI will be organized in
the south of Poland, in the spring of 2013.

The following part of the report contains the abstracts of the talks, the prob-
lems and remarks, and a list of the participants with their addresses.Abstrats of Talks
Anna Bahyrycz On the solutions of Wilson first generalization of d’Alembert’s
functional equation on some set

Let A be a non-empty subset of an Abelian group. In the talk, under some
simple additional assumptions on the set A, we deal with functions f, g:A → C

satisfying the equation

f(x+ y) + f(x− y) = 2f(x)g(y)

for x, y ∈ A such that x+ y, x− y ∈ A.

Karol Baron Marek Kuczma

The scientific output of Marek Kuczma consists of 179 papers (listed in [4])
published within the years 1958–1993 and three books [6, 7, 8] still used and
quoted. Professor Marek Kuczma created and developed the theory of iterative
functional equations but his name is also connected with important results on
functional equations in several variables, in particular on Cauchy’s equation and
Jensen’s inequality. In fact Marek Kuczma has founded a mathematical school:
he supervised 13 Ph.D. dissertations, 10 his students have already their habilitation
and 6 of them became full professors (cf. also [5]). In the talk I would like to present
more information about this great teacher and, making also use of [1, 2, 3], some
results of this outstanding mathematician.



14th International Conferene on Funtional Equations and Inequalities [119℄
[1] K. Baron, M. Kuczma’s papers on iterative functional equations, Selected topics in

functional equations and iteration theory (Graz, 1991), 1–6, Grazer Math. Ber. 316,
Karl-Franzens-Univ. Graz, Graz, 1992.

[2] B. Choczewski, Papers of Marek Kuczma written in the last decade of his life, Selected
topics in functional equations and iteration theory (Graz, 1991), 7–16, Grazer Math.
Ber. 316, Karl-Franzens-Univ. Graz, Graz, 1992.

[3] R. Ger, M. Kuczma’s papers on functional equations in several variables, Selected
topics in functional equations and iteration theory (Graz, 1991), 17–28, Grazer Math.
Ber. 316, Karl-Franzens-Univ. Graz, Graz, 1992.

[4] R. Ger, Marek Kuczma, 1935-1991, Aequationes Math. 44 (1992), 1–10.

[5] R. Ger, Functional equations and inequalities (Polish), Half a century of mathematics

in Upper Silesia (Polish), 223–251, Pr. Nauk. Uniw. Śl. Katow. 2196, Wydawn. Uniw.
Śląskiego, Katowice, 2003.

[6] M. Kuczma, Functional equations in a single variable, Monografie Matematyczne 46,
Państwowe Wydawnictwo Naukowe, Warszawa, 1968.

[7] M. Kuczma, An introduction to the theory of functional equations and inequalities.

Cauchy’s equation and Jensen’s inequality, Pr. Nauk. Uniw. Śl. Katow. 489, Uniwer-
sytet Śląski, Katowice; Państwowe Wydawnictwo Naukowe, Warszawa, 1985 [Second
edition: Edited and with a preface by Attila Gilányi, Birkhaüser Verlag, Basel, 2009].

[8] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopedia of
Mathematics and its Applications 32, Cambridge University Press, Cambridge, 1990.

Janusz Brzdęk Stability of linear equations of higher orders
(joint work with B. Xu and W. Zhang)

We present some fixed point results, which provide a general method for in-
vestigations of the Hyers-Ulam stability of the linear operator equations of higher
orders. In numerous cases, the Hyers-Ulam stability of such an equation is a con-
sequence of a similar property of the corresponding first order equations. We
describe some particular examples of applications for differential, integral, and
functional equations.

Jacek Chmieliński On approximate parallelogram identity in normed spaces

Suppose that a norm in a real or complex space X approximately satisfies the
parallelogram law, i.e.,

∣∣‖x+ y‖2 + ‖x− y‖2 − 2‖x‖2 − 2‖y‖2
∣∣ ≤ Φ(x, y), x, y ∈ X

with a given mapping Φ:X → R+. We show that for some control mappings Φ
the above property yields that X is equivalent to an inner product space.

Jacek Chudziak On continuous solutions of a composite functional equation

Inspired by some problems concerning invariant utility functions we consider
continuous solutions of the following functional equation

f(k(t)x+ l(t)) = a(t)f(x) + b(t).
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Krzysztof Ciepliński A fixed point approach to the stability of functional equa-
tions in non-Archimedean metric spaces
(joint work with J. Brzdęk)

In the talk we present a fixed point theorem for complete non-Archimedean
metric spaces and apply it to obtain the Hyers-Ulam stability of a quite wide class
of functional equations in a single variable.

Marek Czerni On a generalization of the problem of D. Brydak

Let I be a real interval of the form [0, a), where 0 < a ≤ ∞. Let ψ: I → R be
a continuous solution of the linear nonhomogeneous functional inequality

ψ[f(x)] ≤ g(x)ψ(x) + h(x).

We assume the following hypotheses about given functions f , g and h:

(H1) the function f : I → R is continuous and strictly increasing. Moreover,
0 < f(x) < x for x ∈ I⋆ = I \ {0},

(H2) the function g: I → R is continuous and g(x) > 0 for x ∈ I⋆,

(H3) the function h: I → R is continuous and h(0) = 0,

(H4) the functional sequence Gn(x) =
∏n−1
i=0 g[f

i(x)] converges to zero almost
uniformly in I⋆,

(H5) the functional sequence ϕ⋆n(x) =
∑n−1
i=0

h[fi(x)]
Gi+1(x)

converges almost uniformly
in I⋆.

In the talk we give partial answer to the following question: does there always
exist a continuous solution ϕ: I → R of the functional equation

ϕ[f(x)] = g(x)ϕ(x) + h(x)

or

ϕ[f(x)] = g(x)ϕ(x)

such that the finite limit limx→0+
ψ(x)
ϕ(x) exists?

At the 3rd International Symposium on Functional Equations and Inequalities
in Noszvaj (Hungary) in September 1986 D. Brydak put the similar problem for
linear homogeneous inequality (see [1]). This problem was solved in [2].

[1] Report on the Third International Symposium on Functional Equations and Inequal-

ities. Abstracts from the symposium held in Noszvaj, September 21-27, 1986, Publ.
Math. Debrecen 38 (1991), 1–38.

[2] M. Czerni, On a problem of D. Brydak, Publ. Math. Debrecen 44 (1994), 243–248.

Włodzimierz Fechner Functional equations with exotic addition

S. Northshield in [1] introduced the term exotic addition for two types of op-
erations he dealt with. One of them was the following “sine-type” addition on the
real line

x⊕ y := xf(y) + yf(x)
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with f :R → R enjoying some regularity properties. The name “sine-type” addition
which appears in [1] is justified by the fact that if one takes mapping f : [−1, 1] → R

given by f(x) =
√
1− x2 for x ∈ [−1, 1], then in this particular case the sine

function acts as a homomorphism between the real line with ordinary addition
and the interval [−1, 1] with “exotic” addition ⊕. In other words, we have

sin(x+ y) = sin(x)⊕ sin(y), x, y ∈ R.

