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ON THE SOLUTIONS OF THE GENERALIZING EQUATION OF HOMOMORPHISM

Int roductlon

We shall consider the equation 

(l) H1(x) « H2(y) - H3(x.y),

where the functions Ĥ Hg.H,, are defined on some subsets of A x A x G, 
(G.O is an arbitrary semigroup with a unit "a" and the values of these 

functions belong to a set K, in which an partially associative operation 
"x" is defined.

In the first part we give the fundamental definitions and theorems, 
which are necessary for the later parts of this paper. We define the so­

lution of equation (i), the extension of the solution, and, generalizing 
the definitions given by 0. Aczel in the paper fl3 we define the right re­
gular element, left regular element and strictly regular element.

In the second part we give the general solution of equation (i) /in 
a particular case we obtain the results of 0. Aczél given in СО/ and the 
theorems concerning the extensions. Moreover, we give one theorem of the 
extension of the solution of equation (i) in the case,.where the functions 
H1 ,H2.H3 are defined on some subset of the Ehresmann groupoid, and the 
values of this functions belong to an Ehresmann's groupoid.

More detailed informations about earlier results regarding the sulu- 
tions of the equation (i) are given in this paper.

C h a p t e r  I

Preliminary definitions and theorems

By we shall denote the set of all functions /called par­
tial functions/ the domain of which is contained in the set X, and the 
range of which is contained i.i the set Y.
By LX-- »Y] we shall denote the set of all functions the domain of which
is the set X, and the range of which is contained in the set Y. The do-
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main of the function f will be denoted by and the range will be de­
noted by Qf. If the function f belongs to the set £x * Y— o > z] then 

we shall write:

Of = {x € X: V(.Cx,y) « D
У « Y т

О, Л х  « Y: V ((y.x) O l  . 
т  ̂ у 6 X т

Definition 1. The peir (a ,«) where A is an arbitrary set and 
is an arbitrary element of the set (A x A— s-*a3 will be called the bi­
nary algebraic structure /shortly - structure/.
If В (A and С CA then

В • C : * [x.y : (x,y} fc D. А x « В А  у в c] .

Definition 2. Let (A,«) be an arbitrary structure and let S be 
an arbitrary subset of the set A. The pair (S,x}# where “x“ is the re­

striction of the function to the set S x S will be called the sub­
structure of A, and, for simplicity, note (s,«) .

Definition 3. We shall call the substructure (s,x) of the structure 
(a ..) closed, if QK Ç S.

Definition 4. We call the structure (A,#) associative, if for arbi­
trary x,y,z € A the following conditions are fulfilled:

1° t ( x . y )  € D. A ( y .z )  *  dJ = = Ф  (x  . У  z) € D, ,

Г0 о

[ ( x . y )  « 0. A ( y . z )  e 0 .]— ( x . y , z )  « D . ,

3° [ ( x . y )  € D, A ( x . y , z ) € D , ' ] = = ф . ( у , г  ) 6 D . ,

4 ° [ ( У . * )  C A ( x . y  z )«D .]— =

5° [ ( x . y )  e 0 .A  ( y . z )  € D,]------= ^ [ ( x . y ) . Z  * X < y .z ) ]  .

After W. Waliszewski ([4], р.б) we will use the following definition of a 
groupoid.

Definition 5. A structure (a ,*) is called a groupoid, if it is asso­
ciative and if the following conditions are fulfilled:

1° /\ {[(x.y) € D. Л (x,z> € D. A (x y « x z^===> у = ẑ  ,
x,y,z
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2° {[G'.*) € D, A (z,x) 6 D Л (ух = Z. хДтшгг» у = z( ,
x,y,z

3° Л  V {(х,у)бО. Л  X .y e A \ ,
X « А  у  6 A4 °

where

Â ; = ê s 6 € A » (e ,e) f D, A e,e = e] .

Definition 5 is equivalent to the definition of the Ehresmann groupoid ([з], 
р.э), and therefore we will call the groupoid in the sense of definitions 
the Ehresmann groupoid.

Definition 6. The Ehresmann groupoid (a ,«) in which the following 
condition is fulfilled

A V [0е »z) € О. л (z.y) € D,]
х.У z

will be called the Brandt groupoid.

In the paper £41 the following theorem is proved:

Theorem 1. The pair (a ,*) is the Ehresmann groupoid iff there exists 
a decomposition U of the set A on such disjoint sets, that

D, С x M : M E ui

and every set Â eU with the operation restricted to the set A x A is 
the Brandt groupoid. If (A,*) is the Ehresmann groupoid, then such decom­

position is synonymous.

Definition 7. We say. that the structures (a ,«) and (b,o) are iso­
morphic, if there exists a bijection f : A--»B such that the following
conditions

a/ A fcx.y) « 0.<=* (f (x) . f(y))e oj.
x ,y 6 A 04

b/ A [ f(x.y) = f(x) о f(y)]
(x.y)e o.

are fulfilled.
One can prove ([p} , p.111-112) that;

Every Brandt groupoid is isomorphic to some groupoid of the form (AxAxG.x) 
/called the product groupoid/ where A is the set, (g ,*) is the group 
and Nx" is an operation defined as follows:
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a/ ((x.y.ot) , C*.V ć у = z,

Ь/ ((х.у.сф . (г,V ,р)) £ 0^=^.(х,у.об) к (z,V ,|3) - (х.у ,оо<р)

It is easy to verify, that every product groupoid is a Brandt groupoid.

In a particular case, when (G,>) is one element group the product Brandt 
groupoid is called the pair Brandt groupoid and denoted by (a x A, x).

Let (a ,*) be an arbitrary structure.

Definition 8. The element Ct € A will be called right /left/ regu­
lar, if for arbitrary two elements x€A, y e  A such that (x, a) € D, 
and (y, a) (D, ( i p, x) € D. , (a, y) £ D.) there is

[x • a « у • a]-:.■> x = у ([a • x V  a • yl==^ x * y).

The set of all right regular elements of A will be designed by A r r i and
the set of all left regular elements of A will be designed by A^.
Using definition 8 it is easy to prove the following

Lemma 1. If a is an arbitrary element of the set Arr> b an arbi­
trary element of the set A^p and c an arbitrary element of the set A, 

then each of the equations

a/ x * a ■ c and Ь/ b • x = c

have no more than one solution.
From lemma 1 there follows

Corollary 1. Every element a £ Arr has at most one left unit â  
and every element b € A^r has at most one right unit br«

Lemma 2. If (a ,1) is an associative structure, a is an arbitrary

element of the set АГГ° А^г having the right unit ar and the left unit 
â  and one of the two equations

a/ a • x « â  and b/ x • a • ar

has a solution, then the other one has a solution, too, and the solutions 
are equal.

Proof. Let, for example, the equation a/ possess the solution хг, 

i.e. CLx̂  = ai*

Multiplying this equality by a from the right side we obtain 

a • Xj« a « â - a ■ a • ar.

Since a fc A^r we get
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and then is the solution of equation b/. One can prove analogously

that the solution of equation b/ is also the solution of equation a/.

