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ON THE SOLUTIONS OF THE GENERALIZING EQUATION OF HOMOMORPHISM

Int roductlon
We shall consider the equation

m H1(X) « H2() - H3(X.y),

where the functions H'Hg.H,, are defined on some subsets of A X A X G,
(G.0 1is an arbitrary semigroup with a unit "a" and the values of these
functions belong to a set K, in which an partially associative operation
X' is defined.

In the first part we give the fundamental definitions and theorems,
which are necessary for the later parts of this paper. We define the so-
lution of equation (i), the extension of the solution, and, generalizing
the definitions given by 0. Aczel in the paper I3 we define the right re-
gular element, left regular element and strictly regular element.

In the second part we give the general solution of equation (i) /Zin
a particular case we obtain the results of 0. Aczél given in CO/ and the
theorems concerning the extensions. Moreover, we give one theorem of the
extension of the solution of equation (i) in the case,.where the functions
H1 ,H2 .H3 are defined on some subset of the Ehresmann groupoid, and the
values of this functions belong to an Ehresmann®s groupoid.

More detailed informations about earlier results regarding the sulu-
tions of the equation (@) are given in this paper.

Chapter |

Preliminary definitions and theorems

By we shall denote the set of all functions /called par-
tial functions/ the domain of which is contained In the set X, and the
range of which is contained i.i the set Y.

By LX— »Y] we shall denote the set of all functions the domain of which
is the set X, and the range of which is contained in the set Y. The do-
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main of the function ¥ will be denoted by and the range will be de-
noted by QFf. If the function F belongs to the set £x * Y-0 >Z] then
we shall write:

of = € X V(C D
X €X V(Cxy) « D_

0, 1x «Y: V X ol
T N y6X((y) T

Definition 1. The peir (@ ,«) where A is an arbitrary set and
is an arbitrary element of the set (A x A—sa3 will be called the bi-
nary algebraic structure /shortly - structure/.
If B(A and CCA then

BeC:*[x.y - (X,y} £D. A x«B+ yB C]-

Definition 2. Let (A,«) be an arbitrary structure and let S be
an arbitrary subset of the set A. The pair (S,x}# where ‘“X*“ is the re-
striction of the function to the set S x S will be called the sub-
structure of A, and, for simplicity, note (5,9 .

Definition 3. We shall call the substructure (s,X) of the structure
@.) closed, if QKC S.

Definition 4. We call the structure (A% associative, if for arbi-
trary X,y,z €A the following conditions are fulfilled:

1 t(x.y) € D.A(y.z) *adl = =0 (x.¥ z) € D,

e° [(x.y) « O.A (y.z) e 0]— (x.y,z) « D.,

3° [(x.y) €D A (x.y,z)€D,]1==d.(y,r ) 6 D.,

4° [(Y.*) C A (x.y z)«D.]—=

5° [(x.y) e 0.A (y.z) €DJ]-——="[(x.y).Z * X<y.z)] .

After W. Waliszewski ([4], p-6) we will use the following definition of a
groupoid.

Definition 5. A structure (a,® is called a groupoid, if it is asso-
ciative and if the following conditions are fulfilled:

1° /\ {[Xy) €D. N X,z € DLAXY « X zN===>y = 2",



2° {[G.*) €D, A@X)6D N1 (yx =z xgturr»y = z(,

X,Y,Z
3° n V  fouy60. 1 xye A\,
X « A y 6 A4 o
where

A, =" s6 €A »E,©FD A e,e =€].

Definition 5 is equivalent to the definition of the Ehresmann groupoid ([3],
p-3), and therefore we will call the groupoid in the sense of definitions
the Ehresmann groupoid.

Definition 6. The Ehresmann groupoid (a ) in which the following
condition is fulfilled

A V[Oe»z) €0. n zy) €D]
Xy z
will be called the Brandt groupoid.
In the paper £41 the following theorem is proved:

Theorem 1. The pair (@9 1is the Ehresmann groupoid iff there exists
a decomposition U of the set A on such disjoint sets, that

D C x M: ME ui

and every set AeU with the operation restricted to the set A X A is
the Brandt groupoid. If (A, is the Ehresmann groupoid, then such decom-
position is synonymous.

Definition 7. We say. that the structures (@ and (.,0) are iso-
morphic, if there exists a bijection f : A—»B such that the following

conditions
a/ >'<A,)\/6Af0('y) «o0.<=* (FX - TW))e 0&.
o/ (f;)e [F6) = 69 o O]

are fulfilled.

One can prove ([p}, p-111-112) that;
Every Brandt groupoid is isomorphic to some groupoid of the form (AxXAXG.X)
/called the product groupoid/ where A is the set, (g, is the group
and NX' is an operation defined as follows:
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a/ (x.y.op ,C*.V ¢ y =2z,
b/ (xy-ap . (r,V ,p) £ 0M=".(Xy-0) K (z,V .B - (X.y .00<p)

It is easy to verify, that every product groupoid is a Brandt groupoid.