Northshield provided several conditions equivalent to the associativity of ⊕
(see Theorem 4 and Corollary 1 in [1]). From these results it follows that the
associativity seems to be a fairly restrictive assumption since it implies a particular
form of the mapping f (given in an implicit form involving solutions of some
ODE’s).

We will deal with operation ⊕ without assuming its associativity and for map-
ping f defined on an arbitrary interval. We solve “exotic” modifications of some
functional equations, including the equation of derivations, with ordinary addition
replaced by ⊕.

[1] S. Northshield, On two types of exotic addition, Aequationes Math. 77 (2009), 1–23.

Żywilla Fechner On some integral generalizations of trigonometric functional
equations

Let (G,+) be a locally compact Abelian group, B(G) the space of all Borel
subsets of G and µ:B(G) → C a bounded regular measure. The following equation

∫

G

{f(x+ y − s) + f(x− y + s)} dµ(s) = f(x)f(y), x, y ∈ G,

where f :G → C is essentially bounded, was introduced and solved by Z. Gajda
in [3]. We are going to present some other possible generalizations of this functional
equation.

[1] Ż. Fechner, A generalization of Gajda’s equation, J. Math. Anal. Appl. 354 (2009),
584–593.

[2] Ż. Fechner, A note on a modification of Gajda’s equation, Aequationes Math. 82

(2011), 135–141.

[3] Z. Gajda, A generalization of d’Alembert’s functional equation, Funkcial. Ekvac. 33

(1990), 69–77.

[4] L. Székelyhidi, Convolution type functional equations on topological abelian groups,
World Scientific Publishing Co., Inc., Teaneck, NJ, 1991.

Roman Ger On a subsequent problem of Roger Cuculière

In the May 2011 issue of The American Mathematical Monthly (118, Problems
and Solutions, p. 464) the following problem was proposed by Roger Cuculière:

Let E be a real normed vector space of dimension at least 2. Let f be a mapping
from E into E, bounded on the unit sphere {x ∈ E : ‖x‖ = 1}, such that whenever
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x and y are in E, f(x + f(y)) = f(x) + y. Prove that f is a continuous, linear
involution on E. (Problem 11578).

We shall present the general solution of the functional equation in question (in
much more general setting) from which the proof spoken of will be obtained as
a corollary.

Dorota Głazowska Uniformly bounded composition operators in the space of
functions of bounded ϕ-variation with weight in the sense of Riesz
(joint work with J. Matkowski)

We prove that if a uniformly bounded (or equidistantly bouned) Nemytskij
operator maps a space of functions of bounded ϕ-variation with weight function in
the sense of Riesz into another space of the same type and its generator function
is continuous with respect to the second variable, then this generator function is
an affine function in the second variable.

Moshe Goldberg Submultiplicativity and stability of sup norms on homotonic
algebras

An algebra A of real or complex valued functions defined on a set S shall be
called homotonic if A is closed under forming of absolute values, and if for all f and
g in A, the product f × g satisfies |f × g| ≤ |f |× |g|. Our purpose in this talk is to
offer several examples of homotonic algebras and provide a simple inequality which
characterizes submultiplicativity and strong stability for weighted sup norms on
such algebras.

Niyati Gurudwan Strong convergence theorem for finite family of m-accretive
operators in Banach spaces
(joint work with B.K. Sharma)

The purpose of this presentation is to propose a composite iterative scheme
for approximating a common solution of a finite family of m-accretive (nonlinear)
operators in a strictly convex Banach space having a uniformly Gateaux differen-
tiable norm. As a consequence, the strong convergence of the scheme for a common
fixed point of a finite family of pseudocontractive mappings is also obtained. The
results presented herein improve and extend the corresponding results of Kim and
Xu, Qin and Su, Xu, and Zegeye and Shahzad (see [1, 2, 3, 4] and the references
given there) to a finite family of operators in a strictly convex Banach space.

[1] T.-H. Kim, H.-K. Xu, Strong convergence of modified Mann iterations, Nonlinear
Anal. 61 (2005), 51–60.

[2] X. Qin, Y. Su, Approximation of a zero point of accretive operator in Banach spaces,
J. Math. Anal. Appl. 329 (2007), 415–424.

[3] H.-K. Xu, Strong convergence of an iterative method for nonexpansive and accretive

operators, J. Math. Anal. Appl. 314 (2006), 631–643.

[4] H. Zegeye, N. Shahzad, Strong convergence theorems for a common zero for a finite

family of m-accretive mappings, Nonlinear Anal. 66 (2007), 1161–1169.
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Attila Házy On (α, β, a, b)-convex functions

Bernstein and Doetsch (see [1]) proved that the local upper boundedness of
a Jensen-convex function yields its local boundedness and continuity as well on
the whole domain, which implies the convexity of the function.

In this talk we present some Bernstein-Doetsch type results for (α, β, a, b)-
convex functions, which were intoduced by Maksa and Páles (see [4]) in the fol-
lowing way:

Let X be a real or complex topological vector space, D ⊂ X be a nonempty open
(α, β)-convex (that is, α(t)x+β(t)y ∈ D whenever x, y ∈ D and t ∈ [0, 1]) set, and
α, β, a, b: [0, 1] → R be given functions. The function f is called (α, β, a, b)-convex
function if

f(α(t)x+ β(t)y) ≤ a(t)f(x) + b(t)f(y), x, y ∈ D, t ∈ [0, 1]

holds. To avoid the trivialities and the unimportant cases, we suppose that there
exists an element t0 such that α(t0)β(t0)a(t0)b(t0) 6= 0.

[1] F. Bernstein, G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Ann. 76

(1915), 514–526.

[2] P. Burai, A. Házy, On approximately h-convex functions, J. Convex Anal. 18 (2011),
447–454.

[3] P. Burai, A. Házy, T. Juhász, Bernstein-Doetsch type results for s-convex functions,
Publ. Math. Debrecen 75 (2009), 23–31.

[4] Gy. Maksa, Zs. Páles, The equality case in some recent convexity inequalities, Opus-
cula Math. 31 (2011), 269–277.

[5] A. Házy, Bernstein-Doetsch type results for h-convex functions, Math. Inequal. Appl.
14 (2011), 499–508.

[6] S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303–311.

Eliza Jabłońska On the pexiderized Gołąb-Schinzel equation

Let X be a linear space over a commutative field K. We characterize a general
solution f, g, h, k:X → K of the pexiderized Gołąb-Schinzel equation

f(x+ g(x)y) = h(x)k(y),

as well as, in the case K = R, continuous on rays solutions of the equation.

