Zeszyt 51

Prace matematyczne VII

Rok 1974

Feliks Barański, Eugeniusz Wachnicki

ON CERTAIN BOUNDARY VALUE PROBLEMS AND THE ORLICZ SPACE

1. In the paper we shall give the solution of the equations $\Delta u - \sigma^2 u = 0$ and $\Delta^2 u - \sigma^2 \Delta u = 0$ in the circle $D: x^2 + y^2 < R^2$ with convenient boundary functions continuous and boundary functions belonging to the Orlics space. In the paper [1] the similar problem was solved for harmonic functions.

Let C denotes the set of periodic functions, continuous in $[0,2\pi]$ and $L_{\underline{M}}$ the Orlicz space of the functions defined in $[0,2\pi]$ satisfying \triangle_2 condition [2]. Let $|u|_C$ and $|u|_{\underline{M}}$ denotes the convenient norms in these spaces.

2. We shall construct the function $u(\mathbf{x},\mathbf{y})$ of class 0^2 in D satisfying the equation

(1)
$$\Delta u(x,y) - c^2 u(x,y) = 0, c > 0, c constant$$

and the boundary condition

(2)
$$u(x,y) \longrightarrow \varphi(x_0,y_0)$$
 as $(x,y) \longrightarrow (x_0,y_0)$, $(x,y) \in D$, $(x_0,y_0) \in \partial D$.

To the construction of the function u(x,y) we shall use the method of separating the variables with the help of polar coordinates (r,t). Let

$$x = r \cos t$$
, $y = r \sin t$, $0 < r < R$, $0 \le t \le 2\pi$, $v(r,t) = u(r \cos t, r \sin t)$, $f(t) = \varphi(R \cos t, R \sin t)$.

If the function u(x,y) satisfies (1), (2), then the function v(x,t) satisfies the equation

(3)
$$r^{-1}D_{x}(rD_{x}v) + r^{-2}D_{e^{2}}v - e^{2}v = 0, r > 0,$$

and

$$\mathbf{v}(\mathbf{r},\mathbf{t}) \longrightarrow \mathbf{A}, \mathbf{A} = \text{constant}, \text{ as } (\mathbf{r},\mathbf{t}) \longrightarrow (\mathbf{0},\mathbf{t}_0).$$

Let

(5)
$$\mathbf{v}(\mathbf{r},\mathbf{t}) = \mathbf{W}(\mathbf{r})\mathbf{F}(\mathbf{t}).$$

Using 3 after the separation of variables we get a system of ordinary equations

(6)
$$\mathbf{F}(t) + \mathbf{n}^2 \mathbf{F}(t) = 0, \text{ n constant},$$

(7)
$$r^2 \overline{w}'(r) + r \overline{w}(r) - (o^2 r^2 + n^2) \overline{w}(r) = 0.$$

From continuity of v(r,t) follows that n is positive integer or n=0 and we get

$$F_0(t) = cosnt$$
, for $n = 0$,
 $F_n(t) = p_n cosnt + q_n sinnt$, $n = 1,2,3,...$

and

$$W_n(E) = A_n I_n(cE) + B_n K_n(cE), n = 0,1,2,...$$

where p_n , q_n , A_n , B_n are constants and $I_n(cr)$, $K_n(cr)$ the convenient Bessel functions [3]. Since $K_n(cr) \rightarrow \infty$ for $r \rightarrow 0$ and v(r,t) is continuous, then $B_n = 0$ and the functions

 $v_n(r,t) = I_n(or)(\infty_n const + \beta_n sinnt), \infty_n, \beta_n constants, satisfies the equation (3) for <math>r > 0$.

Let

(8)
$$\mathbf{v}(\mathbf{r},\mathbf{t}) = \frac{\mathbf{a_0} \mathbf{I_0}(\mathbf{c}\mathbf{r})}{2\mathbf{I_0}(\mathbf{c}\mathbf{R})} + \sum_{n=1}^{\infty} \frac{\mathbf{I_n}(\mathbf{c}\mathbf{r})}{\mathbf{I_n}(\mathbf{c}\mathbf{R})} \left(\mathbf{a_n} \cos n\mathbf{t} + \mathbf{b_n} \sin n\mathbf{t}\right)$$

and

(9)
$$v(R,t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n const + b_n sinnt) = f(t),$$

an, bn being constants.