Lemma 3. If (a ,«) is an associative structure, a is an arbitrary 
element of the set Аггя A^r possessing the l e f t  unit and right unit

ar such that al € Alr and ar Ć Arr and x is the solution of the egut 
tion a/ or b/ from lemma 2 then x e Arrn Alr*

Proof. Let x be, for example, the solution of equation a/ from le 

ma 2, let xJt x2, ŷ , y2 be arbitrary elements such that

(x.Xj) Ь D. , (x, x2) € 0, , (ух,х)С D, , (,y2. x) € D. and let

Х'Х̂  ̂* x*x2 and yj' X = y2 ‘ *■

Then we have

a* x>Xj = a*x*x2 and • x<a = y2‘X-a,

and consequently

al‘ xi “ V  x2 and Vi' ar -  У2' V

Thus
Xj - x2- and y1 = y2.

So x P Apr0  Alr.

which, thanks to lemma 2, completes the proof.

Lemma 4. If (A,*} is an associative structure, a is an arbitrary 
element of the set Arf. posiessing a left unit â , and b is an arbitrary 
element of the set A^r possessing a right unit br> then

ai c Arr and br 6 V -

Proof. Let a be an arbitrary element of the set Arr< its
left unit and let x,y be arbitrary elements of the set A such that

x • â  » у - â  .

Multiplying this equality by a from the right side we obtain 

x • a a у • a. 

a 6 Arr, so we have
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X = y,

thus ai 6 ̂ rr* 0ne can Prove analogously that br i. A^r.

Lemma 5. If (A,•) is an associative structure, then (Arr,*) and 

Wr*') are cl°se<̂ substructures of (a ,‘) .

Proof. Let a, b be arbitrary elements of the set Â .r such that 
(a,b) E 0. and let for some x,y£A the following equality hold x-(a'b)* 

= y-(a>b) .
From the associativity of the structure (A,*,) and from the regularity of 
a and b we obtain

x » y,

thus a>b€Arr, One can prove analogously that a-be A^r.

Consequently (Arr).) and (A^r«*) are closed substructures of (a /).

Definition 9. We will call an element a of the set A strictly 

regular, if the following conditions hold:

1° а С Аггл Alr,

2° V  V [ ( a 1 , a ) e  D, • ( a , a r)  € D, л(a^ • a ■ a«ar = a)J,
a r a 1

3 ar 6. Arr and â  £ A1(. ,

4° equation a<x « â

posses-ss a solution.

We will denote the set of all strictly regular elements of the set A by 
. From conditions 1° and 2° of definition 9 and from lemma 4 we

obtain

al£ Arr and ar fc Alr
/  '

for a € Â-.

Condition 3° in definition 9 does not follow from other conditions of 
this definition. It is illustrated by following

Example 1. Let R be the set of real numbers and ([r— e—»rJ ,o]- be 
the structure with the superposition .o" defined as follows

I0- ( f  J 9) fe D0̂=^ Qg C Df.

2 ° .  ( f . g ^ é  0 Q - 7ТГГ' >  f  09 = | (̂x ,y ) 1 X t  Dg Л y  = f  ( g W ) S  .
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It is easy to verify that

a/ the function f is left regular iff it is an one-to-one function, 
b/ the function f is right regular iff = R.

It is easy to see that for the function

f : x-->ln x for x > о

the conditions 1°, 2°, 4° of definition 9 hold and that the function 

fr : x— »x for x > о

being the right unit for the function f is not right regular, because

/  R.
Tr

Lemma 6. If (a ,*) is an associative structure, then (Ar,.) is 
the Ehresmann groupoid.

Proof. At first we shall prove that (Ar,*) is a closed substru­
cture of (a ,*) . Let a, b be arbitrary elements of the set Ar such 

that (a,b) 6 From lemma 5 and condition 1° of definition 9 we ob­

tain that а*ЬЕАггл Air» hence condition 1° of definition 9 holds for 
the element a»b. Moreover, we have

a • b » (a-̂* a)* b = â «(a • b)

and *
a • b = a * (b • br) » (a • b)* br.

From corollary i we obtain that â  and br are the only units of the 
element a*b , thus conditions 2° and 3° of definition 9 are fulfilled. 
Let y,z be arbitrary elements of the set A such that

a • y = â  and b • z = b̂

/â  and b̂  exist, because a € -Ar and be Аг/.

From lemma 2 we obtain

у  a = ar,

and, because (a,b) € D, , a Ê Af and b t Ar, then

a • a • b = a * a ■ a • b = a*b = a< b, • b. г г г i

Thus (ar,ar) c. D, and ap = b̂ , i,e, (z,y) 6 D, .
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We have

(a* b), (z-y) = a>(,b‘z)<y = a>b^«y = (a-ap).y = a.y * â  = (8'^^,

what means that the equation

(a- b) * x = (a • b) ̂

has a solution. Thus for a*b condition 4° of definition 9 holds.
V's have shown yet, that (Ap,«) is a closed substructure of (a ,*) . From 
the associativity of (a ,*) we obtain the associativity of (,Ap,.) .

Let now a, b, c be arbitrary elements of 4p. Because a, b, c are ele­

ments of the set ApA Alp, then f o r a, b, c conditions 1° and 4° of de­
finition 5 are fulfilled. From condition 4° of definition 9 we obtain that 
condition 3° of definition 5 holds. It is easy to see, that the set Aq 
from definition 5 is the set of all units of the set Ap.
From the above considerations we obtain that for (Ap,) conditions 1° - 3° 
of definition 5 of the Eh.esmann groupold are fulfilled, hence (Ap).) is 
an Ehresmann groupoid, which completes the proof of the lemma.

Now we will denote the element inverse to the element a by a”*.
Definitions 8 and 9 generalize the definitions given by 3. Aczél i", 

the paper , p.40. 3. Aczél formulated these definitions for semigroups. 
Let now (a ,*) and (b,x) be arbitrer/ structures.

Definition 10. The triplet of functions (н.,Н,,,Н_) from the set 
г 13 * 1 fc J
\A— e—>BJ will be called the solution of the equation

U) Hjtx) и HgQy) - H3 (̂ x.y)

if for arbitrary x.yt A such that Qx,y) ć D, the following condition 
holds :

L*e 0H^  y.t DH^ X<y t Dh^]=^[(hiCx) , H2(y)) € D^H^x)* H2Cy) . Hg^.yj .

Definition 11. We shall say that the triplet ^H1(H2,H^é [a ■ о ■■■»в] ̂

i s  the e x te n s io n  o f  the s o l u t i o n  o f  eq u ation  C l ) ,  i f  the f o l ­
lowing c o n d it io n s  are f u l f i l l e d :

1°.
4 c °».

fo r
\

i * 1.2,3,

2°. Bil4 - ". fo r i ■ 1.2.3

3°. the t r i p l e t (h1,h2.h3) i s the s o l u t i o n  o f  equ ation
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We shall say that the triplet (.Hj,H2#Hg) can be extended to the triplet 
or that the triplet can be extended on the tri­

plet Of sets (.Dj} ,Dq ,0H\
1 2  3

C h a p t e r  II

Solution of the equation (а.Ь.л) • H2(b,c ,p ) = Н3(а,с,Ь;.Д)

Let *f be a function of four variables. We shall denote:
!