Justyna Jarczyk On some equality problem connected with conjugate means
(joint work with J. Dascăl)

Let I ⊂ R be an open interval and p, q ∈ (0, 1). We present some partial results
on solutions (ϕ, ψ) of the functional equation

ϕ−1
(
ϕ(x)+ϕ(y)− 1

2
(ϕ(px+(1−p)y)+ϕ(qx+(1− q)y))

)
= ψ−1

(ψ(x) + ψ(y)

2

)
,

where ϕ, ψ: I → R are four times continuously differentiable functions.
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Witold Jarczyk Note on an equation occurring in a problem of Nicole Brillouët-
Belluot
(joint work with J. Morawiec)

We study the functional equation

f(x)f−1(x) = x2

imposing no continuity assumptions on its bijective solutions defined on an interval.
All the continuous bijections of an interval were determined in [2] when solving a
problem posed by N. Brillouët-Belluot (see [1]).

[1] N. Brillouët-Belluot, Problem posed during the Forty-nine International Symposium

on Functional Equations, June 19–26, 2011, Graz-Mariatrost, Austria.

[2] J. Morawiec, On a problem of Nicole Brillouët-Belluot, Aequationes Math. (in print).

Vyacheslav Kalnitsky Solution of the Kuczma equation

In the works of M. Kuczma and J. Sándor (see [1, 2]) was noted that all
monotone convex (vertex) solutions of a special class of Stamate-type equation

f(x)− f(y)

x− y
= ϕ(h(x), h(y)),

where ϕ(u, v) = u + v, uv, 1
u+v , are arcs of cone sections. Assuming h, ϕ ∈ C,

ϕ(u, u) being invertible, the above equation is reducible to the form

f(x)− f(y)

x− y
= K(f ′(x), f ′(y)), (1)

where K is necessarily generalized mean. In this form Kuczma’s result can be
formulated in the following way: all solutions for arithmetical, geometrical and
harmonical means are arcs of vertical paraboles, vertical hyperbols and horizontal
parabols correspondently.

If for a mean K there is the function f solving equation (1), then we call it
solvable mean. The simple criteria of solvability is proven: the nondegenerate mean
K ∈ C1([α]× [β]) is solvable if and only if for any four numbers a, b, c, d ∈ [α, β],

∣∣∣∣∣∣

K(a, b) K(a, b) K(c, d)
K(c, a) K(a, d) K(c, d)
K(c, b) K(b, d) K(c, d)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

K(a, d) K(b, d) K(b, d)
K(a, d) K(a, b) K(c, b)
K(c, a) K(c, a) K(c, b)

∣∣∣∣∣∣
.

Equation (1) has relations with different disciplines such as economics, opera-
tional research and low-dimensional geometry (see [3, 4, 5]).

[1] M. Kuczma, On some functional equations with conic sections as solutions, Rocznik
Nauk.-Dydakt. Prace Mat. 13 (1993), 197–213.

[2] J. Sándor, On certain functional equations, Itinerant Seminar on Functional Equa-
tions, Approximation and Convexity (Cluj-Napoca, 1988), 285–288, Preprint, 88-6,
Univ. “Babes-Bolyai”, Cluj-Napoca, 1988.
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[3] E. Akerman, V. Kalnitsky, The purpose function in the problem of the effective distri-

bution of resurces, Works of Int. Sci. School “MA SRQ 2001”, 18-22 June 2001, St.P.,
Russia.

[4] V. Kalnitsky, The reconstruction operator of two-argument function by its section,
Proc. of Int. Sci. Conf. “Lobachevsky readings-2001”, Kazan.

[5] V. Kalnitsky, Arithmetic properties of the Lagrange equation solutions, Proc. of
ICM’2002, August 20-28, Beijing, China.

Tomasz Kochanek Steinhaus’ lattice points problem for Banach spaces

A classical property of the Euclidean plane, which goes back to H. Steinhaus,
asserts that for any n ∈ N one may find a circle surrounding exactly n lattice points.
P. Zwoleński generalized this result to the setting of Hilbert spaces replacing the
set of lattice points by a quasi-finite set, i.e., a countably infinite set such that
every ball contains only finitely many of its points.

We extend his result by giving a geometrical characterization (involving only
the shape of the unit ball) of what we shall call a Steinhaus property of a given
Banach space X :

(S) for any quasi-finite set A ⊂ X there exists a dense set Y ⊂ X such that for
any y ∈ Y and n ∈ N there exists a ball B centered at y with |A ∩B| = n.

It turns out that every strictly convex Banach space shares this property, but
in any dimension greater than 2 property (S) is weaker than strict convexity (e.g.,
as we will see, the space L1(0, 1) satisfies (S), nonetheless it is not strictly convex).
We will give some positive and negative examples for property (S) and discuss its
connection with the existence of an equivalent strictly convex norm.

Barbara Koclęga-Kulpa On a functional equation connected to Hermite quadra-
ture rule
(joint work with T. Szostok)

In the talk we deal with the functional equation

F (y)− F (x) = (y − x)
[
αf(x) + βf

(x+ y

2

)
+ αf(y)

]
+ (y − x)2[g(y)− g(x)],

which is connected to Hermite quadrature rule. It is easy to note that particular
cases of this equation generalize many well-known functional equations connected
to quadrature rules and mean value theorems. Thus the set of solutions is too
complicated to be described completely and therefore we prove that (under some
assumptions) all solutions of the above equation have to be polynomials.

We obtain the aforementioned result using a lemma proved by M. Sablik, how-
ever this lemma works only in case β 6= 0. Taking β = 0, we obtain the following
equation

F (y)− F (x) = (y − x)[f(x) + f(y)] + (y − x)2[g(y)− g(x)],

which will also be solved in the talk.
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Zygfryd Kominek On pexiderized Jensen-Hosszú functional equation on the unit
interval

We solve the functional equation of the form

2f
(x+ y

2

)
= g(x+ y − xy) + h(xy)

in the class of real functions defined on the unit interval [0, 1]. We prove that it
is not stable, but if two functions from the triple {f, g, h} coincide the analogue
equation is stable in the Hyers-Ulam sense.

Dawid Kotrys Hermite-Hadamard inequality for convex stochastic processes

In 1980 K. Nikodem introduced convex stochastic processes and investigated
their regularity properties. In 1992 A. Skowroński obtained some further results
on convex stochastic processes which generalize some known properties of con-
vex functions. The aim of this talk is to extend the classical Hermite-Hadamard
inequality to convex stochastic processes.

Grażyna Łydzińska On iterative roots of some multifunctions with a unique
set-value point

In [1] and [2] the authors considered the problem of the existence of square
iterative roots of multifunctions with exactly one set-value point. In this talk we
present a generalization of some results from these papers.

[1] L. Li, J. Jarczyk, W. Jarczyk, W. Zhang, Iterative roots of mappings with a unique

set-value point, Publ. Math. Debrecen 75 (2009), 203–220.

[2] W. Jarczyk, W. Zhang, Also set-valued functions do not like iterative roots, Elem.
Math. 62 (2007), 73–80.

Ewelina Mainka-Niemczyk Set-valued sine families

Let K be a convex cone in a normed linear space X and let Ft:K → n(X),
Et:K → n(K) for t ≥ 0. A family {Et : t ≥ 0} is called a sine family associated
with family {Ft : t ≥ 0} if

Et+s(x) = Et−s(x) + 2Ft(Es(x)), 0 ≤ s ≤ t, x ∈ K.

