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Dobiestaw Brydak

ON 1 FUNCTIONAL EQUATION OF INVARIANT CURVES

In the present paper we shall consider the functional equation
(D
where V7 is an unknown real-valued funotion of real variable,Fis a gi-
ven real-valued function of two variables, and s is a given positive num

ber. The solutions < of equation CD are invariant curves under trans-
form

(2) X' = F(x,y), y* = sy

of real plane into itself. The equation of invariant curves has been
investigated by many authors /see [4-] /, but mostly they were the inves-
tigations of the local solutions. In the case where s =1, the gene-
ral continuous solution of equation (1) has been given in the papers [1]
and [2] /and also in [6j and [7] in the special case where F(X,y)= Xx+y/.
Thus we may restrict our considerations to the case where s / 1.

We know /see [4] / that in general the equation CDhas in the neigh-
bourhood of a fixed point of transform C2) a continuous solution de-
pending on an arbitrary funotion. However, under the assumption that the-
se solutions have a limit /finite or not/ at infinity, we can show that
global continuous solutions form the one - or two-parameter family /see
[1]» [2], [6] and [7]/ in case where s = 1.

In the present paper we shall consider continuous solutions of equ-
ation (1l)under the stronger condition when the lim it at Infinity is zero.

We shall assume the following hypotheses;

(Ej) The function F isdefined and continuous on the real planean
its range is the real axis.

(H2) The funotion F is strictly increasing with respeot to the first
variable and it is strictly decreasing with respect to the other.

(Hj) The function F isstrictly increasing with respeot to bothva
riables.
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7 shall stady the solutions of (1) continuous on the real axis,
and satisfying the conditions

3) lim = lia <<x> = 0.
X X -oc

In the sequel it will be very convenient for us to deal with the
function ¢ , defined by the following:

Definition 1. If f is a solution of equation (1), we denote
4 BN = PIx, ¥a)1
C C'°(x. = X, ha+l(x)= p[dax)> , foi al! 0,1,...
The function ¢ depends on the function p . The properties of ¢ and

a are given by the following

lemma 1. If <p is a continuous solution of equation (1), then ¢a
is a continuous function for n =20,1,... and
b p[oa(X)] = snip(x), for xtf-»«-), , n=0,1,...

Proof. The continuity of the functions <Ja is a consequence the of
continuity of functions and F. The formula (6) results from (5),
4 and '11 by simple induction.

In the sequel we shall deal with the positive solutions of equation
11 : and with the case where

(7) 0 <s < 1.
Lemma 2. Let the hypotheses (1u),(Hg) and the condition (7) be

fulfilled. Let ¢ be a continuous positive solution of equation (1).
If a is such a point that the inequality

3 = ¢ fa)y a

holds, then the sequence pa(a) is strictly increasing and

'9) da(a: < ¢paCx) < & a+l(a), for x£[a,p(a)], a=0,1,...

Proof. If n 3 0, the condition (9) means that x 6 [a, ® Ca)] . We are
going to prove (9), for n = 1.

Let us assume that there exists such a point t 6 [a, ®(a)] , that
9" does not hold at t. It is obvious that it has to be

103 a<t < p(as3.

There are two possible cases:

111 Q(t) < o (a)
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or
(12) d2(a)<ad (b).

Let os assume that the inequality (11) holds. As the function & is
continuous, by virtue of lemma 1, there exists such a point c¢ that

(13) oe(t, ¢ (a))
and
(14) h(c) = d(a)

It follows from (1), (4) and (14) that
s <p(c)= ¥>{f [c, <p(0)]} = f [d(o!] = <p[d (a)] = p{?[a, ip(a)]} =sf(a),
whence
<P(0) = ‘P (a).
Thus, we obtain, by virtue of (4) and (14),
flo, Wfc) = ¢ (c)= ¢wra)= ?[a, <?fa)]=?[a, <P(c)].

Since the function 7 is strictly increasing with respect to the first
variable, then by virtue of hypothesis (Hg)» we have a = c¢, which con-
tradicts (13) and (10).

Now, let us assume that the inequality (12) holds.Then,there exists
such a point c that

(15) o £ (a,t)
and
(16) d(0)= b 2(a).

It follows from (1), (4), (16) and (5) that

s<P(c)= <({f[c, <P(c)I} = p[d ("c)]= ¥>[d2(a)] =
=f(p{7[a, f(a)], f(F[a, <f>@)]}) = s2 <f(a).

Thus, we have
V(o) = a ®Ca),
whenoe
Plc.<f(c)]= ® (c)= ®2(a)= p{7[a.«?(a)l.<p(7[a, ~(a)])} =
= 7{i[a, (f@J, s <p(a)}= ?{pla, <P@J, <f(0)} ,

by virtue of (4), (16) and (1). As the function 7 is strictly incre-
asing with respect to the first variable, we obtain

o= o(a),
which contradicts (10) and (15)*
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The condition (9) bas been proved for n = 1. Now, let us assume
that (9) holds for an n> 0. Putting a for ¢ n(a) and x for gp”™x),
we can see that the condition (9) holds for n + 1, by virtue of (9),
already proved for n = 1. The lemma is proved then by induction.