Ош : = { x  : V  [ ( x ,  v . y . z )  Ć D ,.] l  
L v . y . Z

D? : » [x : V  [(y.x.y.z) Ç Du,]V 
L v,y,z

Оф : - j x  : V  [(y.y.x.z) € t u l i )
T L V.y.Z

°ш S = {x : V  [ ( v , y , z , x )  Oipl5*
^ V . y . z

If 'f is a function of two or three variables, we will use analogous no­
tations.

Let A be an arbitrary set, (G,0 an arbitrary semigroup with the 

unit e and let ( K,«) be an arbitrary associative structure. Let us 
consider a structure (a x A x G.x), defining the operation „x" as fol­
lows :

1°. ((а.Ь.об) .(c.d.p')) t D̂ _-.> b = c,

2°. ((a.b.ob) , (c,d,p>)) 6 D)(====̂ (a,b,o4) x(c,d,|Q) = (a ,d, Ф  ‘ ^ ) .

Let us consider a subset of the set [a x A x G— о—> к]3 defined

as follows:

Definition 12. The triplet of functions (Hĵ .Hg.Ĥ  belongs to the 
set iff the following conditions are fulfilled:

1 . D|_| X D^| °  D|_j ,

,0 n2 ni
2 • °h1 * °h2 >
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40

3 ° .  V  A  A  Lci,b ,o(,)  e DH л н Д в . Ь . е )  e к ] ,
à b 6 D ‘  i t G  M1 1

H1

4 ° .  in  the s e t  A there e x i s t s  such elements S and b that
the fo llo w in g  conditions are s a t i s f i e d !

a /  (a,b,oO) € D„ fo r  a € 0?. ,
1 1

Ь /  ( Ъ , a , об) € DH • for a £ Qu ,
H2 2

с /  HgCb.c.e1) e к р г ,

5 ° .  [ ( a ,b ,  Об) fc DM ) ( a . b , A ) ć D  1 .  i  » 1 , 2 , 3 .
(а.Ь.аб) /be G Hi  I H1

Theorem 2 . Every s o lu tio n  ( Н1 «Н2 ' Нз )  ć f \  Of the equation

(2) Н1 (а,Ь,об) • H2 ( b ,c ,p )  = H3 (a ,c ,o!>p)

can be extended in a unique way on the t r i p l e t  of s e t s

k >  ( ° H t x DHt  V G* °K 2 X °H2 x G* °H3) ,
* ■ ’ • ■

and t h is  extending belongs to the set Г ^ •

Proof >

Let the t r i p l e t  of functions (Hi » H2 ' H3  ̂ belonging to the set  f A 
s a t i s f y  equation ( 2 ) and l e t  a ,  b , c be a r b itr a r y  elements of the set  A 

s a t i s f y i n g  co n d itio n s 3 °  and 4 °  of d e f i n i t i o n  1 2 .  From co n d itio n s  3 °  and
4 °  of d e f i n i t i o n  12 i t  fo llow s that

■*»

° H3 ’  °M3 X °H3 *  G *

Let the t r i p l e t  of  the functions ( Hi * H2 ' H3) be an extension on the t r i p ­
le t  of s e t s  (3 )  of the s o lu t io n  Then, e v id e n tly

4) H3 -  V

Let Са.Ь.^б) 6 Ол . Then we have 
H2

T ^ C a .a .e )  • Н2 (а,Ь,об) > H3( ï , b / t )  •



From (2  ̂ and conditions 2° and 3° of definition 12 it follows, that
(â,a,e) é D . That fact and (.4) implies, that 

1

H1(a,a,e)-H2(a,b^) = Н3(а,Ь,об) .

Now, using the fact that H^i ,a ,e) 6 Kr, we obtain 

{5) H2 (a,b,ot) = H^a.a.e) • H3(a,b,o(,).

Let (a,b,o</) € Djq . We obtain

H j (a , b , ol) ‘ H2(.b,c,e) = Н3(а,с,об) .

Regarding conditions (4 ) and (5 ) we have

H1(a,b,o(,)- H“ (l,b,e)« H3(i,c,e)= H3(a,c,oi) .

Hence

Hl(0,b,oi)- Hĵ (a,b,e)« H1(a,b,e)» H2(̂ b,c,e) = Н^а.Ь^Н^Ь.ё.е) . 

H^è.b.e) 6 and H^(i,b,e) t Kr and H2(b,c ,e) = Kr|_, therefore

(б) Н^е.Ь.сб) - H1(a,b,Q4) • H^i.b.e) • H^a.b.e) .

From (4 ), (5), (б) we obtain that (^.Н^Нд) is the unique extension 
of the solution Moreover,

HjCà.b.e) = H1(a,b,e) for b t Dp

and

H2(b,c,e) = H2(.b,c,e), 

whence

H^S,b,e) 6 Kr for b t Dp and H2(b,c,e) 6 Krf. which means that

the triplet is an element of the set fj.

Now we shall prove that the triplet fHi»H2»H3) where the functions 

H1(H2,H3 are defined by conditions Сб) , (5), (4), is a solution of equ­

ation (2) .

Let (a,b,oi)eDp , (b,c , A) fc Dp . Than (a ,c , o i'fb ) 6 Djj and we have
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which completes the proof.

For the triplet of functions (Н1'Н2'Нз) € Д  satisfying equation (2) 
condition

(7) °u “ °u x °u x G for i » 1, 2. 3
Hi Hi Hi

need not be satisfying. It is illustrated by the following

Example 2. Let us put A = {1,2,3,4^, G - , let (K>*) be the
multiplicative group of real numbers and let the functions be

defined as follows

It is easy to verify, that the triplet (н1»н2'Нз) 18 the 8°lution from
the set Г1 of equation 2 and that for the function Hj

PH / 0* x Dy x G.
H1 H1

From theorem 2 we can conclude that it is sufficient to consider only 
those solutions from the set P̂ , for which condition (7) 
is satisfying.

Definition 13. We will denote by Г2 the set of all triplets

W ' H2'H3̂  £ [axAxG—©-*k] ^  , for which conditions 1° and 2° of defini­
tion 12, condition (7) and the following conditions are satisfied:

(3) V 1 A 2 I H U.b.e) s. К ]ate: bto;L 1 rJ *
H1 H1
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It is easy to see that P2 is the set of ail triplets (н^Н^Н^ e f, 
for which condition (7) is satisfying.

Lemma 7. If the triplet of functions (Hj.Hg.Hg) 6 Г2 is the solu­
tion of equation (2 ), then H2(b,c,e) 6 Krr for every béûj , where

c is an arbitrary element, for which condition (.9) holds for some 0.