Our primary objective in the talk is to show some properties of sine families,
such as continuity and correlation with cosine families. Moreover, an integral
representation of sine families is given.

Judit Makó Implications between approximate convexity properties and approxi-
mate Hermite-Hadamard inequalities
(joint work with Zs. Páles)

In this talk, the connection between the functional inequalities

f
(x+ y

2

)
≤ f(x) + f(y)

2
+ αJ(x− y), x, y ∈ D
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and

1∫

0

f(tx+ (1 − t)y)ρ(t) dt ≤ λf(x) + (1 − λ)f(y) + αH(x− y), x, y ∈ D

is investigated, where D is a convex subset of a linear space, f :D → R,
αH , αJ :D − D → R are even functions, λ ∈ [0, 1], and ρ: [0, 1] → R+ is an in-
tegrable nonnegative function with

∫ 1

0
ρ(t) dt = 1.

Bartosz Micherda On some inequalities of Hermite-Hadamard-Fejér type for
(k, h)-convex functions
(joint work with T. Rajba)

Let k, h be two given real functions defined on the interval (0, 1), and choose
a nonempty set D ⊂ R. Then a function f :D → R will be called (k, h)-convex if,
for all x, y ∈ D and t ∈ (0, 1), k(t)x+ k(1− t)y ∈ D and

f(k(t)x+ k(1− t)y) ≤ h(t)f(x) + h(1− t)f(y). (1)

Condition (1), for conveniently chosen mappings k and h, produces various
families of well-known functions, e.g. s-Orlicz convex functions, h-convex func-
tions, subadditive functions and starshaped functions.

In our talk we present two new inequalities of Hermite-Hadamard-Fejér type
for (k, h)-convex functions, and we apply them to some special kinds of mappings.
This extends results given e.g. in [1] and [2].

[1] M. Bombardelli, S. Varošanec, Properties of h-convex functions related to the

Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl. 58 (2009), 1869–1877.

[2] S.S. Dragomir, S. Fitzpatrick, Hadamard’s inequality for s-convex functions in the

first sense and applications, Demonstratio Math. 31 (1998), 633–642.

[3] B. Micherda, T. Rajba, On some Hermite-Hadamard-Fejér inequalities for (k, h)-
convex functions (preprint).

Krzysztof Misztal Midconvexity for finite sets
(joint work with Jacek Tabor and Józef Tabor)

Motivated by increasing role of computers we introduce two definitions of mid-
convexity for a finite subset X of RN :

Definition 1
We say that W ⊂ X is X-midconvex if

v + w

2
∈ X =⇒ v + w

2
∈ W, v,w ∈W.

Definition 2
We say that W ⊂ X is function X-midconvex if there exists a function f :X → R+

such that

x1 + x2

2
∈ X =⇒ f

(x1 + x2

2

)
≤ f(x1) + f(x2)

2
, x1, x2 ∈ X

and W = f−1(0).
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The properties of such notions are investigated, and the analogues of some

classical results are shown. In particular we show that, for the second definition,
an analogue of the theorem stating that compact convex set in R

N is a convex hull
of its extremal points is valid.

Janusz Morawiec On a problem of Nicole Brillouët-Belluot

We solve the problem posed by Nicole Brillouët-Belluot during the 49th Inter-
national Symposium on Functional Equations determining all continuous bijections
f : I → I satisfying

f(x)f−1(x) = x2, x ∈ I,

where I is an arbitrary subinterval of the real line.

Marek Niezgoda Schur-convexity and similar separability of vectors

Let G be a compact group acting on an inner product space (V, 〈·, ·〉). A vector
y ∈ V is said to be G-majorized by a vector x ∈ V , written as y ≺G x, if y lies
in the the convex hull of the orbit {gx : g ∈ G}. A function F :V → R is called
G-increasing if for x, y ∈ V , y ≺G x implies F (y) ≤ F (x).

A group G acting on V is said to be a reflection group, if G is the closure of
a subgroup of the orthogonal group O(V ) generated by a set of reflections in the
form Srx = x− 2〈x, r〉r for x ∈ V , where r ∈ V , ‖r‖ = 1.

A differential characterization of G-increasing functions, due to Eaton and
Perlman, is as follows.

Let G be a reflection group acting on V with dimV < ∞. Assume F :V →
R is a G-invariant function, i.e., F (gx) = F (x) for x ∈ V and g ∈ G. If F
is differentiable on V , then a necessary and sufficient condition that F be G-
increasing on V is

〈x, r〉 · 〈∇F (x), r〉 ≥ 0

for x ∈ V and r ∈ V such that Sr ∈ G, where ∇F (x) stands for the gradient of F
at x.

In the particular situation when G is the permutation group Pn acting on
V = R

n, the preorder ≺G reduces to the classical majorization ≺ on R
n. In this

case, the G-increasing functions are called Schur-convex functions.
A differential characterization of Schur-convex functions is included in the fol-

lowing Schur-Ostrowski’s Theorem.

If F :Rn → R is a symmetric differentiable function, then a necessary and
sufficient condition that F be a Schur-convex function on R

n is

(xi − xj)
( ∂F
∂xi

(x)− ∂F

∂xj
(x)

)
≥ 0, x ∈ R

n, i, j = 1, 2, . . . , n.

The aim of this talk is to present some extensions of the sufficiency part of
Schur-Ostrowski and Eaton-Perlman’s Theorems from majorized vectors to simi-
larly separable vectors. A generalized Schur-Ostrowski’s condition is introduced.
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The obtained results are applied for cone orderings and group-induced cone order-
ings.

Agata Nowak On a generalization of the Gołąb-Schinzel equation

Inspired by a problem posed by J. Matkowski in [1] we investigate the equation

f
(
p(x, y)(xf(y) + y) + (1− p(x, y))(yf(x) + x))

)
= f(x)f(y), x, y ∈ R,

where functions f :R → R, p:R2 → R are assumed to be continuous.

[1] J. Matkowski, A generalization of the Gołąb-Schinzel functional equation, Aequa-
tiones Math. 80 (2010), 181–192.

Andrzej Olbryś On some derivatives and (s, t)-convex functions

In our talk we consider some kinds of derivatives and investigate their connec-
tions with (s, t)-convexity.

Zsolt Páles On the generalization of the lower Hermite-Hadamard inequality and
Korovkin type theorems

We investigate functions that satisfy an approximate or strenghtened version
of the lower Hermite-Hadamard inequality. Under certain assumptions we deduce
that they are also approximately or strongly convex in an appropriate sense. The
approach involves certain Korovkin type approximation theorems.

Boris Paneah On the general theory of multidimensional functional operators:
new problems and new approaches

At first, using the frameworks of the classical triad: where we are? who we
are? where do we go? we discuss the notion “General theory of MFO”. The most
meaningful part here is undoubtedly nonphilosophical second part. Up to recently
the only solvability of the Ulam–stability problem for new functional operators
traditionally considered as an advance in the general theory of MFO. But now
such approach can not be treated as progressive and, moreover, it is harmful one.

