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1. In the paper we shall give the solation of the equations
An- c2u=0 and [O21N- 024u « O in the circle D i x2 +y2 < B2
with convenient boundary functions continuous and boundary functions be-

longing to the Qrlios space. In the paper [I] the similar problem was
solved for haraonlo functions.

O let C denotes the set of periodio functions,continuous in [6,2”*t] and
Ljj 2 the Orlicz space of the functions defined in | _0,27r] satisfying

[ 2 condition [2]. Let lulc and latM denotes the convenient norms
in these spaces.

2. Te shall construct the funotlon wu(x,y) of class C2 in D sa-
tisfying the equation

(1) Au(x,y)- e2u(x,y) » 0, ¢>0, 0 constant

and the boundary condition

(2) h(x,y)—>7Cx0,y0) as (x,y)—>(x0y0), (x;y) ~ °»
(*o'yo> ed6D-

To the construction of the function u(x,y) we shall use the ne

thod of separating the variables with the help of polar coordinates (r,t).
Let

X *r cost, y ar sint, 0<r<B, 04t42UT,

v(r,t) = u(roost,rsint), f(t) = $¥(Boost, Bsint).

If the function u(x,y) satisfies (1), (2), then the function
v(r,t) satisfies the equation

(3) r-1Dr (rDrv) ¢ T”b 2T ~ e2™ m Oi *>0»

(¢) ¥ (F»*)-e >v(B,t0) as (r,t)— *(B,t0)
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and
v(r,t)— >A,A = constant:;, as fr,t)-
Let
(5) vfir.t) = f(r)F(t).

Using 3' after the separation of variables ne get a system of ordinary equ-
ations

(6) F (t)+ n2F(t) = 0, n constant,
(7). r2W?r) + rff(‘'r)-(o2r2 + n2)W(r)a 0.

From continuity of v (r,t) follows that n is positive integer or n=0
and ne get

POft)= oosnt, for n = 0,

FQft)= pQcosnt + gQ sinnt, na 1,2,3,...
and

Wi0rt- AV e)+ BhV«)* 1L=o»l«2,...

where pa, q~ Aa, BQ are constants and I”~or), B~Cor) the convenient
Bessel functions [3]. Since KgCor)—»o00 for r -»0 and vfr.t) is con-
tinuous, then BQ = 0 and the functions

vQ(r,t) = lafor) (ocnconst + />asinnt), ocq, constants,sa-

tisfies the equation f3) for r>0.
Let

€  veo- B

and

(9)

aQ, bQ being constants.

3. How we shall prove some lemmas:

Llenmma 1. if the series (9) is uniformly convergent to the conti-
nuous function f in the intervall Co,2Ur], then the series (8) con-
verges to f uniformly with respect to t if r-»B.
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Proof. Since
0<Infor)<InfoB) for 0<r<B, n=20,1,2,..

and

)
lia 1Y0~7 =1. na 0,1,2,
r-»B

thus the series (8) is uniformly convergent for 0<r0”r<B and

a °° 1 (‘or)
1lmv (r,t)= +y |lim g (e”oos nt + bnsin nt) =
r->B n_) r>B a
00

+ Y t(broob nt + bQsin nt)= f(t).

Let
zZ = X + iy = rooet + ireint, rnoos nt = Be(x+iy)n = SQ(x,y),

rn sin nt = Im(x + iy)n = Tn(x,y),
where SQ(x,y) and TQ(x,y) are convenient polynomials. Let

(10) r-v21T7 ."° cos §t t m aro sin J, 0< t4-21T,

Lemma 2. If x2 + y2 <CB2 and aQ, bb are uniformly bounded, then
for r and t satisfying (10) the aeries

al (or) l,,(or)
/ TOM¥7+nbl yoffT ( “n008 " + bn8ia at)

a power series.

