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1. Introduction

In mathematical theories there appear different definitions of the
fulfilment of the translation equation. In this paper we shall consider
two definitions - one of them occurs in the theory of the algebraic
objects ([3], p.63[ the other one is a natural generalization of the
definition occurring in the theory of abstract machines ([1],p.48). The-
se two definitions are not equivalent. In the present paper we shall gi-
ve some necessary and some sufficient conditions of the equivalence of
these definitions. Besides we shall give some oonditions sufficient for
the extensibility of the solutions of the translation equation.

2. Basio notations

By f : A-©? B we shall denote the function /called partial func-
tion/ the domain of which is contained in the set A and the range of
which is contained in the set B. The domain of the function f will

be denoted by Df and the range will be denoted by Gf.
If F is a function of the form:

F s Ax B Ci

then we shall denote

Let G be an arbitrary non-empty set and let "."be an arbitrary
partial mapping of the set G x G in the set G. W shall call the
pair (G, ¢) a multiplicative system.
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We shall consider two following definitions:

Mafinitinn 1 ([3], p.68). The function F : X x G—e-> X, where X
is an arbitrary set and (G, ¢) is an arbitrary multiplicative system,
will be called the solution of the translation equation if the follo-
wing condition is fulfilled:

If F Cx,oc) and oc'fi are defined then F(x, oc-Ji) and
F*F(x, oc"), /51 are defined and the following equality holds:

n f[f tx,n),fi) = F(x, ocp )

Definition 2. The function F : X x G—-"X, where X is an arbi-
trary set and (G, *) is an arbitrary multiplicative system,will be cal-
led the solution of the translation equation if the following conditions
are fulfilled:

(al If oc fi is defined then F(x, °c-/b) is defined
iff f[f(x, oc), p>] is defined,
Cb" If F(x, ac /5) is defined then equality CD holds.

3. Equivalence of Definitions 1 and 2

Definitions 1 and 2 are not equivalent and none of them is implica-
ted by the other. It is illustrated by the following

Example 1*/. Let X be the set of non-negative integers and (G,*|
the semigroup of non-negative integers with the multiplication. Let us

put:
FACx.oc) = xoc ,

where F~'x.ct) is defined iff xoc is an even number; and
F2(x,oc) = XOC for oc 4 0.

It is easy to verify that F* satisfies definition 1 and does not sa-
tisfy definition 2 and on the other hand satisfies definition 2 and
does not satisfy definition 1.

Weé shall prove that if the multiplicative system (G,*) satisfies
some additional assumptions then definitions 1 and 2 are equivalent.

Theorem 1.

If the multiplicative system (G,*) satisfies the following condi-

(2)
(oc;/oeD . tf&G

a/ This example was given by Z. Moszner
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then definitions 1 and 2 are equivalent, i.e. for an arbitrary set X a
function P s X x Geo )X satisfies definition 1 iff it satisfies defi-
nition 2.

Proof. Let os consider an arbitrary set X and an arbitrary multipli-
cative system (G,+) satisfying condition (2) and let P s X x G o0 >X
be a function satisfying definition 1. Let (oc,fi>) belong to the set D.
If p[p (x,0c) ,jb] is defined, then using definition 1 we obtain that
F(x, cx,-Jb) is defined and equality (A) holds.

flow let usassume thatP(x, °c-Jb)is defined. Prom condition (2)
it follows that there exists an element KEG suoh that( o
Using definition 1 we obtain that p[x, (oc-Jb)ey] is defined, i. e.

Fix, oc) is defined. Prom definition 1 it follows that f[f(x,oc), jt]
is defined and equality (1) holds. We have proved that definition 1 im-
plicates definition (2).

How let usconsider the function P s X x G—e—>X satisfying de-
finition 2. Letus assume that F(x,oc) x3 defined and (oc ,Jb) é D.
According to (2) there exists $ 6 G such that P[x,(oc-)b )>ffj is de-
fined and hence by definition 2 P(x, ccd) is defined. Then,from de-
finition 2 it follows that F(x,ct) is defined and equality (1) holds.
In this way we have proved that function P satisfies definition 1 what
completes the proof of theorem 1.