3. Now we shall prove some lemmas:

Lemma 1. If the series (9) is uniformly convergent to the continuous function f in the intervall $[0,2\pi]$, then the series (8) converges to f uniformly with respect to t if $r \rightarrow R$.

Proof. Since

$$0 < I_n(or) < I_n(oR)$$
 for $0 < r < R$, $n = 0,1,2,...$

and

$$\lim_{r \to R} \frac{I_{n}(or)}{I_{n}(oR)} = 1, \quad n = 0,1,2,...$$

thus the series (8) is uniformly convergent for $0 < r_0 \le r \le R$ and

$$\lim_{r \to R} v(r,t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \lim_{r \to R} \frac{I_n(cr)}{I_n(cR)} (a_n \cos nt + b_n \sin nt) =$$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = f(t),$$

Let

$$z = x + iy = roost + irsint, r^n cos nt = Re(x+iy)^n = S_n(x,y),$$

$$r^n sin nt = In(x + iy)^n = T_n(x,y),$$

where $S_n(x,y)$ and $T_n(x,y)$ are convenient polynomials. Let

(10)
$$r = \sqrt{x^2 + y^2}$$
, $t = \operatorname{arc cos} \frac{x}{r}$, $t = \operatorname{arc sin} \frac{y}{r}$, $0 \leqslant t \leqslant 2\pi$,

Lemma 2. If $x^2 + y^2 < R^2$ and a_n , b_n are uniformly bounded, then for r and t satisfying (10) the series

$$\frac{\mathbf{a_0}\mathbf{I_0}(\mathbf{or})}{2\mathbf{I_0}(\mathbf{oR})} + \sum_{\mathbf{n=1}}^{\infty} \frac{\mathbf{I_n}(\mathbf{or})}{\mathbf{I_n}(\mathbf{oR})} \ (\mathbf{a_n}\mathbf{cos} \ \mathbf{nr} + \mathbf{b_n}\mathbf{sin} \ \mathbf{nt})$$

a power series.

Proof. Using (10) we get

$$I_0(\alpha z) = \sum_{k=0}^{\infty} {\binom{0}{2}}^{2k} (z^2 + y^2)^k \cdot \frac{1}{k! \ k!}$$

 $I_n(or) = cos nt + I_n(or) b_n sin nt =$

$$= a_n \left(\frac{\sigma}{2}\right)^n \left(r^n \cos nt\right) \sum_{k=0}^{\infty} \left(\frac{\sigma}{2}\right)^{2k} r^{2k} \frac{1}{k!(n+k)!} +$$

$$+ b_{n} \left(\frac{a}{2}\right)^{n} \left(r^{n} \sin nt\right) \sum_{k=0}^{\infty} \left(\frac{c}{2}\right)^{2k} r^{2k} \frac{1}{k! (n+k)!} =$$

$$= a_{n} \left(\frac{a}{2}\right)^{n} S_{n}(x,y) \sum_{k=0}^{\infty} \left(\frac{a}{2}\right)^{2k} \left(r^{2} + r^{2}\right)^{k} \frac{1}{k! (n+k)!} +$$

$$+ b_{n} \left(\frac{a}{2}\right)^{n} T_{n}(x,y) \sum_{k=0}^{\infty} \left(\frac{a}{2}\right)^{2k} \left(r^{2} + r^{2}\right)^{k} \frac{1}{k! (n+k)!} = \sum_{n=0}^{\infty} P_{n}^{0}(x,y).$$

 $P_n^0(x,y)$ being convenient homogenous polynomials of degree n.

Finally we get

(11)
$$\forall (x,t) = u(x,y) = \sum_{n=0}^{\infty} P_n(x,y), \forall (0,t) = P_0(0,0),$$

where $P_n(x,y)$ being convenient homogenous polynomials of degree n.