The following problem is deep, very interesting, and plays an important role
in applications:

given an MFO P, to describe asymptotic behavior of solutions to nonhomoge-
neous MFE

PF = Hε(x), x ∈ D ⊂ R
n

with Hε(x) = O(ε), as ε→ 0.

In his book Ulam guessed the answer for the Cauchy operator, and Hyers
verified this. The answer is:

F (t) = λt+O(ε),

where λ is an arbitrary real number. Thus, the function ϕ(t) = λt is the main
term of the asymptotic of the solution to the equation

PF = Hε, as Hε → 0 for ε→ 0.
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The excellent question, excellent answer, and . . . no mystical stability.

In 2006 it was established something cardinally new in searching asymptotic
behavior of the same function F . Namely, to identify the main term of the asymp-
totic we do not need to know the function PF on the full domain D. It suffices
to know it only at the points of a curve Γ (Γ-asymptotic). This result generates
very actual problem. Given an operator P to describe a set of submanifolds Γ for
which the Γ-asymptotic problem

PF |Γ= Hε(x), x ∈ D, Hε(x) = O(ε) =⇒ F = ψ +O(ε)

is solvable.
It is not difficult to formulate a series important technical problems leading to

the significant extension of the class MFO of operators P generating for some Γ
a solvable Γ-asymptotic problem.

Example: a = b+ c.
The following problems are formulated in a general form for the first time,

although some particular cases have been considered earlier by the speaker.

Inverse problem. To describe a class of MFO in a domain D such that any
operator from this class can be uniquely determined by its asymptotic behavior.

It is a surprising result reminding the famous inverse problem in the spectral
theory of the differential operators. The possibility to reconstruct an MFO oper-
ator using only the asymptotic behavior of the solution to the equation PF = Hε

must find many important applications.

Uniqueness problem. Given an MFO operator P in a domain D ⊂ R
n, to find

a curve Γ ⊂ D such that

if PF |Γ= 0, then PF = 0 in D.

It is an analogue of the famous uniqueness theorem in the theory of holomorphic
functions.

Magdalena Piszczek The properties of functional inclusions and Hyers-Ulam
stability

We show the properties of some inclusions, especially we prove that a set-valued
function satisfying these inclusions admits, in appropriate conditions, a unique
selection. As a consequence we obtain a result on the Hyers-Ulam stability of the
functional equation

Ψ ◦ f ◦ a = f,

where Ψ:Y → Y , f :K → Y , a:K → K, K is a nonempty set and Y is a complete
metric space.

Wolfgang Prager On a system of inhomogeneous linear functional equations
(joint work with J. Schwaiger)

Given a,A ∈ R with aA 6= 0, and an additive function φ:R → R, we give the
possible additive solution(s) of the equation

α(ax)−Aα(x) = φ(x). (1)



14th International Conferene on Funtional Equations and Inequalities [131℄
Imposing the same assumptions as above on b, B, ψ, we consider (1) together with

α(bx) −Bα(x) = ψ(x) (2)

and investigate solvability of the system (1), (2) within the set of additive functions.
Finally, the role of system (1), (2) in our efforts to find necessary and sufficient
conditions for solvability of the inhomogeneous general linear functional equation
will be discussed.

Ludwig Reich Reversible power series and generalized Abel equations
(joint work with P. Kahlig)

An invertible formal power series F with complex coefficients is called reversible
if there exists an invertible series T such that

F−1 = T−1 ◦ F ◦ T (1)

holds. If, in particular, we can choose T (X) = ηX in (1), then (1) yields the
generalized Legendre-Gudermann equation

F−1(X) =
1

η
F (ηX) (2)

for F .
We are interested here in solutions F with F (X) = X + . . . , F (X) 6= X . We

characterize the values of η for which (2) has such a solution, then we construct the
set of all solutions of (2) using ideas of J. Haneczok and we discuss the following
connections with (generalized) Abel equations.

Theorem
(i) F (X) = X + . . . , F (X) 6= X , is reversible if and only if there exists a non-
constant Laurent series and a Möbius transformation L such that

V (F (X)) = L(V (X))

holds.
(ii) A formal series F as in (i) is a solution of (2) if and only if there exists a Laurent
series V and a constant C ∈ C \ {0} such that

V (ηX) = −V (X),

V (F (X)) = V (X) + C

holds.

This theorem can also be used to construct reversible series.

Maciej Sablik Functional equations characterizing future life-time

In our talk we will present a source of functional equations appearing in ac-
tuarial mathematics. The analytic form of future life-time has been an essential
concept for actuaries since it makes calculations easier. Another facilitation of
calculations is used in the procedure of “group insurance” where many lives are re-
placed by one artificial, usually aggregated. The method leads to some functional
equations which in turn characterize models of de Moivre, Gompertz, Makeham
and Weibull among others.
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Jens Schwaiger On the construction of functional equations with prescribed so-
lutions of a certain type

In the literature one may find certain functional equations such that their
general solution is a homogeneous polynomial of degree n where n ≤ 5. One
example is the equation

f(kx+ y)+ f(ky− y) = k2(f(x+ y)+ f(x− y))+ 2k2(k2− 1)f(x)− 2(k2− 1)f(y).

This equation was considered in [1] for k ∈ N, k ≥ 2. One can motivate the special
form of the coefficients not only for this equation but for much more general cases.
For example the following holds true.

Theorem
Let n ∈ N and let ρ1, ρ2, . . . , ρn be rationals different from 0 such that the squares
ρ2i are different in pairs. Then for any given rational number k a certain linear
system of equations has a unique solution (α0, α1, . . . , αn). If, moreover, V,W are
non-trivial rational vector spaces, then all generalized homogeneous polynomials
f :V →W of degree 2n satisfy

f(kx+y)+f(kx−y)+
n−1∑

i=1

αi(f(x+ρiy)+f(x−ρiy))+α0f(x)+αnf(y) = 0, x, y ∈ V.

Provided that k is not a zero of a certain polynomial with rational coefficients this
equation does not have other solutions.

[1] M. Eshaghi Gordji, Ch. Park, M.B. Savadkouhi, The stability of a quartic type func-

tional equation with the fixed point alternative, Fixed Point Theory 11 (2010), 265–
272.

Ekaterina Shulman Subadditive set-functions on groups and applications to
functional equations

Let G be a group and Ω be an arbitrary set. A map F :G → 2Ω is called
subadditive if F (gh) ⊂ F (g) ∪ F (h) for all g, h ∈ G. Let us denote by |M | the
number of elements of a subset M ⊂ Ω. It will be shown that

∣∣∣
⋃

g∈G
F (g)

∣∣∣ ≤ 4 sup
g∈G

|F (g)|.