The theorem partially inversed to theorem 1 is the following

Theorem 2. Let X be an arbitrary set suoh that X> 2 and let

(G,*) be an arbitrary associative multiplicative system. Wk assume be-
sides that every function ? : X x G—e—X satisfying definition 1 sa-
tisfies definition 2. Then condition (2) is fulfilled in the multiplicar
tive system (G ,*).
Proof. Suppose that the thesis of theorem 2 is not fulfilled, i.e. the
multiplicative system (G,*) does not possess property (2). It means
that there exists a pair (oD, ft0) 6 D. such that for every € G the
following condition

(3) i D. or (ccO p o) IT*0mw

is satisfied.
Let us denote:

Prom (3) it follows that

(*)
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Because the multiplicative system (G,.) is associative, so if
(oc,Jb) £ D. and G then ocejb 6 GQ.

Let us consider two cases:
al GO = 0,

b/ GO 4 0.

In case a/ we put:

X for X 6 X. oc= ocQe 4.

(5 fix., oc)

It is easy to see that function F definedin this way satisfies de-
finition 1.

Function F does not satisfy definition 2. Otherwise from the fact
that F ( x,cv0 . 0Q) isdefined, we would obtain that F(x,0c0) isde-
fined, too. From this and from (5) we have:

°0-no «Po *

and consequently

Mg = (X = ftg) - Aty

Thus o0 £ GO, Which is contrary to (4).

Now let us consider case b/. Let a and b be two different fixed
eleneacs of the set X /the existence of such elements is guaranteed by

the assumption X~ 2/.
e put:
la for x = a, oc £ G,
F(x,0oc/ =
a for x = b, oc £ Gg.

Function F defined in this manner satisfies definition 1. In the case
when x = a, for an arbitrary element oc £ G both sides of equation
'l> are defined and the equality holds.

Now let us consider x = b and let us assume that (oc,fb) £ D.
and P(x, oc) is defined. It means that oc £ GQ. Thus oc -ofc Gg and
hence F(b, oc-fr) is defined. F[F(b,cc), ft] is defined because F:'b/=a.
It is easy to see that equality (1) holds. Thus we have proved that func-
tion F satisfies definition 1. Let us suppose that function F satis-
fies also definition 2. Let us consider an arbitrary element Y£G such
that 'ocO -/.Q, 5' ¢ 3. (& 4 0 and hence there exists such a ?)

Then F (b, (ocQ . _ft0)-*" ) is defined. Thus F(b, ocq * is defined

and in consequence F (b,x Q) is defined, too. It follows that occft GO

which is contrary to (4). It completes the proof of the theorem.
Assumption X >2 Is essential for theorem 2. It shows the follo-

wing
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Example 2. let as put: X = [a>, G ={0,I}. We define the ope-

ration as follows:

Let us consider all functions ? of the form:
P:1T xG -c-> X

There are four of these functions /one of them is empty/. The non-empty
functions are defined as follows:

Pr(a, 01T s a,

P2(a, 1)

I
o

1
o]
-
o
-

1

a, il 0, 1.

It is easy to see that functions P~ and ?2 do not satisfy either of
the definitions 1 and 2, whereas function /land obviously the empty
function/ satisfies both. Thus each of the considered functions either
satisfies definitions 1 and 2 or does not satisfy any of them.

It is obvious that in the multiplicative system Cg,* ) condition
(2" is not fulfilled /e.g. for ot = 1, fb = 0/. It means that condition
(2) is an essential condition for theorem 2.

Prom theorems 1 and 2 we immediately obtain the following

Corollary 1. If the multiplicative system (G,») is associative
then definitions 1 and 2 are equivalent iff condition (2) is fulfilled.

Condition (2) holds in every groupoid8, because for an arbitrary
pair (oc ,fb) £ D. we have:

ioc /b . _oc. ; fb )01} =o0cC.
hence, from theorem 1 we obtain:

Corollary 2. If the multiplicative system (G ,-) is a groupoid
then definitions 1 and 2 are equivalent.

h. Extensions of the solutions of the translation equation

Theorem 3.

If a function P : Xx G -©-> X is a solution of the translation
equation in the sense of definition 2 and

(6) Dj 41,

»/ Ae use the term "groupoid" after W Wali3zewski in Note '2
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\

(7> A r r
n E£D|(C*we D.""eeig),

cben this solution can be extended*” on X X

Proof. Let us assume that function F : X x G -0 > X satisfies the
translation equation in the sense of definition 2 and F fulfils (6) and
7'. Let a be an arbitrary fixed element of the set X\ D”. Se are go-
ing to prove that the function F defined as follows:

f ?.x,0c) for Cx,oc) £ D, ,
Fix, C S
a for (.*,«) t (I x D~ivDp

is an extension on the set X x D[? of the solution F.