4. Now we shall prove that the function $u \times y$ defined by the formula (11) is of class 0^2 in D and satisfies the equation (1). In order to prove this theorem we shall use.

Lemma 3. If a_n and b_n are uniformly bounded, then the series (11) is absolutely and almost uniformly convergent in D.

Proof. Since

$$I_{n}(\alpha r) = \left(\frac{\alpha r}{2}\right)^{n} \sum_{k=0}^{\infty} \left(\frac{\alpha r}{2}\right)^{2k} \frac{1}{k!(n+k)!}, n = 0,1,2,...$$

then

$$\frac{I_n(or)}{I_n(oR)} < \left(\frac{r}{R}\right)^n.$$

Consequently the series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{y}{n}\right)^n$$

is a majorant of the series (11). The series

$$\sum_{n=1}^{\infty} \left(\frac{x}{n}\right)^n$$

is convergent for x < R and the series (11) for $x^2 + y^2 < R^2$.

Lemma 4. If an and bn are uniformly bounded then the series

(12)
$$\sum_{n=0}^{\infty} D_{1,j} P_{n}(x,y), \qquad 1,j = 0,1,2,$$

are absolutely and almost uniformly convergent in D.

The lemma follows from the convenient theorems concerning the radio of convergence of derivatives of the power series [4].

Leans 5. If a and b are uniformly bounded then the series

(13)
$$\sum_{n=1}^{\infty} D_{z_{1}^{1} z_{1}^{1}} \frac{I_{n}(\alpha z)}{I_{n}(\alpha z)} (a_{n} \cos nt + b_{n} \sin nt), \quad i, j = 0,1,2,$$

are absolutely and almost uniformly convergent for $0 \leqslant r < R$, $0 \leqslant t \leqslant 2\pi$. Proof. The series

$$k_1 \sum_{n=1}^{\infty} \left(\frac{\pi}{2}\right)^n$$
, $k_2 \sum_{n=1}^{\infty} n \left(\frac{\pi}{2}\right)^n$, $k_3 \sum_{n=1}^{\infty} n^2 \left(\frac{\pi}{2}\right)^n$,

 k_1 , k_2 , k_3 being positive constants, are majorants of the series (13). These series are convergent for r < R, $0 \le t \le 2\pi$.

From lemmas 4 and 5 follows that the function u(x,y) defined by formula (11) is of class 0^2 in D and satisfies the equation (1) in D if $u(0,0) = P_0(0,0)$, and

$$D_{x,y}^{-1} j^{u(x,y)}|_{(0,0)} = \sum_{n=0}^{\infty} D_{x,y}^{-1} p_{n}^{(x,y)}|_{(0,0)}$$

5. Now we shall prove that the function u(x,y) satisfies the boundary condition (2). Let f(s) denote the periodic, continuous function defined in $[0,2\pi]$ and let

$$a_n = \frac{1}{\pi} \int_{0}^{2\pi} f(s) \cos ns \, ds, \, n = 0,1,2,...,$$

$$b_n = \frac{1}{\pi} \int_{0}^{2\pi} f(s) \sin ns \, ds, n = 1,2,3,...$$

and

(14)
$$\forall (\mathbf{r}, \mathbf{t}) = \frac{\mathbf{I}_0(\mathbf{c}\mathbf{r})}{2\mathbf{I}_0(\mathbf{c}\mathbf{R})\pi} \int_0^{2\pi} \mathbf{f}(\mathbf{s}) d\mathbf{s} + \frac{1}{\pi} \sum_{\mathbf{n}=1}^{\infty} \frac{\mathbf{I}_n(\mathbf{c}\mathbf{r})}{\mathbf{I}_n(\mathbf{c}\mathbf{R})} \int_0^{2\pi} \mathbf{f}(\mathbf{s}) \cos \mathbf{n}(\mathbf{s}-\mathbf{t}) d\mathbf{s},$$

(15)
$$P_{\mathbf{r}}(t) = \frac{I_0(c\mathbf{r})}{I_0(c\mathbf{R})} + 2 \sum_{n=1}^{\infty} \frac{I_n(c\mathbf{r})}{I_n(c\mathbf{R})} \cos nt.$$