In a particular case, when (G, is one element group the product Brandt
groupoid is called the pair Brandt groupoid and denoted by (a x A, X).
Let (@, be an arbitrary structure.

Definition 8. The element €A will be called right /left/ regu-
lar, if for arbitrary two elements x€A, ye A such that (, @ €D,
ad ¢, & @, (Il,9€D. ,@ YED.) there is

[xea«yeal-wx =y (Ja=xV aeyl=" x* y).

The set of all right regularelements of A will be designed by Arri ad
the set of all left regular elements of A will be designed by A”™.
Using definition 8 it is easy to prove the following

Lenvma 1. If a is an arbitrary element of the set Arr> b an arbi-
trary element of the set A”™p and c an arbitrary element of the set A,
then each of the equations

af X*amcC and b/ bex =c
have no more than one solution.
From lema 1 there follows

Corollary 1. Every element a £ Arr has at most one left unit a°
and every element b € A~r has at most oneright unit br«

Lema 2. If (@,) 1is an associativestructure, a is anarbitrary
element of the set AIM® A having the right unit ar and the left unit
& and one of the two equations

a/ aex « a and b/ Xea e ar

has a solution, then the other one has a solution, too, and the solutions
are equal.

Proof. Let, for example, the equation a/ possess the solution xr,
i.e. ™ = ars
Multiplying this equality by a from the right side we obtain
a*Xj« a« - amaear.

Since a €A™ we get
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and then is the solution of equation b/. One can prove analogously
that the solution of equation b/ is also the solution of equation a/.

Lema 3. If (@, 1is an associative structure, a is an arbitrary
element of the set Arma A™r possessing the left unit and right wnit
ar such that al € Alr and ar C Amr and x is the solution of te egut
tion &/ or b/ fron lema 2 then x e Arrn Alr*

Proof. Let x be, for example, the solution of equation a/ from le
m 2, let XA X2,YY, Y2 be arbitrary elements such that

XD bD., X X2 €0,, ,X)CD,, (R-X€D. ad let
XX+ x*x2 and yvi® X =y2° *m
Then we have
a* x>Xj = a*x*x2 and eXx<a = y2“X-a,

and consequently

al* xi “V x2 and Vi' ar - Y2' V
Thus

Xj - xX2- and yl=y2.
So X P AprO Alr.

which, thanks to lemma 2, completes the proof.

Lema 4. If (A%} is an associative structure, a is an arbitrary
element of the set Arf. posiessing a left unit &\, and b is an arbitrary
element of the set A”r possessing a right unit br> then

ai c Arr ard breéV-

Proof. Let a be an arbitrary element of the set Arr< its
left unit and let X,y be arbitrary elements of the set A such that

Xeadd »y-at.
Multiplying this equality by a from the right side we obtain
Xea ayea.

ab Arr, sowe have
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X=vy,
thus ai 6”°rr* One can Prove analogously that bri. A™r.

Lemma 5. If (A,® 1is an associative structure, then (Arr,®» and
Wr**) are cl°sx* substructures of (G ,°) -

Proof. Let a, b be arbitrary elements of the set A.r such that
(@,b) EO0. and let for sore x,y£EA the following equality hold x-@"b)*
= y-@b) .

From the associativity of the structure @*,) and fron the regularity of
a and b we obtain

X »Y,
thus a>b€Arr, One can prove analogously that a-be A”r.
Consequently (Am).) and (A™r«<®) are closed substructures of @@/).

Definition 9. We will call an element a of the set A strictly
regular, if the following conditions hold:

1° acC Arrn Alr,

2° V V[(al,a)e D, =(a,ar) € D, n(a*=a m acar = a)l,
ar al

3 ar@ Arr and a£ Al(,
4° equation ax « a®

posses-ss a solution.
We will denote the set of all strictly regular elements of the set A by
Fron conditions 1° and 2° of definition 9 and from lema 4 we
obtain
alf Arr and ar € Alr

for a€ A-.
Condition 3° in definition 9 does not follow from other conditions of
this definition. It is illustrated by following

/

Example 1. Let R be the set of real numbers and ([r—e-»rJ o} be
the structure with the superposition .0" defined as follows

D_ (139) fe[D:AQC Df.

2°. (f.gré 0Q-Ar>fM = |xy) IXxtbDgn y = f(gw)s
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It is easy 1o verify that

a/ the function f is left regular iff it is an one-to-one function,
b/ the function T is right regular iff = R.

It is easy to see that for the function
f :x—>In x for x> o

the conditions 1°, 2°, 4° of definition 9 hold and that the function
fr o x X for x> o

being the right unit for the function F is not right regular, because

TI"/ R.