From the definition of the function F it follows that Dj.=X x
Hence, by 7" the conditions:

F (X, oc-p> is defined,
F[Fix, oc; ,/bj is defined,

are equivalent for an arbitrary x t X and arbitrary X ,At 1] such
that ur, b) é 2. In the case when ?(x,oc 6) is defined /because F
satisfies definition 2/ we have:

? F'x,> ,= = F. FI'x.0.), aj s F(x, f) =7?«x. ch'\

Let now
3 - (x, xfl) e X x D8) N Dp
Then ?(x,at. JS = a.

Let us suppose that
? P(x, * a.
Then, from the definition of the function F we have:
?' f(xtac-p) € Dy -
From (9 and from the definition of the function F we have:
F(x,oc) = a,
and hence
"10. (x,x) £ Dj and f(x,0c) « P(x, <x) ,
a/ By "an extension of the solution of the translation equation"we

understand such an extension that satisfies the translation equation in
one 3ane sense as the extending solution.
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©ms o1 (39) and (10) (x,0c-J3) £ Dp which is contrary to (8). It
completes the proof.
Prom theorem 3 follows immediately the following

Corollary 3. Let us assume that the function P s Xx G -e”™ X sa-
tisfies the translation equation in the sense of definition 2. If P sa-
tisfies (8) and Dp = G or if P satisfies the following condition:

(11) Dp = Dp x G,

then P can be extended to a solution of the translation equation on
the set X x G.

For the function P : X x G —0-> X we shall denote by Gx the fol-
lowing set:

Gx 'U*- s (x»cvi £ °p>

Theorem 4.

If a function F : Xx G -0 > X satisfies the translation equa-
tion in the sense of definition 2 and

(12) 4 A A-l V (cc ib£ Gx)«

then
(a) Dp = Dp x G ,
(b) Qp” Dp

Froof. Let F : Xx G -0 >X be a solution of the translation equa-
tion in the sense of definition 2f satisfying (12). Let X£dJ , oc (- G.
It follows from (12) that there exists a jb£ G such that <x.jb £ G~
It means that (x, oc h) 6 Dp. Considering the fact that P satisfies
definition 2 we have:

( "-)€ Dpt

and hence for the function P condition (a) is held.

Let now P ( x,cc) be defined. It follows from (12) that there e-
xists such an element jb £ G that (x, oc/b) £ Dp. P satisfies defi-
nition 2 and therefore P|P(x,ot) ,Jb] 6 Dp and hence F(x, oc)ED”. Thus
condition (b) is fulfilled and this completes the proof.

From theorem 4 and corollary 3 follows

Corollary h. If P : Xx G -e3> X is a solution of the transla-
tion equation in the sense of definition 2 and condition (12)holds then

this solution can be extended on the set X x G.
Condition (12) is an essential assumption for theorem 4.1t is illu-
strated by the following



Sxample 3*/1 Let X be the set of the real numbers different froa
zero and let (&,*) be a semi-group of real numbers with multiplication
He put:
F(x,oc) : = x oc for x £ X, cc4 0.
It is easy to prove that F satisfies the translation equation in the
sense of definition 2. It is easy to see that

Dy i Dp x G.

7e shall show that solution F cannot be extended on the set X x G.
Let us suppose that F is an extension of the solution F on the
set.X x G. Then for arbitrary oc / 0, x £ X

KL3 . F(x,0) = F(x, o «%,= FjF'x, o)<rfl]= F x, 0)-<

is held.
From the definition of the set X we have:
F(x, 0) i O,
and henoe equality (13) does not hold for oc / 1. Thus the solution F
cannot be extended on the set X x G. For function F condition (12;

is not satisfied.
For an arbitrary x £ X we have:

Gx = X\{0}

and hence for or =0 there doe3 not exist a & sucn that > ftr

Ye have shown that condition (12) is an essential assumption ler
theorem 4.

Example 3 shows, too, that not all solutions of the translation e-
quation in the sense of definition 2 satisfying the condition D--XxD"
can be extended on the set X x G.