Since for every $r \in (0,R)$ and $t \in [0,2\pi]$ the series

$$\frac{I_o(cr)}{2\pi I_o(cR)} f(s) + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{I_n(cr)}{I_n(cR)} f(s) \cos n(s-t)$$

is uniformly convergent with respect to $s \in [0,2\pi]$ we get

(16)
$$\mathbf{v}(\mathbf{r}, \mathbf{t}) = \frac{1}{2\pi} \int_{0}^{2\pi} \mathbf{f}(\mathbf{s}) P_{\mathbf{r}}(\mathbf{s} - \mathbf{t}) d\mathbf{t}.$$

Lemma 7. If $f_n(t)$ is a sequence of trigonometric polynomials and $f_n(t)$ is uniformly convergent to f(t) for $t \in [0,2\pi]$ then the functions of the sequence

(17)
$$\mathbf{v_n}(\mathbf{r},\mathbf{t}) = \frac{1}{2\pi} \int_{0}^{2\pi} \mathbf{f_n}(\mathbf{s}) P_{\mathbf{r}}(\mathbf{s}-\mathbf{t}) d\mathbf{s}$$

satisfies the equation (3) for 0 < r < R, and if $r \to R$, $v_n(r,t)$ is unformly convergent to f(t) with respect to $t \in [0,2\pi]$.

Proof. Using the Harnack theorem [4] we conclude that

$$\nabla_n(\mathbf{r},\mathbf{t}) \longrightarrow \nabla(\mathbf{r},\mathbf{t}), \text{ as } \mathbf{n} \to \infty$$

V(r,t) satisfies the equation (3) and from lemma 1 it follows that

$$V(r,t) \longrightarrow f(t)$$
 as $r \rightarrow R$

uniformly for $t \in [0,2\pi]$. Since the solution of the Dirichlet problem is unique, the function V(r,t) is identique with the function V(r,t) defined by (8).

Theorem 1. If the function f satisfies the assumptions of lemma 1, then the function u(x,y) = v(r,t) defined by formula (11) satisfies boundary condition (2).

Proof. It is sufficient to prove that

$$v(r,t) \rightarrow f(t_0)$$
 as $(r,t) \rightarrow (R,t_0)$.

Let $\varepsilon>0$ denotes arbitrary positive number. From continuity of the function f, follows that there exists a number $\delta(\varepsilon)=\delta$ such that if $|t-t_0|<\delta$, then $|f(t)-f(t_0)|<\frac{\varepsilon}{2}$ and from uniformly convergence of v(r,t) to f(t) follows that if $|r-R|<\delta$ then $|v(r,t)-f(t)|<\frac{\varepsilon}{2}$ for every $t\in[0,2\pi]$ and

 $|v(r,t)-f(t_0)| \le |v(r,t)-f(t)|+|f(t)-f(t_0)| < \varepsilon$ if $|t-t_0| < \delta$, $|r-R| < \delta$.

6. Let us suppose that the function $f \in I_{\underline{M}}^{\Delta_2}$, and let

(17)
$$J_{\underline{r}}(f,s) = \int_{0}^{2\pi} f(t)K_{\underline{r}}(s,t) dt.$$

Lemma 8. ([5]). If $K_r(s,t)$ is a set of mesurable functions in the square $P:\{0 \le s \le 2\pi, 0 \le t \le 2\pi\}$, and $0 \le r \le R$ and the exists a constant A such that

$$\int\limits_{0}^{2\pi} \left| \mathbb{K}_{\underline{x}}(s,t) \right| dt \leqslant \underline{A}, \qquad \int\limits_{0}^{2\pi} \left| \mathbb{K}_{\underline{x}}(s,t) \right| ds \leqslant \underline{A}$$

for almost every s or t and for arbitrary $r \in (0,R)$ then the integrals (17) exist for almost every $s \in [0,2\pi]$ and belong to L_M. Moreover if for every function $f \in H$, H being the everywhere dense set in L_M and

(18)
$$\lim_{\substack{\mathbf{r} \to \mathbf{R} \\ \mathbf{p} \to \mathbf{R}}} \int_{\mathbf{0}}^{2\pi} \mathbb{M}(|J_{\mathbf{r}}(\mathbf{f},s) - J_{\mathbf{p}}(\mathbf{f},s)|) ds = \mathbf{0}$$

then (18) is satisfies for every $f \in L_{\mathbf{k}}$.