We also establish the extensions of this inequality to maps with values in measur-
able subsets of a measure space and to maps with values in subspaces of a linear
space. We apply this technique to the functional equation

f(g1g2 . . . gn) =
∑

E

NE∑

j=1

uEj v
E
j , (1)

where E runs through all proper non-empty subsets of {1, 2, . . . , n}, NE ∈ N

and for each E, the functions uEj only depend on variables gi with i ∈ E, while
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the vEj only depend on gi with i /∈ E. Namely, we prove that any bounded
continuous function f on G satisfying (1), for an n > 2, is a matrix element of
a continuous finite-dimensional representation of G. Earlier this was known only
for topologically finitely generated G.

Dhiraj Kumar Singh On three sum form functional equations
(joint work with P. Nath)

The general solutions of three sum form functional equations, without imposing
any regularity conditions on any of the mappings appearing in these equations,
have been obtained.

Barbara Sobek Wilson’s functional equation on a restricted domain

Assume that X is a real or complex linear topological space and D is a non-
empty, open and connected subset of X ×X . Let

D+ := {x+ y : (x, y) ∈ D},
D− := {x− y : (x, y) ∈ D},
D1 := {x : (x, y) ∈ D for a y ∈ X}

and

D2 := {y : (x, y) ∈ D for an x ∈ X}.
We study the equation

f(x+ y) + g(x− y) = h(x)k(y), (x, y) ∈ D,

where f :D+ → C, g:D− → C, h:D1 → C and k:D2 → C are unknown functions.
We investigate the problem of existence and uniqueness of extensions of the solu-
tions and determine the general solution of this equation. Some results concerning
conditional d’Alembert’s equation are also presented.

Przemysław Spurek Strict numerical verification of optimality condition for
approximately midconvex functions
(joint work with Jacek Tabor)

Let X be a normed space and V be a convex subset of X . Let α:R+ → R+.
A function f :V → R is called α-midconvex if

f
(x+ y

2

)
− f(x) + f(y)

2
≤ α(‖x− y‖), x, y ∈ V.

It can be shown that every continuous α-midconvex function satisfies the following
estimation:

f(tx+ (1 − t)y)− tf(x)− (1 − t)f(y) ≤
∞∑

k=0

1

2k
α(d(2kt‖x− y‖)), t ∈ [0, 1],

where d(t) := 2dist(t,Z) for t ∈ [0, 1].
An important problem lies in verifying for which functions α the above esti-

mation is optimal. The conjecture of Zs. Páles that this is the case for functions
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of type α(r) = rp for p ∈ (0, 1), was proved by J. Makó and Zs. Páles in [1].

In this paper we present a computer assisted method to verifying optimality of
this estimation in the class of piecewise linear functions α.

[1] J. Makó, Zs. Páles, Approximate convexity of Takagi type function, J. Math. Anal.
Appl. 369 (2010), 545–554.

Henrik Stetkær Levi-Civitá’s functional equation

Let G be a group. Levi-Civitá’s functional equation

f(xy) =

N∑

l=1

gl(x)hl(y), x, y ∈ G, (1)

where f, g1, . . . , gN , h1, . . . , hN :G→ C are unknown, has been thoroughly studied
on abelian groups by Székelyhidi in [1]. But little is known about its solutions on
non-abelian groups, even for N as small as 2.

We shall briefly discuss the general structure of the solutions of (1) on any
group G, before we concentrate on a choice example, viz.

f(xy) = f(x)h(y) + f(y), x, y ∈ G,

f, h:G→ C being the unknown functions. It turns out that h is multiplicative on
any group G, if f 6= 0. We will prove that f is central on all nilpotent groups, and
give an example of a non-central f on the (ax + b)-group. We conclude that the
solution formulas for f are the same on nilpotent groups as on abelian, and that
a new phenomenon occurs on the (ax+ b)-group.

[1] L. Székelyhidi, Convolution type functional equations on topological abelian groups,
World Scientific Publishing Co., Inc., Teaneck, NJ, 1991.

Stevo Stević On some nonlinear recurrences

Studying nonlinear difference equations and systems has attracted considerable
attention in the last few decades. Usually such equations cannot be solved so that
the behavior of their solutions is investigated by various analytic methods. Here
we present several classes of difference equations and systems whose solutions can
be explicitly found.

First we present some classical methods for solving the nonhomogeneous linear
difference equation of the first order

xn+1 = pnxn + qn, n ∈ N0,

where (pn)n∈N0 and (qn)n∈N0 are arbitrary real sequences and x0 ∈ R. Then we
emphasize the role of the equation by giving numerous applications of it, for ex-
ample in: getting Cauchy-Binet formula, solving nonhomogeneous second order
difference equation with constant coefficients, solving some homogeneous second
order difference equations with nonconstant coefficients, solving Beverton-Holt dif-
ference equation and studying its periodic solutions etc.
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Further we show that the system of difference equations

un+1 =
wn

1 + sn
, vn+1 =

tn

1 + rn
,

where wn, sn, tn and rn are some of the sequences un or vn, with u0, v0 ∈ R, can
be solved in many cases.

Finally we show that the system of difference equations

xn+1 =
axn−1

bynxn−1 + c
, yn+1 =

αyn−1

βxnyn−1 + γ
, n ∈ N0,

where parameters a, b, c, α, β, γ and initial values x−1, x0, y−1, y0 are real numbers,
can be also solved.

[1] S. Stević, More on a rational recurrence relation, Appl. Math. E-Notes 4 (2004),
80–85.

[2] S. Stević, On a system of difference equations, Appl. Math. Comput. (to appear).

[3] S. Stević, On some solvable systems of difference equations, Appl. Math. Comput. (to
appear).

László Székelyhidi Polynomial functions on Abelian groups

Polynomial functions on Abelian groups play a basic role in the theory of
functional equations and spectral analysis. In this paper we investigate the ring-
structure of polynomial functions on topological Abelian groups. We show that
polynomial functions form a Noetherian ring if and only if the linear space of con-
tinuous homomorphisms of the group into the additive group of complex numbers
is finite dimensional. In the case of discrete Abelian groups this is equivalent to
the presence of spectral synthesis.

Jacek Tabor New approach to entropy
(joint work with M. Śmieja)

The classical approach to entropy lies in the division of the given measure space
into pairwise disjoint sets. We show that we can equivalently use a partition of
the measure into measures with not necessarily disjoint supports.

The basic role in our proof plays the classical Hardy-Littlewood-Polya Theo-
rem.

Józef Tabor Uniform convexity
(joint work with Jacek Tabor)

We present some convenient tools to compute the modulus of uniform convexity
of a given convex function f : I → R, where I is a subinterval of R.

We first show that if f ′ is convex or concave then the modulus of uniform
convexity of f equals to the Bergman distance at a respective endpoint of I.
Then, in our main result, we give an estimation from below the modulus of uniform
convexity of f by applying moduli of uniform convexities of f restricted to intervals
J,K such that I is the union of J and K.
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Jointly the two above mentioned results allow to estimate the moduli of uniform

convexity for a large class of convex functions.

Jörg Tomaschek On the solvability of generalized Dhombres functional equations

The generalized Dhombres functional equation in the complex domain was
introduced in [1] and is given by

f(zf(z)) = ϕ(f(z)), (1)

where f is an unknown function and ϕ is a known one. In [2] it is shown that (1)
is equivalent to the transformed generalized Dhombres functional equation

g(w0z + zg(z)) = ϕ̃(g(z)).