Proof. Let b be an arbitrary element of the set 0?; , let b and
2c be arbitrary elements for which condition (9) holds, and let a be 

an arbitrary element, for which condition (8) holds. We have

Hĵ S ,b,e) • H2(_b,c,e) = H1(i,b,e) • H2(b,c,e) 

and, because H1(?,b,e) 6 Kr,

H2(b,c,e) » н'Ча.Ь, )• H1(â,b,e)• H2Cb,c,e).

From lemmas 6 and 5 we obtain 

H2(b,c,e) e кгг.

From lemma 7 it follows that we can replace condition (9) in definition 
13 by

(9 ') V  2 Л  J h (ь.с.е)ек ],
c 6 o„ b£D: Ł ггH2 H2

because such a substitution does not change the set of solutions from 
the set Г2 of equation 2 .
From the above considerations it follows that it is sufficient to consi­
der equation 2 in the set Г1 defined as follows

Definition 14. We will denote by ! the set of all triplets of func­
tions belonging to the set [a x A x G—6—»к]̂, for which con
ditions 1° and 2° of definition 12 and conditions (7) , (8) , (9) hold. 
Theorem 3 given oelow is a generalization of the theorem, formulated by 
3. Aczél in paper [l|, p.39/40. The results of 0. Aczél concern the case, 
when (.G,*) is an one-element group, (к,*) is a semigroup and the func­
tions are defined on the set A x A.

(э) У 1 V 2 [H2Cb.c.e) £ к ].b 6 О* с е L * rrJ
2



Theorem 3. The triplet of functions (h  ̂>h2 ,нз) £ [a x A x G— e—>-к]2 
is a solution from the set Г of equation (2) iff have the form

\J.o) Н1(а,Ь,Ы,} = fjCa) • gtó)' f2 ( b) ,

(ll) H2 (a,b,oi) = f2(.a) • g(p6)-f3 Cb),

(j2) Н3(а,Ь,об) ■= fl4a) • g(pO*f3 (b) ,

where 8Гв arbitrary functions i rom the set [_A — К j such that

(is) there exists such an a e , that f^a) 6 Kr,

(14) there exists such a ć 6Df , that f3(c) £ Krr«

(15) f2t[_A-^Krj.

(j6) • g is an arbitrary homomorphism of CG»*) into (.K,*), such
that g Ce) £ Kr,

(i?) (f j U») . g(рб)) 6 D, , (g (<£•) . f2 (b)) Ć Ds , (f2 (b) , g(<4)t0./gW)f3 (c))frD,

for a fcO- , b Ł B. , c t D, , ô éG.
T1 T2 T3

»

Proof. Let us assume that the functions have the form
lj.0) - (1 2) and let a, c" be arbitrary elements such that conditions (l3) 
and (14) are fulfilled. • •

g (e) Ç Kr, therefore g (a) is an unit in (к,*) and we have

H1(5.b,e) - f1(iyf21ib), i.e. H^S, b, e) 6 «r for b fc D2 ,

and
H2(b,c,e) = f2(b)'f3(.c) for b e D* .

Thus, by lemma 5, H2(b,c,e) 6 Krr.
It is easy to see that conditions 1° and 2° of definition 12 and con­

dition (7 ) are implicated by (17) . Hence the triplet (Н1,Н2,Нз) belongs 
to  the set I . Let now (a,b,d/) £ DH and (b,c, a ) é DH .
Then (a,c, A'ft) 6 0H and we have 1 2

H1(4a,b.ol/)*H2(4b,c,/ł) = fŁC.8)^t>Ł)'f2*0*)• f2(b)‘g 'f c)* f j(a).g(oi)• gl̂ -fgCc) »

= fx(.a)• 9 (cl-(b)> f3(c) = H3(a,c, oi,’|b) ,
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hence (Hi'H2,H3) is the solution of equation (2).
Let us suppose now that (h^H j .Hj) ć Г satisfies (2) and let a 

be arbitrary elements, for which conditions (8) and (.9) hold. Then

Нг (§,b,e) ' H2(b,c fib] * Н̂ а.с.чб). H2(c,c,e) for b,cć , nć é G,

and therefore

Ue) (hj (a,b,e), H1(a,c,ô )) é D,.

*  2 
Let b be an arbitrary, fixed element from the set DH .

We put! 1

fJ,(a)s = H1(a,b,e) for af-oj .

f2(a): = H^Ci.a.e)-fx(i) for a € ,

f 2 (a) : = H2(b,a,e) for aSO^,

g (.об): = н"* (S.b.e^H^.b,^) for o L £ G .

F o r a € Df , oi 6 G we have 
1

(19) (н1 (а,Ь,об) , H2(b,c,e)) € 0,-

Moreover,

H^i.b.e)-H^b.c.e) =H3(i,c,e)

I  I
and hence, since Hj(I,b,e)6 Kp,

H2(b,c.e)» H~*(i ,b ,e) • H3(i,c,e) , 

i.e., by (1 9)

(2 0) (н1(а.Ь,об) . H^Ci.b.e)) ć D,.

Thus
(f. (a) , gH))e D. for a ( 0, , oi e G

1 ‘2

and
(g (<>i) . f24a)) 6 0, for aeof ,oi6G.

The triplet (hi .Hg.Hg) satisfies (2), therefore

(gti) , f3Ca)) £ D, for a f O ^ . t / É G ,

and c
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From the definitions of functions we obtain that conditions (13)
- (15) are fulfilled. We shall show that for the function g condition

(1б) holds. From the definition of the function g we obtain that

g(e) 6 к г .
Let oi, A be arbitrary elements of *-he set G. We get

9(ot) • 9 lp>) • H2(b,c,e) =

■ H11(a,b,a)• HAÇa.b ,<*)■ H"1 (a,b,e) ■ 4̂ 'a -ь .л ) . H2(b,c,e) -

- H-1(i,b,e) . H1(5,b,o(,).H‘1(i,b,e)-H1(i.b.e)-H0( b , c , ^ )  ‘

■ H"1(a b.e) . H1(.i,b,oi,)-H2Cb,c,p) «

= H'^a.b.e) ■ H1(a,b,oi*p) • H2(b,c,e) = g (Ы II'-b) » H2(L,c,e) .

H2(b,c,e) £ Krr therefore

g (oiVg (p) » g Ы'(ъ>/

i.e. g is a homomorphism of (g 1̂) into (*>')■

Let (a.b.Oi) be an arbitrary element of the set DH . By (20) we get 
3

Н3(а,Ь,об) » H1(a,b,e)* H2(b,b,oi) *

c H1(a,b.e)' H’^a.b.e) • Ĥ ( i.b.e) *H2(b,b,o4) «

s H^a.b.e)* HjHï.b.e)* H^i/b ,oi)* H2(b,b,e) = f^a)- g M 'fg O » ) ,

thus H3 has form ( 12).

Let (a,b,çC) be an arbitrary element of the set 0,, . We ge .
r — ч  H2

Hj (â)a,e)- H2(a,b,oL) = H3(a,b,c<.) .

. Hence, because H^a.a.e) e Kr and H3 has the form (l2) we have 

Hgf a , b ,oL) « H^Ca.a.o)- H3(â,b,oL) =

- H'^S.a.e)* f j(â) * g(eO f3(b) -

* f 2 ( a )  • g («<)• f 3 Cb) -

thus H2 has the form l̂l).