If the condition (18) is satisfied, then $J_{x}(f,s)$ is convergent in the norm $L_{x}^{\Delta 2}$ and inversely.

The set C is dense in $L_{\rm M}$ and from lemma 8 follows

Lemma 9. If $K_{\mathbf{r}}(s,t)$ satisfies the assumptions of lemma 8 and for every $\mathbf{f} \in \mathbf{C}$, the integrals (17) are convergent to $\Delta^{\mathbf{f}}$ in the norm $\mathbf{L}_{\mathbf{M}}^{\Delta^2}$, then integrals (17) are convergent to every $\mathbf{f} \in \mathbf{L}_{\mathbf{M}}$ in the norm $\mathbf{L}_{\mathbf{M}}^{\Delta^2}$.

7. Now we shall prove

Lemma 10. The kernel $P_{\mathbf{r}}(\mathbf{s})$ defined by formula (15) is nonnegative and

(19)
$$\frac{1}{2\pi} \int_{0}^{2\pi} P_{r}(s) ds = \frac{I_{o}(or)}{I_{o}(oR)}.$$

<u>Proof.</u> Let P, Q denote two points, $P \in D$, $Q \in \overline{D}$, $P \neq Q$ and let G(P,Q) be the Green function for the problem (1), (2) with a pole at the point P. Since G(P,Q) = 0 for $Q \in \partial D$ and G(P,Q) > 0 for $Q \in D$, $Q \notin P$, from the theorem of Olejnik [4] follows that

$$\frac{dG(P,Q)}{dn_Q} > 0$$
 for $Q \in \partial D$,

no being the inward normal. The solution u(x,y) of the Dirichlet problem (1), (2) is given [4] by formula

$$u(x,y) = \frac{1}{2\pi} \int_{\partial D} g(Q) \frac{dG(P,Q)}{dn_Q} ds_Q,$$

where g(Q) denotes boundary function. From the theorem 1 and uniqueness of the solution of the problem (1), (2) follows that

$$\int_{0}^{2\pi} f(s)P_{r}(s-t) ds = \int_{0}^{2\pi} f(s) \frac{dG(P,Q)}{dn_{Q}} ds_{Q}$$

$$Q = (R\cos s, R\sin s)$$

for every function $f \in C$ and that the kernel $P_{r}(s-t)$ is nonnegative. Since the serie (25) is uniformly convergent with respect to a for every r < R, by integration of the series (15) we get (19).

Theorem 2. If $f \in L_{\underline{y}}^{\Delta_2}$ then the function u(x,y) = v(x,t), defined by the formula (16)

1° satisfies the equation (1) in D,

$$2^{\circ}$$
 lim $|\mathbf{v}(\mathbf{r},\cdot)-\mathbf{f}|_{\mathbf{M}}=0.$

<u>Proof.</u> The proof of the condition 1° is similar to that of theorem.

1. In order to prove the condition 2° at first we shall prove 2° for $f \in C$. Let $f \in C$. From theorem 1 follows that for every $\varepsilon > 0$ there exists a number r_0 such that for every $r \in (0,R)$

$$|\mathbf{v}(\mathbf{r},\mathbf{t}) - \mathbf{f}(\mathbf{t})| < \varepsilon$$

uniformly with respect to $t \in [0,2\pi]$ and consequently

$$\int_{0}^{2\pi} \mathbf{M}(\mathbf{v}(\mathbf{r},\mathbf{t}) - \mathbf{f}(\mathbf{t})|) d\mathbf{t} \leqslant \int_{0}^{2\pi} \mathbf{M}(\varepsilon) d\mathbf{t} = 2\pi \mathbf{M}(\varepsilon)$$

for every $r \in (0,R)$. If $\varepsilon \to 0$ then $H(\varepsilon) \to 0$ and

$$|\nabla(\mathbf{r}, \cdot) - \mathbf{f}|_{\mathbf{H}} \to 0$$
 for $\mathbf{r} \to \mathbf{R}$.