We discuss solutions f of (1) with f(0) = w0, where w0 is a root of unity of order
l ≥ 2, and we characterize those equations (1) which have non-trivial solutions.
After that an example where the given function ϕ̃ is a Möbius transformation is
computed.

[1] L. Reich, J. Smítal, M. Štefánková, Local analytic solutions of the generalized Dhom-

bres functional equation I, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II
214 (2005), 3–25.

[2] L. Reich, J. Smítal, M. Štefánková, Local analytic solutions of the generalized Dhom-

bres functional equation II, J. Math. Anal. Appl. 355 (2009), 821–829.

Hamid Vaezi Fuzzy approximation of an additive functional equation

In this paper, we investigate the generalized Hyers-Ulam-Rassias stability of
the functional equation

m∑

i=1

f

(
mxi +

m∑

j=1,j 6=i
xj

)
+ f

( m∑

i=1

xi

)
= 2f

( m∑

i=1

mxi

)

in fuzzy Banach spaces. Some applications of our results to the stability of the
above equation in the case when f is a mapping from a normed space to a Banach
space will also be presented.

Szymon Wąsowicz Spline approximation method in higher-order convexity busi-
ness

It is well-known that a continuous convex function f : [a, b] → R can be uni-
formly approximated on [a, b] by convex polygonal functions. This property allows
us to give easy proofs of many linear inequalities involving (continuous) convex
functions, among others of the celebrated Hermite-Hadamard inequality

f
(a+ b

2

)
6

1

b− a

∫ b

a

f(x) dx 6
f(a) + f(b)

2
. (1)

Our considerations will be based on the observation that the left hand side in-
equality of (1) gives the better estimate of the integral mean value from the right
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one

1

b− a

∫ b

a

f(x) dx− f
(a+ b

2

)
6
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx, (2)

whenever f is convex on [a, b].
The similar approximation property holds for convex functions of higher order.

Namely, every continuous n-convex function f : [a, b] → R can be uniformly approx-
imated on [a, b] by n-convex spline functions of order n (Bojanic, Roulier, 1974).
In the talk we will show an aplication of this result to prove some counterparts of
(2) for convex functions of higher order.

Alfred Witkowski Interpolations of Schwab-Borchardt mean

For positive numbers x, y the pair of sequences

xn+1 =
xn + yn

2
, yn+1 =

√
yn
xn + yn

2
, x0 = x, y0 = y (1)

converges to a common limit called the Schwab-Borchardt mean

SB(x, y) =





√
y2 − x2

arccos x
y

, x < y,

√
x2 − y2

arccoshx
y

, y < x,

x, x = y.

Algorithm (1) was known to Gauss but has been rediscovered by Borchradt and
named after him.

Two means introduced by Seiffert

P (x, y) =





x− y

2 arcsin x−y
x+y

, x 6= y,

x, x = y,

T (x, y) =





x− y

2 arctan x−y
x+y

, x 6= y,

x, x = y

are of great interest for many mathematicians. Neuman and Sándor proved that
both are particular cases of the Schwab-Borchardt means, namely

P (x, y) = SB
(√

xy,
x+ y

2

)
and T (x, y) = SB

(
x+ y

2
,

√
x2 + y2

2

)
.

Interesting inequalities between P , T , arithmetic, geometric, logarithmic, iden-
tric and power means were obtained by many authors using analytic approach or
properties of the Schwab-Borchardt algorithm.

In this talk we use geometric properties of the “upper” part of SB to generalize
those results and to obtain some new estimates. In particular we show some new
interpolations of the Seiffert means.
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David Yost Pseudolinear functions, Banach spaces and polyhedra

We begin with F -spaces (which are not necessarily locally convex) and a class
of mappings between them defined by a certain functional inequality. We briefly
describe how their study led us to some results about Minkowski decomposability
of finite-dimensional convex sets.

Marek C. Zdun On some applications of Kuczma’s ideas to Schröder’s equation
in multidimensional case

Let U ⊂ R
N be a neighbourhood of the origin, a function F :U → U be of class

C2 and 0 ∈ IntU be an attractive fixed point of F . We consider a problem when
a regular solution ϕ of Schröder’s equation

ϕ(F (x)) = Sϕ(x),

where S = dF (0), is given by

ϕ(x) = lim
n→∞

S−nFn(x).

We give some sufficient conditions for truthfulness of this formula as well as some
conditions which imply its falsehood.

Marek Żołdak Approximately convex functions on Abelian topological groups

Let (G,+) be an Abelian topological group and let α:G → R+ be an even
function. A function f :D → R, where D is a subset of G, is called α-convex if

f(z) ≤ f(x) + f(y)

2
+ α(x − y)

for all x, y, z ∈ D such that x+ y = 2z.
Our main result is that if α(0) = 0, α is continuous at zero, D is open and

connected, f is α-convex and locally bounded above at a point, then f is locally
uniformly continuous. The same is true if we replace the assumption that f is
locally bounded above at a point by assumption that f is Haar measurable or
Baire measurable.Problems and Remarks
1. Remark.

We consider the Sierpiński Carpet L (defined in [1]), which is the ICFEI-Logo-
Set. For convenience, we work with the set shifted and sized according to the
requirement

conv{L} =
[
− 1

2
,
1

2

]2
.

From the symmetry and invariance properties of this set we obtain the following
covering of L by its eight subsets (the self-similarity equation)

L =
1

3
A+

1

3
L =

⋃

a∈A

(1
3
a+

1

3
L
)
, (1)
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where A = {−1, 0, 1}2 \ {(0, 0)}. Accordingly, we seek a suitably invariant Borel
probability measure µL concentrated on L. In terms of the random variables

• L is a 2-dimensional random variable (r.v.) with the probability distribution
(p.d.) PL = µL,

• A is an independent 2-dimensional r.v. with the classical p.d. PA = P class
A

on the set A,

the expected invariance of µL is expressed as follows (see (1))

PL =
1

8

∑

a∈A
P 1

3a+
1
3L

= P 1
3A+ 1

3L
= P 1

3A
∗ P 1

3L
, (2)

where ∗ stands for the convolution of measures. Now, property (2) is equivalent
to the following Poincaré equation for the characteristic function of L

ϕL(t) = ϕ 1
3A

(t) · ϕ 1
3L

(t) = ϕA

( t
3

)
· ϕL

( t
3

)
. (3)

Thus, by iteration procedure, with the use of continuity at 0 only (limx→0 ϕL(x)
= 1), we arrive at the unique solution of (3)

ϕL(t) =
∞∏

n=1

ϕA

( t

3n

)
= ϕS(t),

where almost surely S =
∑∞

n=1
An

3n and the random vectors An for n ∈ N are
independent, all with the same classical p.d. on A. Since the intersection of L and
the open square (− 1

6 ,
1
6 )

2 is empty, and the same property has the set of values of
the series S, with the use of the symmetry of L we obtain the following well-known
result

Corollary
The Borel measure µL = PL concentrated on L and satisfying (2) exists and is
unique. Moreover, all possible values of the infinite sums of vectors

∑∞
n=1

an
3n with

an ∈ A = {−1, 0, 1}2 \ {(0, 0)} form a set of full measure µL.