Let (a,b,c£.) be an arbitrary element of the set 

H1(a,b,cL').H2(b,c,e) « H3(S ,c , cL) ,

°Ht • We get
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whence

H1( а , Ь,об) ■ f 2( b) • f3(ê) - f^a)» g(o6W3(ć). 

f3(c) € Krr and f2 ( b) É Kr, therefore

H^a.b.ot) = fxCa)- gU.)-

thus has the form (lO) , which completes the proof.

Theorem 4. If the triplet (Hj*н2»нз)€ Г satisfies (2),

1̂ f [dh---- *K] i  f2 € Ldh----- * ^36 [ Dfi----* K1 » 9 is an homomorphism of
1 1  2

(g,*) into (к,*) , and conditions (lo) - (12) and (17) hold for the func 

tions HltH2,H3 and fltf2,f3.g. then f1Ci)€K|_, g(e) e Kr, f3('c) t Kf 

where a, c are arbitrary elements satisfying (.8) and (9).

Proof. Let us put a ■ I, at, = e in (lo) . We obtain 

Ĥ (.S ,b,e) * f1Ca).g(e)- fj1 b) for b € .

Because H^a.b.e) € Kr and f”*(b) ć Kr, we have

C2l) f ! (à) • g Ce) € Kr.

The function g is a homomorphism, thus 

• g Ce) - f1(à)-g(e) • g(e) ,

and therefore, by (2l) , g(e) is an unit in (кг,») . By (2l) we 

obtain also that f^S) é Кр.
Let us put a = i, b = с, c6■ e in (ll). We obtain, using the above 
considerations and lemma 5, that

f3^) é Krr-

which completes the proof.
Let us denote by Л the set of all quadruples of the functions 

(f j,,f2 » « 9) , for which conditions (13) - (l7) are fulfilled.

Theorem 5. Two quadruples of the functions C f1 *f2 •f3 »9j) and 

(kj .k2#l<3,g2) from the set Л  dictate the same solution of equation 

(2) iff

1° 0. * D. for i = 1,2,3,
1 1
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2 ° .  th ere  e x i s t s  я such th a t ( f jC a )  , n i)(0, , ( f2 (.b) ,m) é 0.

(и- 1 , g W )  ^ D, ,  (g k i)  ,  га) 6  D, and

k i (a) = f i  Ca) • m i

k 2 (b) = f 2 (b) . ra, 

k 3 (c) * m_ 1 * f 3 Cc) , 

g 2 Yet,) * m” 1 ' 9 ^ ) ’ m

f o r  a r b i t r a r y  a t  D .  , ■ b ^  D ,  , e 6 0 ,  ,  « i 6 G .
r l  2 T3

P r o o f . I t  i s  e a s y  t o  v e r i f y ,  by (lO ) -  (1 2 ) and 1 ° ,  2 ° ,  t h a t  both  

q u a d r u p le s  d i c t a t e  th e  same s o l u t i o n  o f  e q u a t i o n  ( 2 ) .  L e t  now th e  quadru­

p l e s  lvf i , f 2 , f^  . g i )  6 A  and ( k i , k 2 , k 3 , g 2 )  €. A  d i c t a t e  th e  same s o l u ­

t i o n  o f  e q u a t i o n  (2 )  . We g e t

D ,  *  = Du , 0 # “ Du * Oj, . *  Du = ° ь  and
н1 k i  f2 H2 k2 f 3 ” 2 k3

a/ f2Ł ̂>) * ̂ (a)• g2(pć)• kj1 (b) for aeDf̂. b(0f̂, d  € G,

b /  f g  (.a) (.“0  ‘ f3Cb) ■ » kgCa) • g 2 C.oi.), k 3 0>) f o r  a ć Df . b e D f ,  oi €  G .

L et  5 ,  c be a r b i t r a r y ,  f i x e d  e l e m e n t s ,  such t h a t  f o r  th e  f u n c t i o n s  f ^ f ^  

c o n d i t i o n s  (13)  and (14)  h o l d .

L e t  us p u t  a = i ,  o ( /* e i n  a) . We g e t

f !  ( à )  • f  g 1 (b )  = k1C i)*k"1 (b) f o r  b fe Df ^ .

w hence, b e ca u se  k^Cb) € Kr , we o b t a i n

k^l) » fiCi)*f24b)>k2Cb),

hence

kjCa) £ Kr.

L et  us put b e e ,  Qi = e in  b) . We g e t

fgCa') • f 3(e )  = k2 (a ) -k 3Cc) for a f D f ^,

and t h e r e f o r e ,  b ecause  k2 ( a )  £ Kr ,
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k3(ë' = kg* (a) ' fg(a) ‘ f3(.c) .

From lemma 5 we have 

к3Ф  € Krr-

Let us put a = 5, oil = e in a/. We get

kjCa)' k"1^) = f1Cà)’f21Cb) for b É0 f̂ ,

thus

(22) f ' H à ) -  k ^ à )  -  f  g 1 (b) • k^(b)  .

Let ив denote

(23) m : - fj*(a)- k± (5) .

Of course, m 6 Kr> By a/, putting 0L1 = e, we obtain

kl ^ , k 21 ^b) * f ! C«) • f j 1 0>) f o r  a ć D f 1 * b ć 0 f 2 '

1 eO •

k1(a) « f i (a) • fg1 (,b) • k2(b) .

Thus, by (2 2) and (2 3) 

kl (a) « fĵ a)* ■ •

By (.2 2) we obtain

k2Cb) - f2(.b)* kjCe) for bfD^,

i .e .
k2 b̂) = f2Cb)> m.

By b/, putting Q0 я e we obtain

f 2(a)‘f3 (b) « k2Ca)< k3(.b) for aÉO^, b f Df ,

hence

k3 (b) = k^ta). f2(.a) >f3Cb) ,

X *6 •



к3 (Ь) - [f 21С а) • к 2 Са)1 1 f3 Cb) .

Thus, by (22)and (23)

к3 (Ь) = m' 1 . f3 (b) .

From condition a/, putting a = a, we have

k j ^ i ) *  glol)* k " 1 ^ )  = ^ С * ) *  f 2 4 b )  f o r  b ć Df , O t e G .

Hence

g 2 U )  = k” 1 ( 5 )  g^lpi) • f ^ C b ) *  k2 (b)  ,

i .e.

92 Ц )  = * -1,  9 ^ W ) ' m,

which completes the proof.
By theorem 5 we obtain the following

Corollary 2. If two quadruples (fx >f 2 •f3 é A  and 

^  «k2 >k3 ,g2) € ^ dictate the same solution of equation (2) and k̂  * f̂  

or k2 = f2 or k3 = f3, then these quadruples are identical.

Theorem 6 . If the solution (Hi*H2’H3̂  of equation (2 ) may be dic- 

tateo -y a quadruple (f̂ ,f2 ,f3 ,g)& Д  , then it may be extended on the

triplet of sets (a x A x G, A x A x G . A x A x g ) and this extending be­
longs to the set I

To prove this it is sufficient to extend the functions f̂  and f3 on 
the set A in an arbitrary manner and to extend the function f2 on the 
set A so, that for any a£A there is f2 (a) £ Kr.