Proof. Using (10) we get

V«>*k ¢ y2)* oA .
SO

In(or)8n0O0B nt + Ij~or) bnsin nt =

c Az b
. ﬂA nt~fD ~ Ta ¢
KTO
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+ ba(]) Q*®1* I2k EMTnAgsa” e
kaO

* *ltya V x*>X (f)y2r*2 ¢ J2)* kl7~ryi" +
Je=0

eV ) V x*yY) X [1) (~*7r1) K720)T *X ~ x»y)*
k=0 0=0

P°fx,y) being convenient homogenous polynomials of degree n.

Finally we get ©

(11) v(r,t)=u(i,y)=2z7, P,,rx,y), Tfo.t)» Po(0,0),
n=o

where PQ(x,y) being convenient homogenous polynomials of degree n.

4, Row we shall prove that the function azj defined by the foran-
ia (11) is of class 2 in | and satisfies the equation (l1).In order
to prove this theorem we shall use.

Lemma 3. If aQ and bQ are uniformly bounded, then the series
(11) is absolutely and almost uniformly convergent in D.

Proof. Since

ly(or)=(2]) Y X4) w b oerr e n * °f1yREF*
bo

then
Vp )
"< (%)
Consequently the series

()]

is a majorant of the series (11). The series
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is ooarorgent fox r <B and tbs series (Il1) fox Xx? ¢ 32.

If Ba and bQ axs uniformly boondod than the sexiss

(12) y . g.(*.y). ifi m0,1,2,

sxs absolutely and almost uniformly convergent in D.
Tbs lemma follows from the convenient theorems concerning tbs radio
of oonvexgaaoe of derivatives of the power series [4-].

If SQ and by axe uniformly bounded then the series
0 T.(o
r

r)
(13) 2L Di 3 517 («b oos at + bn sin nt), i,j «0,1,2,
a=ii  * “

axe absolutely and almost uniformly convergent fox O~x”"B, 0<t”™2jr

Proof. The sexiss

»z® wdz-®f. bz Qi) -

n*1 n

fc,, kg, kj being positive constants, axe majorants of the series (13) ,
These series axe ooovexgent fox x<B, 0<t<2Jr.

Proa lemmas 4 and 3 follows that the function u(x,y) defined by
formula (11) is of class c2 in D sad satisfies the equation (1) in D
if u(0,0)« Po(0,0), and

5. Vow we shall prove that the function u(x,y) satisfies the boun
dary oondltion (2). 1st f(s) denote the periodio,continuous function
defined in [0,201"] and let

2 T
auxy j ffs) ooe ns ds, n® 0,1,2,...;

21r
bn«” j* f(s) sin ns ds, n* 1,2,3,...
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and

10 (or) 23 > VvV «) a
(1») vV(r.t) - 57TsTiH J ffs)ds +y Z f ffe~cos n(s-t)ds,
0 n=1 (0]
vV “ > 2 ljjfcr)
(15)  Prft) = TacesT 4 2 TloBJ ©08
n=1
Since for every r£(0,B) and t¢fO0f25r] the series
1 for) 1~ | for)

SArTIJSBT £B) +% z_. felFT fCe) 008 n(s_t)
0 n=1 n

a6[0,23r]

we get

is a sequence of trigonometric polynomials and

t g[0,23r] then the func-

is uniformly oonvergent with respect to
23r

i'16) vfr,t) =5~7.jffs) Pr(s-t)dt.
o

Lemma 7. If fQft)

fn(t) is uniformly convergent to fft) for

tions of the sequence
23r

a7 v(fr,t) =~ Jfnfs)Prfe-t)ds
0

satisfies the equation (3) for 0<r<B,

formly convergent to fft)

and if
with respect to

r->B, vQfr,t) is uni-

t C£0,27r].