[1] W. Sierpiński, On a curve which contains the image of any curve (Russian), Mat. Sb.
30 (1916), 267–287.

Joachim Domsta

2. Remark.

Let d denote the distance function from integer numbers defined by

d(x) := inf{|x− k|, k ∈ Z}.

Then one can see that d is nonnegative and even. It is not difficult to prove that
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d is also subadditive. It easily follows from these properties that

|d(x) − d(y)| ≤ d(x − y), x, y ∈ R. (1)

As an application of these properties we have the following result.

Theorem
Let a, b, a1, b1, . . . , ak, bk be positive numbers such that the rectangle of sides a, b
is the union of rectangles of sides ai, bi (i = 1, . . . , k) such that these rectangles
have no interior points in common. Then

d(a)d(b) ≤
k∑

i=1

d(ai)d(bi). (2)

Proof. Assume that I = [0, a] × [0, b] and Ii = [xi, xi + ai] × [yi, yi + bi] for
some points (xi, yi) ∈ I. Let

f(x, y) := d′(x)d′(y), (x, y) ∈ I,

and compute the integral of f over I in two ways.
First, using Fubini’s Theorem,

∫

I

f =

a∫

0

( b∫

0

f(x, y) dy

)
dx =

a∫

0

d′(x) dx ·
b∫

0

d′(y) dy

= (d(a)− d(0)) · (d(b)− d(0)) = d(a) · d(b).

Secondly, also using the additivity of the integral and (1),

∫

I

f =
k∑

i=1

∫

Ii

f =
k∑

i=1

xi+ai∫

xi

( yi+bi∫

yi

f(x, y) dy

)
dx

=
k∑

i=1

xi+ai∫

xi

d′(x) dx ·
yi+bi∫

yi

d′(y) dy

=

k∑

i=1

(d(xi + ai)− d(xi)) · (d(yi + bi)− d(yi))

≤
k∑

i=1

|d(xi + ai)− d(xi)| · |d(yi + bi)− d(yi)|

≤
k∑

i=1

d(ai) · d(bi).

Thus, the proof is complete.

The following consequence is a well-known result.
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Corollary
Let a, b, a1, b1, . . . , ak, bk be positive numbers such that the rectangle of sides a, b
can be decomposed as the (almost disjoint) union of rectangles of sides ai, bi (i =
1, . . . , k). Assume that, for all i, either ai or bi is an integer number. Then a or b
is also an integer.

Proof. If ai or bi is an integer then d(ai) · d(bi) = 0 for all i. Thus, by (2), we
get d(a) · d(b) = 0. Therefore, d(a) = 0 or d(b) = 0 holds. This shows that a or b
is an integer.

Zsolt Páles

3. Problem.

Let g:C → C be an entire function, and assume that

g(z) =
1

2
g
(z
2

)
+

1

2
g
(z + 1

2

)
, z ∈ C

holds. Then F. Schottky and G. Herglotz showed that g is constant.
What is known about entire solutions g of functional equations of the form

p0(z)g(z) =

N∑

j=1

pj(z)g(αjz + βj) +R(z), z ∈ C,

where p0, . . . , pN are slowly growing entire functions (e.g. polynomials), R is a
given entire function and αj , βj satisfy appopriate conditions?

Ludwig Reich

4. Problems.

1. Let V denote a translation invariant linear subspace in the space of com-
plex polynomials in k variables. Suppose that (pn)n∈N is a sequence in V which
converges pointwise to the polynomial p. Does it follow that p is in V ? In the case
k = 1 the answer is “yes”. (This problem has been presented at the 49th ISFE,
Graz-Mariatrost, 2011.)

2. Does there exist a strictly descending infinite chain of translation invariant
linear spaces of complex polynomials in k variables? In the case k = 1 the answer
is “no”.

László Székelyhidi

5. Remark.

The classical Hermite-Hadamard inequality

f
(a+ b

2

) (1)

6
1

b− a

b∫

a

f(x) dx
(2)

6
f(a) + f(b)

2

holds for all convex functions f : [a, b] → R. It is well-known that inequality (1)
gives the better estimate of the integral mean value than inequality (2). After
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Sz. Wąsowicz’s talk M. Goldberg asked the speaker the question what about the
multivariate case. Below we give the negative answer.

If S ⊂ R
n is a simplex with vertices p0, p1, . . . , pn, then the following Hermite-

Hadamard type inequality holds:

f
( 1

n+ 1

n∑

i=0

pi

)
6

1

vol(S)

∫

S

f(x) dx 6
1

n+ 1

n∑

i=0

f(pi),

whenever f :S → R is a convex function (cf. [1, 2]).
Now let S = conv

{
(0, 0), (0, 1), (1, 0)

}
be the unit simplex in R

2. Then the
above inequalities have the form

f
(1
3
,
1

3

) (3)

6 2

∫∫

S

f(x, y) dx dy
(4)

6
f(0, 0) + f(0, 1) + f(1, 0)

3
.

For the convex function f(x, y) = x2 we obtain

1

9
6

1

6
6

1

3

which means that inequality (3) estimates the integral mean value better than (4).
Take now another convex function, whose graph is the surface of a pyramid shown
in the picture below.

x

z

y

1

1

1

Then it is easy to observe that for this function inequalities (3) and (4) have the
form

0 6 2
(1
2
− 1

6

)
=

2

3
6 1

and in this case (4) estimates the integral mean value better than (3).

[1] M. Bessenyei, The Hermite-Hadamard inequality on simplices, Amer. Math. Monthly
115 (2008), 339–345.

[2] Sz. Wąsowicz, Hermite-Hadamard-type inequalities in the approximate integration,
Math. Inequal. Appl. 11 (2008), 693–700.

Szymon Wąsowicz and Alfred Witkowski
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6. Problem.

Let us say that a function f :X → Y between normed spaces has the property
Pn (for a fixed n ∈ N) if it is homogenous and satisfies the functional inequality

∥∥∥∥f
( n∑

i=1

xi

)
−

n∑

i=1

f(xi)

∥∥∥∥ ≤ K

n∑

i=1

‖xi‖, x1, . . . , xn ∈ X.

The classic property quasilinearity is simply P2. It is clear that Pn+1 =⇒ Pn
for all n. What about the converse? If we denote by Kn the best constant for
which f has Pn, a short calculation shows that Kn+1 ≤ Kn + K2. Can this
estimate be improved? For the “worst” example (which has X = ℓ1 and Y = R)
it is only known that Kn ≥ logn. (When the domain X is a so-called K-space,
P2 already implies Pn for all n with a common value for K. This class includes
all super-reflexive spaces, all quotients of L∞ spaces, in particular all classical
spaces except ℓ1.) Dropping the homogeneity requirement leads to a very different
problem, which may also be interesting.
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