Let us observe that the structure of the sets 0U ,DU ,DU determi-
p H1 H2 H3

ned by t he  definition of the set 1 in an essential manner affects the 
form of t h e  solution of equation (2). It is illustrated- by the following

Example 3 . L e t  us p u t :

A = U , 2 , 3 , 4 - ,

3H= J H = Dh3 1 . 2 . e ; , t 1 . 3 . e ) . : 4 . 2 . e ) , f i . l . e ) , ( 2 , 2 , e )  , ( 3 , 3 .  e ) , (4 .  4. e)j  ,

c >
wher e ;.J e\ i s  a g r o u p .
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Let H be a function defined as follows:

|(l,2.e) j (l, 3, e) (4,2.e) (4.3, e) (l.l.e) (2.2.e) (3.3.e) (4.4.̂

H 2 j  4 3 5 1 1 1 1

CH is the subset of the set A x A x {e\, of course. It is easy to ve­

rify that (oH,«) is the closed substructure of the product Brandt grou- 
poid (a x A x (e) , x). Let К be the multiplicative group of real num­
bers. It is easy to verify that the triplet (h ,H,h) satisfies equation (2), 

Let us suppose that H have the form

H (a , b, e) = fjta). g(e)> f^Cb) .

Then g is the homomorphism and therefore g(e) =1. We have

f1(l)'f21C2) * 2 and f1(.4)-f‘42) » 3,

hence

(24) f^l)- f'H4) = § .

Moreover, we have

fCl) fiH3) *4 and f1(4)-f21(3) =5,

hence

f l U ) ‘ f i H 4 )  -  §  .

which is contrary to (24). Thus the solution (h .H.H) of equation (2) 

has not the form (JO) , (ll) , (.12) .
It is easy to verify also that this solution (Н,Н,Н) of equation (2) can 
not be extended on the triplet of. se ts ((A x A x ĵej , Ax Axjej, A x A x (ejj.

Now we shall consider equation (2) on the Ehresmann groupoid.
Let (r ,o) be an arbitrary closed substructure of the Ehresmann groupoid 
(e ,o). We will denote by R'1 a subset of E defined as follows:

R-1 : = I x : x t E л x-1 6 R̂  .

- ,3
Theorem 7. If the triplet of functions (H1 ,H2,H3) é [R--* Ejj .

where (Ê  ,<) is an Ehresmann groupoid and R « R 1 = E, is the solu­

tion of the equation

(25) H1(x)*H2(y) = H3(xoy) .
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then there exists an extension of this solution on the triplet of sets 
(e ,E,e), and it is assigned in an unique manner.

Proof. We shell show first that (r^ o) is a closed substructure of (c,o) 

Let x,y be arbitrary elements of the set R such that (x,y)éD . Then

У_ 1 е R, X_ 1 è R, ( y - 1 , X-1 )  € D -, whence y- 1 o x -1£R. Thus x о y é R-1 . 

It is easy to verify that every unit of the groupoid (E,o) belongs to

set Rn R_1. The following cases are possible :

1° . x( R, yt R, x о у c- R,

2°. u R , yf R. xoytR,

3°• x ( R , y t R, x о y c R,

4°. x*R, У S R* X oy ( R,

5° . x R , yi R, x oy ii R,

6° . x ( R, y c R , xoytR.

x be an arbitrary element of the set R. The triplet

( H1.н2»нз̂ satisfies equation (.16) , therefore

Hl̂ xl)‘ H 2CX l) » H3(xx) 1

Hl ^ x r ) - H2 ( x r>-  H3^x r) *

H1Cx) • H2(xr) = H3(x).,

Hllxl}’ H2(x) = H3(x) .

Using the above equalities and the fact that in Ehresmann groupoid

xr 1 we get :

\H1 Vхя . 4 H2'Xr))l “ (HlW)r W&)i.
VHl̂ xl- ) x 4 H 3 V x ) ) i  - (Hllx))l ■ ( n i 1  W)r*

'VH2 tx Ч Н э С х ) ) г  - \ H 2 ^ x ) j  r

;h2vx
^  \ " ( H i C x i ) ) r  ■ ( H 2 C x ) )  i “ k 1 ^ )  ) r*

V V X r'V = ( H 2 C x P ) r  = ( Н 3 И г = (Нд1 Ù )  ) X .

\H3VXa ( H 3 U ) )  x ° ( Н з Н х ) ) г '
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w hence

\H1 (x r) ' H1 ( x)) é °o ' (Hi  ^x) • Cx i) j  £ °o  > (H2 X̂ r̂  ' H2 ł ^x  ̂ )  ̂ ° c »

£ б)  /

\H2 W *  H2̂ xl)) ^ °c '(H3 (xr) ' H3 Cx)) tDo*(H3 Cx) • нз(?1)')ь0о'

-1 -1 -1Let x £ Ra R . Then x £ Rn R and we have

H^x^. H2(x)-H-1(x)*H'V1)H1(xr) »

= h1 ( x 1) * h2 (x ) { hi Cx - 1) . H 2 Cx ) ]  • H1 (x r ) =

= Н1 ( х ) . Н 2 ( х г) * [ н 1 ( х г) .  H2 ( x r) j  1 .

* H1Cx)‘H2(xr)‘H21(xr).H-1(xr).H1(Xr) - Hj(x) .

We can show analogously that

H2<-x l ) , H 21 ( x ' ^ , H 2 ^ r )  = H2<x )

and

H3 (x l) • nâ1 ^ - 1) . H3 ( x r) -  H3 Cx) .

Let us put;

f (x) for x £ R ,

ÏÏi W  ' l l
IH1(x1)-H1\x )-Hi(xr) for x{ R

where i = 1, 2, 3.

From the above considerations and by (26) it follows that H1»H2 ,H 3 are 
functions.

We shall show now that the triplet (Н1'Н2*Нз) is an extension of the so­
lution of equation (2б) on the triplet of sets (e,E,e).
Of course

Hij R = Hi f°r i = !» 2, 3.

In case 1° the equality (x)• H2(y) = H3(xoy) bolds, of course.
In case 2° we get

V x> Ïï2^y)= Hi M ‘ H2(yi)‘ ■

= H3 (x) . H" 1 (у-1) . Н'Чхоу) . (xoy) • H. ( y r) -
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■ H3(*)‘ j^Cxoy)* H2Cy-1J ] * н3(хоу) =

« H3Cx)'H”1( x)* K3(_xoy) = Н3(,хоу) » Н3(хоу).