From lemma 10 and from the inequality (19) and monotonicity of the function $I_n(cr)([3])$ follows that $P_r(s-t)$ satisfies the assumptions of lemma 8. Using lemma 9 we get the condition 2^0 .

8. Let $\varphi_1(x,y)$, $\varphi_2(x,y)$ be the functions defined on ∂D . We shall construct the function u(x,y) satisfying in D the equation

(20)
$$\triangle^2 \mathbf{u}(\mathbf{x},\mathbf{y}) - \mathbf{c}^2 \triangle \mathbf{u}(\mathbf{x},\mathbf{y}) = 0, \ \mathbf{c} > 0, \ \mathbf{c} \text{ constant}$$

and the boundary conditions

(21)
$$\mathbf{u}(\mathbf{x},\mathbf{y}) \longrightarrow \varphi_{1}(\mathbf{x}_{0},\mathbf{y}_{0}),$$

$$\mathbf{u}(\mathbf{x},\mathbf{y}) \longrightarrow \varphi_{2}(\mathbf{x}_{0},\mathbf{y}_{0})$$

$$\text{if } (\mathbf{x},\mathbf{y}) \in \mathbf{D}, \quad (\mathbf{x}_0,\mathbf{y}_0) \in \partial \mathbf{D}, \quad (\mathbf{x},\mathbf{y}) \rightarrow (\mathbf{x}_0,\mathbf{y}_0), \\$$

The problem (20), (21) is called the Riquier problem.
Using the known theorem [6] we assume that

$$\mathbf{u}(\mathbf{x},\mathbf{y}) = \mathbf{u}_{1}(\mathbf{x},\mathbf{y}) + \mathbf{u}_{2}(\mathbf{x},\mathbf{y})$$

where $u_1(x,y)$ is a harmonic function and $u_2(x,y)$ a function satisfying the equation (1). In order to solve the Riquier problem we shall construct the functions $u_1(x,y)$ and $u_2(x,y)$ such that

(22)
$$\begin{cases} \triangle \mathbf{u}_{1}(\mathbf{x},\mathbf{y}) = 0 & \text{in } \mathbf{D}, \\ \mathbf{u}(\mathbf{x},\mathbf{y}) \rightarrow \varphi_{1}(\mathbf{x}_{0},\mathbf{y}_{0}) - \frac{1}{c^{2}} \varphi_{2}(\mathbf{x}_{0},\mathbf{y}_{0}) & \text{as } (\mathbf{x},\mathbf{y}) + (\mathbf{x}_{0},\mathbf{y}_{0}), \\ \triangle \mathbf{u}_{2}(\mathbf{x},\mathbf{y}) - \mathbf{c}^{2}\mathbf{u}_{2}(\mathbf{x},\mathbf{y}) = 0 & \text{in } \mathbf{D}, \\ \mathbf{u}_{2}(\mathbf{x},\mathbf{y}) \rightarrow \frac{1}{c^{2}} \varphi_{2}(\mathbf{x}_{0},\mathbf{y}_{0}) & \text{as } (\mathbf{x},\mathbf{y}) \rightarrow (\mathbf{x}_{0},\mathbf{y}_{0}). \end{cases}$$

Let

(24)
$$u(x,y) = v_1(x,t) + v_2(x,t),$$

where

(25)
$$v_1(r,t) = \frac{1}{2\pi} \int_0^{2\pi} \left[\hat{f}_1(s) - \frac{1}{e^2} \hat{f}_2(s) \right] \frac{R^2 - r^2}{R^2 - 2Rr\cos(s-t) + r^2} ds,$$

(26)
$$v_2(x,t) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{c^2} f_2(s) P_x(s-t) ds$$

and $f_1(s) = \varphi_1(R\cos s, R\sin s), f_2(s) = \varphi_2(R\cos s, R\sin s).$

Theorem 3. If the functions φ_1 , φ_2 are continuous on ∂D , then the function u(x,y) defined by the formula (24) is of class C^4 in D, satisfies the equation (20) in D and the boundary condition (21).