Theorem 5.

If the multiplicative system (G, ¢) satisfies the following con-

dition: \ \ /
i\ \
'14 > 1 (xg =jb),
X ,fté¢ G 5GG

then every solution F : X x G — Z of the translation equation in
the sense of definition 1 as well as in the sense of definition 2 oan
be extended on the set X x G.

Proof. It is easy to see that condition (14) implicates condition (2).
From this and from theorem 1 follows that F : X x G —e— X is a solu-

tion of the translation equation in the sense of definition 1 iff F s
a solution of the translation equation in the sense of definition 2.

*/ rbcample 3 was given by Z. ’loszner.
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Let P : Xx G —&-> X be a solation of the translation equation
In the sense of definition 2. Let x be an arbitrary element of the set
DN. For x there exists fb £ G such that (z,Jb) € Dp* Prom (14)
it follows that for arbitrary oc £ G there exists € G such that
«-dr = fb. Then (xf« 7T) ( Dp which means that (x,oc) £ Dp. Hence
Dp = D x G. From corollary 3 follows that the solation F oan be ex-
tended to the solution on the set X x G which completes the proof of
the theorem.

Theorem 6.

If the function P s X x G -e-> X satisfies the translation equa-
tion in the sense of definition 1 and

A t./5)6 D.) ,
(15) . o) (etme D)

then

C d}

The proof of theorem 6 is obvious.
Theorem 7.
If the function P s X x G —-> X satisfies (11) and

(16) epc dl ,

then ? is a solution of the translation equation in the sense of de-
finition 1 iff P is a solution of the translation equation in the sen-
se of definition 2.

Proof. Let P s X x G o >X be a solution of the translation equation
in the sense of definition 1 satisfying (11) and (16). Let (jc,,0)ED.
If (x, oc ib) £ Dp then by (Il) (x, oc) £ Dp. and now using (16) we
obtain (P(x,n),fb) 6 Dp. If (x,o0c)EDp then (x, oc/b) £ Dp. Thus
function F satisfies definition 2.

Let now the function P s X x G-e-> X be a solution of the trans-
lation equation in the sense of definition 2 satisfying (11) and (16).
Let (oc,£>)E D. and (x,0c)EDp. Then (x.ocfi) e Dp and
(P(x,oc), fb) £ Dp « Thus function F satisfies definition 2 which com-
pletes the proof.

From theorem 7 and corollary 3 follows

Theorem 8.

If the solution P s X x G « > X of the translation equation in
the sense of definition 1 satisfies (Il) and (16) then it oan be exten-
ded on the set X x G.



There exist solutions of the translation equation in the sense of
definition 1 such that the/ cannot be extended to a solution on the set
Z x 3. 1t is Illustrated by the following

Example 4*~. Let US put:
Z := {a, b, o}i
vtere a, b, ¢ are different elements,
®Eif /T

Je define the aultlplication " . " in G as follows:

r xee
a If 5

D

<

*
PO TO

It is easy to verify that function F defined in such a manner sa-
tisfies definition 1. Function ? cannot be extended to a solution f at
the translation equation on the set ! x G where X 31.

Let us suppose that such function F exists and let us denote:

Ffc, y,) = d.

Then
?Cd, yx)= f[f(c, yX), yj * F(o, yr [/,))= F(c, 02)

1
o

and
F'd, y2)= F~Ffc, y*), y2] = F(c, yr y2)= F(o, 0~ = a.
?roa this and from the definition of function F we obtain:
a = F(a, y2.= p[p(d, y2), y2]= ?(d, y2. y2)= F(d, 02),
b = F(b, yj)» F F(d, yL), yj» F(d, ybL)= f(d, 0Og)
vihich is impossible because a i b.

w/ Given by Z. Moszner.



57

Bibliography

[1] J. Gancarzewicz: Remarks on Algebraic Properties of Sequential
Machines, Zeszyty Haukowe OJ, Peace Matematyczne, Zeszyt 15 /1968/, pp.
*7-59.

[2] W Baliszewski: Categories, Groupoids, Pseudogroups and Analy-
tical Structures, Rozprawy Matematyczne ZLV 1965-

[3] A. Zajtz: Algebraic Objects, Zeszyty Naukowe UJ, Prace Matema-
tyczne, Zeszyt 12 /1968/, pp.67-72.