In case 4° we have

HjOO-Hgty)- H1U 1>H^1(.x"1)1 H1(.xr) •H2(y1>H2\y'1;,H2(yr') =

■ Н^Сх^Н ^ Ч х- ^ Н ^ хД Н ^ у^.Н-Чу-^Н-Чу^Н^ yJ.H^yJ-

- H a t x ^ C x - ^ . H ^ x ^ - î  H3(.xr). [hj (.yr)-n2(y-1)] "• " 3 <,vr) ‘

• нз(х1).[н1(хг) . н2Сх-1) ] '1. Н1(хгун2СУ1) ( н 1и ' 1),н2С.У1) ] " -  H3(yr) «

= H3 (xj)‘ H '1 Cx"1) - Ĥ 1C y " 1) . H 3 ( y r ) »

v H3(xi),LHi(-y’1} • H2Cx’1)]"1, H3(yr) -

- H3(Ax°y) i) • H^C(xoy) -1) • H3( (xoy) r) » H3(xoy) .

In cases 3°, 5°, 6° the proof is analoqous. It follows from the above

considerations that every solution (hj>H2*H3 ) ̂  CR--°f equation
f 23 ) can be extended on the triplet of sets (E,E,e).

From the properties of the structure (R,o) and from the fact that in the 
Ehresmann groupoid the inverse elements are uniquely assigned it follows 
that the extension is uniquely assigned.

From corollary 7 of the paper [2j we can conclude that in the case, when 
(e ,•) is not an Ehresmann groupoid, then the solution (h from
the set LR--»Ê j of equation (25) cannot be extended on the triplet of
sets (e ,E ,e) .

Let (a x A x G , * ) be an arbitrary product Brandt groupoid, let (R,x)
be its arbitrary closed substructure, such that R v R-1 = A x A x G and
let C8>*) be an arbitrary Brandt groupoid. Moreover, let (н ,H,,H.) be

Г "*13 1 Ł J
an arbitrary triplet of functions from the set (R--»BJ . From theorems 3
and 7 we obtain

Theorem 8. The triplet of functions ^Hj«H2,H3̂  satisfies equation 
(2) , iff the functions H, ,H2,H3 have the form

Hjlx.y.^j = 9 (pO • <~2\y ) for c*.y.oi) e R,
H2(.x,y,ol) = f2(x). g fcO • f3Cy) for (x.y.x) 6 R.
H3(x.y.0l) = f 100 '1 9 CPL> 1' for (X,ул) L R.
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where are arbitfary functions from the set [a--*-b”], g is

a homomorphism of (g ,*) into (B,.) and for the functions fi«f2’ 3’9 
condition (17) holds.

Now we shall show that there exist such essential closed substructu­
res (r ,o), that the following conditions hold:

a/ R u R-1 = E

and

b/ ,there exists in R such an element x, that x- 1 £ R and x
is not a unit of (e,‘)

It is illustrated by the following

Example 4. Let us consider the pair Brandt groupoid (jl,2,3|x jl ,2,3j,x) 
and the substructure (r ,x) of this groupoid such that

R .((î,l) . (.2,2), (3,3), (l,2). (l,3) . (2,3;. (3.2)).

It is easy to verify that (R,x) is the closed substructure of our Brandt 
groupoid) that Ru R_1 = {l ,2,3] x jl ,2,3] and that x = (2,3) is such an 
element of the set R that x-1£ R.

Example 3 shows that the assumption Ru R_1 * E is essential in the­

orem 7. The following example shows that the assumption that (R.o) is an 
closed substructure, is essential, too.

Example 5. Let us consider the product Brandt groupoid (a x A xle] ,x) 

where A = {1 ,2 ,3]. Let R be the following subset of the set A x A x{e] :

R = {(l.l.e). (l ,2 ,e), (г.2,е), (2,3,e), (з,1.е), (з.З.е)].

Let H be a function defined as follows:

(l.l.e) (l.2,e) (2 ,2 ,e) (2,3, e ) (3,1. e) (3,3,e)

H 1 9 1 5 7 1

It is easy to see that (r,x ) is not the closed substructure of 
(a x A x{e] , x), that RvR’1 = A x A x{e] . Let (e ,̂*) be the multi­
plicative group of real numbers. It is easy to verify that the triplet of 
functions (h ,H,h) satisfies equation (25). We shall show that there does 
not exist the extension of the solution (h,H,H) on the triplet of sets 
(a x A x {e\ , A x A x{e] , A x A x(e{).
Let us suppose that the triplet (H^.Hg.Hg) is the extension.

Then we have

H3 (l,3,e) » H1(l,2,e)« H2(2,3,e) = H (l ,2 ,e) • H (2 ,3 ,e) =45,
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nence

H3 (j ,3,e) ■ H1(l,3,e)* H2(3,3.e) » H(l,3.e). H2(3,3.e) = 45, 

and therefore

H (l,3,e) = 45.

Thus

H (1,1,e)- H3(l,l.eV H1(l,3,e).H2(3,l,e)- H^l ,3,e)- H (3,l,e) « 45*7,

which is contrary to the fact that H(l,l,e) » 1.

Now, using the above considerations and theorem 1 we shall formulate 
a theorem about the solutions of equation (25) on the Ehresmann groupoid. 

Let (e ,«) be an arbitrary Ehresmann groupoid, let (Ev»*)véT be the

decomposition of this groupoid on Brandt groupoids and let (м,Л be an 
arbitrary structure. It is easy to prove the following

Theorem 9. The triplet of functions (Н1 *Н2 *Нз) € [e-- satis­

fies equation *!5) , iff for any vfcT the triplet of functions (,Ĥ ,H2 »H3)

satisfies equation (25), where is the restriction of the function
, i = 1,2,3, to the set Еу.

From the above theorem, theorem 8, and since every Brandt groupoid is iso­

morphic to a product Brandt groupoid,we can easily get the form of the so­

lution (Hj ,^*2 .Н3) of equetion fes) in the case, where the functions
H1'H2,H3 belong to the set [e--»B] . Now we shall consider in detail
the solutions from the set Г of equation (2 ), which have the form 
(н,н,н). Above all we shall prove the following

Lemma 8. If g is 8 homomorphism of the group (GjO into the 
structure (к,*) end gCe)6Kr, then

g (ос) 6 for обе G.

Proof. Let ot be an arbitrary element from the set G, let g be 
an arbitrary homomorphism of (G,*) into (K,.) such that g(e)6 Kr / let 
x,y 6 К be such elements that 0c,gC»4)) £ O,, (y.gCo6))é 0, and

x i g (pc) « y i g (00.

Multiplying this equality by g(pt_i) from the right side, we obtain 

* • 9 (e) ■ y - g (e) .

g (a) £ Kr, therefore x = y, and thus g 6=6) £ Krr* Analogously we can 

prove that g(pc) £ Kji . Hence, for g W-) condition 1° 0f definition 9 
holds.
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Since

( g c ° 6 ) ) r = (gfe6))x ■ gCe);

for g CoO) conditions 2°  and 3 °  of d e f in i t io n  9 hold. g(ai- 1 ) i s  the 

s o lu t io n  of the equation

g (ел) * х = g (в) ,

therefore for g(s>6) condition 4 °  of d e f in i t io n  9 is  f u l f i l l e d .  Thus 

g (ос) ć  < r which completes the proof.