In an analogous way as for lemma 2, we can prove the following

Lemma 3. Let the hypotheses (JLj),(Hj) and the condition (7) be
fulfilled. Let < be a continuous negative solution ofequation (1)
If a is such a point that the inequality (8) holds, then the sequence
haCa® is strictly increasing and tie condition (9) is satisfied.

Lemma 4. Let the hypothesis (H”) and the condition (7) be ful-
filled. Moreover, let either

1° the hypothesis ( be fulfilled and (f be a continuous
negative solution of equation (1)
or

2° the hypothesis (H”~) be fulfilled and be a continuous

positive solution of equation (1).

If ais such a point that the inequality
'17) $®'a) < a,

holds, then the sequence ¢ aCa) is strictly decreasing and
MS) dn(a) > on(x)> ¢a+tllfa), for x([pra), al], n=0,1....

Lemma 5. Let the hypothesis (Lj) and the condition (7) be ful-
filled. Then

a/ if there exists such a point a that the inequality (8) holds,the
sequence ¢ a(a) is strictly increasing and either

1° the hypothesis (H2) is fulfilled and (f is a continuous ne-
gative solution of equation (1)
or

2° ihe hypothesis (H”) is fulfilled and (f is a continuous po-
sitive solution of equation (1),
then the condition (9) is fulfilled.

b/ If there exists such a point a that the inequality (17) holds,
the sequence ¢ a(a) is strictly decreasing and either

1° the hypothesis (Hg) is fulfilled and < is a continuous po-
sitive solution of equation (1)

or
2 the hypothesis (Hj) is fulfilled and (p is a continuous nega-

tive solution of equation (1),
then the condition (18) is fulfilled.



We can prove the lemma 5 la a similar way as the lemma 2.Let us
observe that the conditions of the Ilemma 5 need not Imply the aonoto-
niclty of the sequence ¢ a(a). However, we can prove the following

Lemma 6. Under the conditions of lemma 5
09) ¢ a+l(a) / @ a(a), for n=201,...

Proof. We are going to prove the lemma in the case where the Inequality

(8) holds. In the other case the proof will be similar. Let us suppose
that the inequality (19) does not hold, i.e., there exists such a num
ber p that

(20) ®~rCa) =dp(a).

It follows from the inequality (8) that py 0. W have, from
(1), (a) and (20)

s V'_ G pCa)l *<<>{p(®p(a), w_¢ p(a)])j= Pplp~Ca)] =*>[dP(a)],

whence
sP*1 (£>(a)= Bp @ (a),

by virtue of (6). Since s satisfies the condition (7), the last equ-
ality implies that Unfair 0. W obtain from (4) that

®(a)= P(a,0) and by (5) da(a)= p[da-1(a), O0]> <jn-1(a), for

a=0,1,..., becanse the function ? is strictly increasing with res-
pect to the first variable, and by virtue of (8). 3ut it contradicts
(20). This ends the proof.

As a simple consequence of the foregoing lemmas we obtain the fol-
lowing

Lemma 7. Let the condition (7), the hypotheses (Lj) and either
(Hg) or (Hj) be fulfilled. If <f is a continuous solution of equation
(1) and < is either positive or negative, then for each a satisfying
the inequality

da(a) 4 a

there exists such a positive integer k that the suquence ®da(a) is
strictly monotonie for a> k.

Proof. We are going to prove the lemma in the ease where the hypothesis
'Eg) is fulfilled and the function <> is positive. In the other oases
the proof is similar - we have to apply either lemma 3 or' 4 ,instead of
the lemma 2.

If the inequality (8) holds, then the lemma follows from the lemma
2. If the inequality (17) holds, then either the sequence {°(a) is strict-
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ly decreasing, or there exists such a positive integer k that the se-
quence ¢ n(a) is strictly increasing for n > k, by virtue of lemmas
6 and 2. This ends the proof.

let < be an arbitrarily chosen solution of equation (1) . We are
going to introduce the following

Definition 2. Let <45 be a continuous solution of equation (1). If
an a satisfies the inequality (8), we denote

da = supjc:fx,F(X)]>x,x g (a,c)j,

da inf{c:P[x, * € (o0,a)}.

If an a satisfies the inequality (17), we denote

da = supjc:?[x,FX)] <x,x £ (a,c)},

da inflc:P|x, € *)J< xtx € (c,a)j.

If F[a, h(a)] = a, then we put da = da = a.
Of course, both d& and da can be infinite.