Proof. Using the Harnack theorem £¢] we conclude that
vn(r,t)—»v(r,t), as n ®;
7(r,t) satisfies the equation (3) and from lemma 1 it follows that

7(r,t)-—- >f(t) as r —B

uniformly for
unique, the function
fined by f8).

t £[0,2ir].
7(r,t) is

theorem 1.

then the function wu(x,y) = v(r,t)

boundary condition (2).
Proof. It is sufficient to prove that

v(r,t)—>f(t0)

Since the solution of the Dirichlet problemis
identiqgue with the function vfr,t) de-

If the function f satisfies the assumptions of lemma i,
defined by formula

(11) satisfies

as(r,t)—(B,t0).



3

Let £ > 0 denotes arbitrary positive number. Asom continuity of
the function f , follows that there exists a number cf(s) = S suoh that
if It - tQ]< 6, then |If(t)- f(tQ) < j and from uniformly conver-
gence of v (r,t) to f(t) follows that if |Ir —BIl< cT then
lv(r,t)- f(t)] < 5 for every t£[0,23r] and

IvCr.t)- fCtQ| é|v(r,t)- f(t)]| +]f(t)- F(tQ|<6 if It - tQK 6
Ir - Bl <rf.

a2
6. bet us suppose that the function f 6 1 | and let
25
(17) 1,(f,s) = Cf(t~Cs.t) dt.
0
Lemma 8. ([5]). If X (8,t) is a set of mesurable functions in
the square P:[04s"~23r, O<t~ 2:rj, and O<r<B and the exists a
constant A suoh that
25- 2?r
flIL (e ,t) | dt<A, JIKjCs.t)! ds < A
d o]

for almost every s or t and for arbitrary r £ (0,B) then the inte-
grals (17) exist for almost every a£[0,27r] and belong to by. More-
over if for every function f£H,6 H being the everywhere dense set in bjj
and 25-

(18) lim I M@Ur (f.s)- Jp(f,s)])ds

r->B
P-)B

then (18) ie satisfies for every f £ 1r.

If the condition (18) is satisfied,then J (f,s) is convergent in

the norm a2 and inversely.

2
The set 0 is dense in Ly'u' and from lemma 8 follows

temrmn q. if EA~fs.t) satisfies the assumptions of lemma8and for
every f £C, the integrals (17) are convergent toAf in the norm L ",
then integrals (17) are convergent to every f£ 17 in the norm 10

7. How we shall prove

temmalO. The kernel Pr(s) defined by formula (15) is nonnegati-
ve and
10(or)

.p
(19) A ) Ve d*055] *
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Proof. Let P, Q denote two points, P CD, Q£ 5, P % Q and let
G(F,Q) be the Glean function fox the problem (1), (2) with apole at the
point P. Since G(P,Q) a0 fox Q€dD and G(P,Q)>0 for Q(D.Q / P,
from the theorem of Olejnik [4-] follows that

dG™ g)->0 for Q é 3D,

n, being the inward normal.The solution u(x,y) ofthe DIriohlet problem(‘t),
(2) is given [4] by formula

where ¢(Q) denotes boundary function. Prom the theorem 1 and unique-
ness of the solution of the problem (1), (2) follows that

25 2y
\ f(8)Prfs-t) ds = J fCs) asglaij dflQ

® 0 Q |lg - (Boos a, Bain a)

for every function f£C and that the kernel Pr(s-t) Is nonnegative.
Sinoe the serie (25) is uniformly convergent with respect to s fox
every r<B, by integration of the series (15) we get (19).

o
Theorem 2. If f£IN then the function u(x,y) =v(r,t), defi-
ned by the formula (16"

1° satisfies the equation (1) in O,

2° 1lm Ilv (r,0- fI|M= 0.
r->B M

Proof. The proof of the condition 1° is similar to that of theorem
1. In order to prove the condition 2° at first we shall prove 2°for f€G.
Let f £ C. From theorem 1 follows that fox every B> 0 there exista a
number rQ such that for every r£ (0,B)

I\(r,t) - f(t) I<e

uniformly with respect to t C[0,2x] and consequently

5 MMED- FODAS 1 ME) dt =2 )

for every re(0,B). If 8-~0 than M¢(e)->0 and

Jv(x, *)-flj(~~0 for r->B.
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From lemma 10 and from the inequality (19) and monotoniolty of the
function In(or) ([3]) follows that Pr(s-t) satisfies the assumptions
of lemma 8. Using lemma 9 we get the condition 2°.