From lemma 8 i t  follow s that in the c a se ,  where (A  x A x G ,x )  i s  

a Brandt groupoid, condition (l6)  in theorem 3 i s  equivalent to the f o l l o ­
wing condition

(27) g i s  a homomorphism o f  the group ( G ,*) in to  C Kr t") •
I t  i s  easy to s e e ,  v e r ify in g  the d e f in it io n  of the se t  Г  , that the fol­
lowing theorem i s  tru e:

Theorem 1 0 . The t r i p l e t  of functions ( h ,H ,h ) € [ a  x A x  G-------- »k ] 3
belongs to  the s e t  Г , i f f  the fo l lo w in g  c o n d it io n s  h o ld :

(2 8 ) V  ( Du -  M x M x g) ,
MCA H

(29) V A ( H ( i ,b ,e )  б к ) ,
S f M  b £ H  r

where M i s  a set s a t i s f y in g  (28) .

Theorem 1 1 . I f  the function Нб[_А x A x G—в—»к З  has the property  

(28), M i s  a set  s a t i s f y i n g  (28) and the t r i p l e t  (H,H,H) s a t i s f i e s  equa­

tion  (?) then the follow ing conditions

(зо) V A [ H(3,b»e) £ К ],
a € M b 6 M

(31) A [  H Ca,а. в) 6 Kr] ,
э в M

(32) / \  L  н ( а ,Ь ,е )  6 к 1
4 а ,Ь €  М г

are e q u ivalen t.

P ro o f. Let H é [a  x A x G-«->kJ be an a rb itrary  function s a t i s f y ­
ing the assumptions of the theorem and le t  M be a s e t  s a t is f y in g  (3 0 ) .  

F i r s t ,  me s h a l l  show that (30) implies (3l) . Let 5 be an arb itrary e le ­
ment such that (30) h o ld s.  Then we have

57



н(3 ,a ,e) • H (a ,a ,e) = н(а,8,е) for a £ M.

H(3,a,e) £ Kr and H(â,â,e) £ «r therefore

(ЗЗ) H (a ,à ,е) 6 Кр.

Moreove г,

Н (а, 5 , е) • H (à, а , е) = Н (а, а, е) ,

hence

Н ( а , а , е )  € Кг «

Thus condition (зо) implies (,3l) .
Let now a,b be arbitrary elements of the set M, and let x,y £ К be 
arbitrary elements such that (н(а,Ь,е), x ) 6- D, , (н(а,Ь,е), y)éO, and

H(a,b,e)*x = H(a,b,e)*y .

Multiplying the above equality by H(b,a,e) from the left side, we get 

H(b,b,e)>x = H(b,b,e)> у.

H(b,b,e) É Kr, thus 

x = y,

hence H(a,b,e) é K^p. Analogously we can show that H(.a,b,e) 6 Krr« 
thus for H(a,b,e) condition 1° of definition 9 holds.
Moreover (н(а,Ь,е̂ )г “ H(b,b,e), (н(а,Ь,е))̂  « H(a,a,e) and Н(а,а,е),
H(b,b,e) belong to the set Kp, therefore conditions 2° and 3° of de­
finition 9 hold. It is easy to verify that H(b,a,e) is the solution of 
the equation

H(a,b,e)*x = H(a,a,e),

hence condition 4° of definition 9 holds. From the above considerations 
we can conclude that H(a,b,e) € Kr> Thus condition (3l) implies condi­
tion (32) .
Of course, Condition (32) implies condition (30), which completes the 
proof.
In example 9 we shall show that in condition (3l) of theorem 11 we cannot 
replace the general quantifier by the existence quantifier. By theorems 10 
and 11 we obtain the following

Theorem 11 " . The triplet of functions ( H ,H ,Ĥ  fcjA x A x A—©-̂ kJ3 sa­

tisfying equation (2), belongs to the set Г  , iff for the function H 
condition (28 ) and one of conditions (зо) , (3l) , (32) hold.

Theorem 12. Let us assume that for the function H the assumptions 
of theorem 11 are satisfied. Moreover, if one of conditions (30) , (3l) ,
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(32), holds and (G,.) is a group, then

Н(а,Ь,об) € Kr for (a,b,o6)e DH.
I

Proof. Let M be a set satisfying (23), and let a,b be arbitra­

ry elements belonging to the set M. Then the function g defined as 
follows

g (oi) = H (b ,b ,сб) for ai, e G ; b e M

is a homomorphism of (G,«) into (k ,«), such that g(e) £ Kr. There­

fore by lemma 8,

H(b,b,oo) € <r for <t6G, bsM.

Hence, from theorem 11 and from the equation (2) we obtain 

H(a,b,o6) = H(a,b,e)>H (js.b.oü) , 

thus H (a ,b, oo) 6 Kr, which completes the proof.

From theorems 3, 10, 11 we obtain the following corollary:

Corollary 3. The triplet of functions (h ,H,H)ć[a x  A x  G—e—»k]̂  

is a solution from the set Г  of equation (2),  iff the function H has 
the form

H(a,b,oc) = f(a)'gW)'f-1(b),

where

(34) f is ah arbitrary element from the set [А—о > К j,

35 л g is an arbitrary homomorphism of the semigroup (G,.) into (к»')
such that g(e) 6 Kr,

36 (f (aig (об))to. and (g(<£), f"4b)) G D. for a.bfeO*. o6£G.

Proof. It is sufficient to prove that for functions f^fg.fg.g for 
which conditions (l3) - (17) hold, and which dictate, by Cjo) - (j2) , the 
solution (h ,H,h) of equation (2), the following conditions holds

a/ D, = D, = D, ,

A 1 Г 2 3 1
Ь /  A  L f-Ca) = f ^ C a ) ] .

a e o ,  1 *  J
T1

By theorem 10 we can conclude that the condition a/ is fulfilled.
Let a be an arbitrary element belonging to . By (ll) , (12) , (.13)

we get 1

H (a, a , e) = f t  ( a ) . g (e)<f (a) = f 2 Ca) ' 9 Ce) ' fg Ca) = f t (?)■ g (e) • f g (a) ,
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gte) is an unit in (кг,*), therefore g(.e) is an unit in (к,*) and 

me have

(37' H(a,a,e) = fjCa) • O) » f2(a) f3(a) = f • f3(a) •

From theorem 11 it follovs that H(a,n,e) € K̂ . Moreover, f2 Ca) (■ Kr» 

thus f̂ Ca) £ Kr and f3Ca) € Kr.

Therefore, in virtue of (.37) we get

f 2^ (a)  « f 3 (a) an t  f г  Ca) -  f 2 ta) •

Thus condition Ь/ is fulfilled, and this completes the proof.
From the abuve corollary and lemma 8 we obtain the following cc.oll^ry.

Corollary 4. The function H, such that (Н,Н,н)еГ is a homo­

morphism of a product Brandt groupoid into Ĉ ,*) If H f*16 form

H (a, b ,o(,) = f (.a) • g W, * f ̂ (b) ,

where
f is an arbitrary element from the set [a--Ж Г1

g is an arbitrary homomorphism of group (p»0 into (Kp,)#

and for f and g condition (36) is fulfilled.
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