<u>Proof.</u> The function $v_1(r,t)$ is the Poisson integral, is analytic and satisfies (22). From theorem 1 it follows that the function $u_2(x,y) = v_2(r,t)$ is analytic too and satisfies the conditions (23).

Let V(r,t) denote $\triangle u(x,y)$ in polar coordinates. We shall prove

Theorem 4. If $f_1 \in L_M^{\triangle 2}$, $f_2 \in L_M^{2}$ then the function u(x,y) defined by the formula (24) satisfies the equation (20) in D and the boundary conditions

$$|\mathbf{v}(\mathbf{r},\cdot)-\mathbf{f}_1|_{\mathbf{M}}\to 0 \quad \text{if} \quad \mathbf{r}\to \mathbf{R},$$

$$|\nabla(\mathbf{r},\cdot)-\mathbf{f}_2|_{\mathbf{M}}\to 0 \quad \text{if} \quad \mathbf{r}\to\mathbf{R}.$$

Proof. Using the convenient theorem 1 we get

$$|v_1(r,\cdot) - f_1 + \frac{1}{2}f_2|_{M} \rightarrow 0 \quad \text{if} \quad r \rightarrow R.$$

From theorem 2 follows that the function $u_2(x,y)$ defined by the formula (26) satisfies the equation (20) in D and

$$|\mathbf{v}_2(\mathbf{r},\cdot)| - \frac{1}{2^2} f_2 |_{\mathbf{M}} \to 0$$
 if $\mathbf{r} \to \mathbf{R}$.

From the triangle inequality follows that

$$|v(r,\cdot) - f_1|_{M} \le |v_1(r,\cdot) - f_1 + \frac{1}{c^2} |f_2|_{M} + |v_2(r,\cdot) - \frac{1}{c^2} |f_2|_{M}$$

and consequently (27). The validity of (28) follows from the formula:

$$\triangle \mathbf{u}(\mathbf{x},\mathbf{y}) = \triangle \mathbf{u}_{2}(\mathbf{x},\mathbf{y}) = \mathbf{c}^{2} \mathbf{u}_{2}(\mathbf{x},\mathbf{y}).$$

Theorem 5. If the function u(x,y) satisfies (20) and is of class C^3 in D and of class C^4 in D, then u(x,y) is unique.

Proof. Let

$$u(x,y) = u_1(x,y) + u_2(x,y),$$

 $w(x,y) = w_1(x,y) + w_2(x,y)$

denote the two solution of (20), u1, w1, u2, w2 being the convenient

solutions of (22) and (23). From the uniqueness of the problems (22), (23) follows that $u_1 = w_1$, $u_2 = w_2$ in D and u(x,y) = w(x,y) in D.

Remark. If
$$v(r,t) \rightarrow \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) \text{ as } r \rightarrow E,$$

then the series

$$\frac{\mathbf{a_0}}{2} + \sum_{n=1}^{\infty} (\mathbf{a_n} \cos nt + \mathbf{b_n} \sin nt)$$

is called (B) limes of the series (8). A question arises about the connexion between the Abel-Poisson method and that of (B) summability.

Bibliography

- [1] F. Barański: Zagadnienie Dirichleta dla koła i półkola w przestrzeni Orlicza, unpublished.
- [2] M.A. Krasnosielskij, J.B. Rutnickij; Wypuklyje funkcji i prostranstwa Orlicza, Moskwa 1958.
- [3] N.N. Lebiediew: Funkcje specjalne i ich zastosowania, Warszawa 1957.
- [4] M. Krzyżeński: Partial differential equation of second order, vol.I, Warszawa 1972.
- [5] W. Orlicz: Ein Satz über die Erweiterung von linearen Operationen, St. Math. T.V, Imów 1934.
- [6] I.N. Vekua, New methods for solving elliptic equation. Amsterdam 1960.