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OU FBAKLESS FUNCTIONS

H. Busemann In his monograph; [1] p.109 introduces the peakless
functions by definition: "A function f(r) whioh is defined and con-
tinuous on a convex set of the real T -axis is called "peakless" if

f(r2) < maxjf (t.,), f (r 2 for <ra2cx<

and the equality sign implies fft~) =f ('tj").

The author states: "A function is peakless if and only if it be-
longs to one of the following types: f (v)

1/ is constant,

2/ is striotly increasing or deoreasling,

3/ takes its minimum at one point, decreases striotly to the left of the
point and increases strictly to the right,

V takes its minimum at all points of an interval and decreases strictly
to the left and increases striotly to the right of this interval”.

The purpose of our note is ho find the solution of the following
problem: Let (a,4) , (b,4 ) with | >2 and B4 O be two linearly
ordered sets.

Let f: A— B be a function with domain A and values in B and
have two properties:

[T.CT~r, =»f(r KmaxffCrA f(T,)'
D t1ttr2,tj6 A r 5 2 |
(U) A [*,<tr2 a f(r)« max{f (xj, f(tj)l]
T "2 *3 e A 1
Such functions, hy analogy to H. Busemann, will be oallednpeakless func-

tions". The problem is to find all the peakless functions,when the orde-

red sets
(A,<) , (B,<) are given.
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nmftnifcioa 1. The symbols < , > | max{ab}> axe need as usoall
in the theory of ordered sets.

nafinittoa 2. for the nonempty subset A* of A and the function
f ; A~>B, f s called non-deoreasing in A* /non-increasing in A*,
strictly inoreasing in A* strictly decreasing in A*/ if and only if for
each T1t é A* the inequality <r2 implies f(r~ 4
IfCr.)~ f(rn~, f(rl)y< f(r2), f(rl)> f(r2v respectively.

Leouna 1.

Let f : A—>B be non-decreasing in A and satisfy the conditions
(i) and Cii). Then

(a) f is constant in A or
(b) f is strictly increasing in A or

(c) there exist nonempty sets A7, Ag with Alv»Ag = A and <r2
for € iji i 3 1i2 such that f is constant in A* and strio-
tly increasing in Ag /naturally f f(vg) for ti 6 Ajl.

Proof. Suppose, that f is not constant in A. Define:

A, = A V u<ta f(u)< ffr)i#
£ 1 u6 A J
By our supposition, there is Ag i O.
I f v € Ag and f < T*, we find u€A with u<z and f(u)<f(t).
Thus we have u < x* and f(u)< f(r)4fCX4a), which implies t* € Ag.
Observe, that f is strictly increasing in Ag. Bor, if t-~, tgtAg a0®

< ~2 there exists u with u< and f(u) < f By /i) is
f('*1) <. max{f(u), f(r2)J]=f(r2) and f =f (r2) owing to (ii)
leads to f ( =f (tg)= f(u), thus fCr~) < f (tg). In the case AgFA

f is strictly increasing in A. Consider now the case A - Ag = 1 and
let v€ A- Ag. Obviously is v <v for f£EAg and v * minA. There
is also f(v) £ f (v) for t £ Ag. The equality sign for any r € Ag
implies that f(t*)s ffr-) for each n'*eA and z**Z.z , which is im-

posible, because of the definition of Thus f is strictly increa-
sing in A.
The last case A - Ag> 2 leads to the set df A - Ag. By its

definition we have t € A* if and only if

A |-u N fCu) > ffr)l,
J

at A

Taking r,T7'e A" r<t' we obtain f(V)>f(z‘) because of the above
condition and f(r)4 f (x‘) by supposition that f is non- decreasing.

Thus f is constant in A7, and obviously Z2 for 'tjEAN'. In
this case f satisfies the property (c) of our lemma.
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Lema 2.

Let f ! A~>B Bbe non-lnoreasing in 1 and satisfy the conditions

(i) and Cii). Then

(a) f is constant in 1 or

(d) f is strictly decreasing in A or

(e) there exist nonempty sets Al, Ag with A~UAj s A end 2
for i 31,2, such that f is etrlotly decreasing in
AN and constant in Ag.

The proof of lemma 2 is analogous to that of lemma 1.
Lemma 3

Assume that f j A->B with properties (i) and (ii) is not non-de-
creasing and not non-increasing in A. Then either

(f) there exist nonempty sets A", Ag with AU Ag 3 A and < Tg
for A™ i i 1,2, such that f is strictly decreasing in Al and
strictly increasing in Ag or

(g) there exist nonempty sets A", Ag, A with A”uAgUA” = A and

for e A, 1 =1,2,3, such that f is strictly
decreasing in A", oonstant in Ag and strictly increasing in A"

and moreover f~ ) >f(r2), frg)~f f o r Vit A+, i « 1,2,3.

Proof. Our assumptions imply the existence of Oj, Ug, u”®, u™ with
Xj< Ug, Uj< ur and f(ul)> f(Ug"), f(Uj)< f (u”™. Observe,that for the-
se ij, & there must be cuy<u”. If not, then wW<u® and U jrun
40L]<Ug. By (1) we have

Thus when f ( o ) *e obtain fCu~KffUg), and fCu”)4f(iij) in
the other case. These inequalities contradict the definition of the ele-
ments u”, Ug, Uj, u™

Te define next

Bvidently af 6 T and u™ £ A*,
If t, eTnAl we find tt, u* with ~ <" <0* and f(iT)<f (?£>,

contradicts the above inequalities. Thus To A* = 9
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As In the proof of lemma 1 we state now that*

for t6 T and x*<x ia A and for r€A* and X<Xx' is r’eA*

In oonsequenoce if t ( T and r*£ A* then there is r < r*. Let now

r* r2 ~ A and < Tg. Find a>Tg with f (£g)>f(u). By (i) is
f(r2)< max{f , f(un)! =f (rn

and the equality sign is imposible because of Cii) and f(u) < f (tg) -

Hence f is striotly decreasing in A. In the same way we state, that
f is strictly increasing in A*» In the case A = AuA* defining
Al = i, Aj W 4* in consequence we have the statement (f). When the

set, A -(X kjA*) has the unique element v we define

Afj = iu {t} and Ag = Aa and there is again the
statement (f). Consider now the last case A -IX«->A*)>2,
Let A1 = T, Ag =* A-(Fo AM), A~ = A* It follows from the pro-
perties of I and A*that Tl<r2 ~r3 for £ Ai* ?artbell1101® if
rt Aj. by the definitions of Aj, X and A*, we have
n [t < u f(v)<.f(u)l and
uo6 A
/1 [ ncr ~f(u)>ffr)].
a€A

In oonsequence t(x) for t é Ag is the minimal value of function f.
Thus f is constant in A2 and fCr) < fCr) for t 6 Ag and
t'6 Aju Aj. The proof of lemma 3 is complete.

Since f s A—*B is nondecreasing in A or is nonincreasing in A
or is not nondecreasing in A and is not nonioreasing in A by lemmas
1,2,3 we have proved the following theorem:

Theorem 1.

If f : A—»B is a peakless function, then f satisfies one of the
conditions Ca), (b), Co), Cd), (e), (f),(g) from lemmas 1, 2, 3.
It is very easy to verify that oonversely

Theorem

Function f : A—*- satisfying one of the conditions Ca), (b), (0),C<A
(e), (f), (g) is a peakless function.

Our considerations show that B. Busémana does not give all the classes
of his peakless functions. The classes (0),(e)are omitted inflV
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