Lemma 8. Let the hypotheses (Lj), (Hg) and the condition

(?) be fulfilled. If is a positive continuous solution of equation
(11, satisfying the condition (3), then

'21) lim <P(x)e lim<P<x) = 0.
X —»da X —) da

Proof. [If both da and da infinite, then the condition

(21) follows from the condition (3)e If F*a, (a)] = a, we have from the
definition 2 and from (1) that

s M(a)= <f{P[a,<p(a)li-"(a),

then <f(a)s 0, because of (7)* In this case the condition (21) fol-
lows from the continuity of the function . Let us consider the case
where F[a, u?(a)]/ a and either d& or da is finite. Let us suppose
that da is finite. Then we have, by virtue of definition 2, that
FEﬂ £(d } da’ whence ('fc(l_): s<"(dd), by virtue of (1) and_ (t)lagn
f(da)= 0, because of (7). In an analogical way we obtain that <~(d )=0
if da is finite. Then, the condition (21) follows from the continuity
of the function.”™.

Lemma 9. Let the hypotheses (H”), and either (Hg) or (H"and
the condition (7) be fulfilled. If <f is a positive continuous solution
of equation (1) satisfying the condition (3)» then for each a

(22) either lim ®on(a)= d or lim ® a(a)= da.
n-»°o a n-»00
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Proof. The condition (22) is obvious if ?[a, if5(a)] = a, because of the
definition 2. If ?[a, 'P(a)]/ a, We are going to prove the lemma In the
case where <P is positive and the hypothesis (Hg) is fulfilled.In the
other oases the proof will be similar.

Let us suppose that the inequality (8) holds, and da<oo Then, by
virtue of lemma 2, there exists the limit _lim ¢ a(a) /finite or not/.
It follows from (8), from the definition 2 and from the hypothesis
() that

a < p[da, <P(a)] < p[da, V(a)] 4 ?(da,o)= da.
We can prove by induction, that

a< da(a) < da, for n=0,1,...
It implies that

c = lim ® n(a) 4 <a and c > a.
n-»«-

Let us suppose that c¢c < da. As (f is a continuous function, we have,
by virtue of lemma 6 and (1), that

o= WB <P[hsa(a)l= lim sb(~(a'.= O,
O—X .

A-»00
because of tbe condition (7). Then we have, by virtue of definition 1,

0 =<fla)= lim ¢a+\a)= lim p[dn(a), <p(Pa(a))] = F(0,0),

a-»o0o n-»» n

which is impossible, because of the definition 2.
I f

(23) da = oo ,

we can show in a similar way that if ¢ = limf[® n(@@)] <€ °° ,
Mn—=vs>

then f[c, ®(c)] = o,
in spite of (23)-
In an analogical way we can prove our lemma in the case where da> - “.

Theorem ~L Let the hypothesis (L) , the condition (7) and either
the hypothesis (Hg) or (Hj) be fulfilled. If if is a continuous so-
lution of equation (1) satisfying the condition (3), then

(24) ®(x) =0, for x 6 (-00, °°).
Proof. Let us assume that there exists suoh a point a that
(25) <P@) > O.

It follows from the lemma 9 and from the condition (3) that there exists
suoh a point c([da,a] that f(.0) = s<p(a). Let us put

(26) tl = inf{c : <P(x)> s<P(a), c<x<(a}.
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We have from (26) that

<4 € faa, a).

Similarly, it follows from the lemma 9 that there exists such a point
t2&[da,t2] that <P(x)<. s~>(a), for x£[d& tg]. As the functions
if and ? are continuous, we obtain from the lemma 9 that there exists
such a point b(j[d~tg]» that F[b, ~(b)] £[t~,a]. But it contra-
dicts (25) and (26), because
?[b, <p(b)] = s~(b)<C s2¥?(a),

by virtue of (D.

If there exists such a point a that <P(a))>0, we obtain the con-
tradiction in an analogical way. This ends the proof.

If the transform (2) is a homeomorphism of the real plane into it-
self, then the inverse transform takes the form

127) X» = f(x,y),y =~7=¢

The transform (27) satisfies the hypothesis (1) and if the transform
2) satisfies the hypothesis (Hg), then the transform (27) satisfies
the hypothesis (A7) and vice versa.As each invariant curve under trans-
form (2) is also invariant under inverse transform (27), then it has to
satisfy the following equation

128) <p{f[x, <?Tx)]}= J«#>(*).

Thus, if s satisfies the condition s > 1 instead of the condition (7),
then the conditions of the theorem 1 are fulfilled for the equation (28).
Then we obtain the following

Theorem 2. Let the hypotheses (H”) and either (HO) or (H") be
fulfilled. If the transform (2) is a homeomorphism of the real plane
into itself, s> 1 and <f ia a continuous solution of equation (1) sa-
tisfying the condition (3), then

N(x) =0, for X £ (-<X,°c).
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