8. let <~>](xy), ~"gfc.y) be the functions defined on 3D.
shall construct the function u(X]y) satisfying in D the equation

(20) A u(x,y)- cMgu(x,y) * 0, o> 0O, o constant
and the boundary conditions
(21) o(x,y) — »"1(*0.70) »

u(x,y) — >~ 2flo, 70"

if (x,y) € D, x0.Yo0) é 3D, (x,y)-> (x0,y0).

The problem (20), (21) is called the Biquier problem.
Using the known theorem [6] we assume that

u(x,y) = ~(x.y) + unx.y)

where u”Cx.y) is a harmonic function and Ugfx.y) a function satis-
fying the equation (1). |In order to solve the Biquier problem we shall
construct the functions cuy(x,y) and W2(x,y) such that

= 0 in D,

éz) Boralx,y) =

I “(x y)—4tP1(x0,yO)— [] 2(1‘0‘Y0) as (x,y»£r Ly o\

C

I AUg(x,y) - 02U2(x‘y) S 0 in D,

(23)
\’\(auyr—(’; <PZ(.)Oﬂ0) “ (x .y)-> (xo‘}’o).
Let
(24) u(x,y) = vl(r,t) + v2(r,t),
where
(25)

(26) iIJ $ 12r.) */**> 4*
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and f..(s) (Beos s, Bsln B), f2(e)= €2(Bcos B, Bsin B).

Theorem 3. |If the functions n are continuous on 3D, then
the function wu(x,y) defined by the formula (24) is of class Ct in D,
satisfies the equation (20) in D and the boundary condition (21).

Proof. The function v~Tr.t) is the Poisson integral, is analytic and
satisfies (22). Prom theorem 1 it follows that the function Ug”~y) =
= Vgf'r.t) is analytic too and satisfies the conditions (23).

Let V(r,t) denote Au(x,y) in polar coordinates. We shall pro-
ve

Ao )g,z )
Theorem 4. |If i~ ., fg€ 1 then the function wu(x,y) de-
fined by the formula (24) satisfies the equation (20) in D and the
boundary conditions

27" Iv(r,») —f1lg 30 if r —? B,
28" |[V(r«) - f2IM— 0 if r—>B.
Proof. Using the convenient theorem 1 we get

Jvi(r,*) - f1 + f21 M—» 0 if r-*B.

Prom theorem 2 follows that the function UgCx.y) defined by the formu-
la f26' satisfies the equation (20) in D and

v2(r,-) - "M -~o0 -~ r_>B*

Prom the triangle inequality follows that
Jv(r,) - ~1 M4 |vi(r,O - \ f2IM+ Iv2(r,*) - f2IM
c c

and consequently (27). The validity of (28) follows from the formulas
O U(x,y) = AttgCX.yb CnUng.y).
Theorem 5. If the function u(x,y) satisfies (20) and is of class
0N in D and of class C* in D, then wu(x,y) is unique.
Proof. Let
u(x,y) = lijfx.y) ¢ u~x.y),
w(x,y) = wl(x,y) ¢ wW2(x,y)

denote the two solution of (20), u”, w,, ¢, w2 being the convenient
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eolations of (22) and (2?). Prom the uniqueness of the problems (22),

(25) follows that =w”, U =wW2 in D and u(x,y) = w(x,y) in D.
Remark. |If
a
v(r,t)-> cos nt ¢ bQ sin nt) as r—B,
Mel

then the series
00

? * Z < s 00s nt + bQ sin nt)
n=1

is called (B) limes of the series (8). A question arises about the con-
nexion between the Abel-Poisson method and that of (B) summabllity.
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