Lemma 6. If (@, 1is an associative structure, then (Ar,) is
the Ehresmann groupoid.

Proof. At first we shall prove that (@r,®» 1is a closed substru-
cture of @, . Let a, b be arbitrary elements of the set Ar such
that (@,b) 6 Fron lemma 5 and condition 1° of definition 9 we ob-
tain that a*bEAmn Air» hence condition 1° of definition 9 holds for
the element a»b. Moreover, we have

aeb» @™ a*b = ax@=h)
and *
a<b =a*@bebr) »@e=by*br.

From corollary i we obtain that & and br are the only units of the
element a*b , thus conditions 2° and 3° of definition 9 are fulfilled.
Let y,z be arbitrary elements of the set A such that

aey=a® and bez=m
/a and b exist, because a€-Ar and be Ar/.
From letma 2 we obtain

y a=ar,

and, because (@b)€ D, ,aEAf and b tAr, then
a-ar-b = a*arlar-b =ahb = a<bi- b.

Thus (@ar,a) ¢ D, and ap=b", ie (@Y 60D, .
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We have
@D, (@)= (b)Y = &by =(@-ap).y =a.y * a* =(8"™,
what means that the equation
@b* = @=bh"

has a solution. Thus for a*» condition 4° of definition 9 holds.

Vs have showmn yet, that (Ap, 1is a closed substructure of (a ;. From

the associativity of (@ .9 we obtain the associativity of (A,.) -

Let now a, b, ¢ be arbitrary elements of 4p. Because a, b, c are ele-

ments of the set ApA Alp, then for a, b, ¢ conditions 1° and 4° of de-

finition 5 are fulfilled. From condition 4° of definition 9 we obtain that

condition 3° of definition 5 holds. It is easy to see, that the set Aq

from definition 5 is the set of all units of the set Ap.

Fron the above considerations we obtain that for (Ap,) conditions 1° -3°

of definition 5 of the Eh.esmann groupold are fulfilled, hence (Ap).) is

an Ehresmann groupoid, which completes the proof of the lemma.

Now we will denote the element inverse to the element a by a™.
Definitions 8 and 9 generalize the definitions given by 3. Aczél I,

the paper , p-40. 3. Aczél formulated these definitions for semigroups.

let novn (@,9 and (G .,x) be arbitrer/ structures.

Defigition 10. The triplet of functions (H.l,H ,Hj) from the set
e—>83° will be called the solution of the equation

) HIB) v HQY) - H3 (Xxy)

if for arbitrary x.yt A such that Qx,y) ¢ D, the following condition
holds :

L*e OHA yDHA X<y tDhA]=~[(hi ), H2G)) € D HAX)* H2G) . Hg™.yj -

Definition 11. We shall say that the triplet ~H1(H2,H"é [a OmsB]"

is the extension of the solution of equation Cl), if the fol-
lowing conditions are fulfilled:

1°. for i *1.2,3,
4 cC °». \
2°. Bila - . for i m1.23
3. the triplet (h1,2h3) is the solution of equation



We shall say that the triplet (Hj,H2#HJ) can be extended to the triplet
or that the triplet can be extended on the tri-

plet Of sets (O} ,Dg ,0H\
12 3

Chapter |

Solution of the equation (@.b.n)«H2(,c.p) = H3(@,c,b;-D)

Let *f be a function of four variables. We shall denote:
1

Qu : ={x : V [(x,v.y.z) ¢ D,]I
L v.y.Z

D? :» Ex :Vv [(y-x.y-2) C Du, ]V

T-jx v [(y.y-x.2) €tuli)
I V.y.Z

w S= {x : Vo [(v.,y,z,x) Qipl5*
n V.y.z

If *f is a function of two or three variables, we will use analogous no-
tations.

Let A be an arbitrary set, (G,0 an arbitrary semigroup with the
unit e and let (K,«) be an arbitrary associative structure. Let us
consider a structure @ X A x G.xX), defining the operation ,X' as fol-
lows :

1°. ((@-b.0d) .(c.d.p’)) tD* ->b=c,
2°. (@.b.ob) , (c.d,p>)) 6 DX="(a,b,09) x(.d,|) =@.d,» ") .

Let us consider a subset of the set [a X A X G— 0—>K]3 defined
as follows:

Definition 12. The triplet of functions (Hj~.Hg.-H* belongs to the
set iff the following conditions are fulfilled:

1. D] XDy ° DLj,

n2 ni
2. °hl *°h2 >
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3°. vV A A Lci,b,o(,) eDH n HAB.b.e) e K],
a bé6D‘ itG ML 1
H1
4°. in the set A there exists such elements S and b that
the following conditions are satisfied!

al (a,b,00) € D, for a € 0?2 ,
1 1
b/ (b,a, 06) € DH - for a £ Qu ,
H2 2
c/ HgCb.c.e) e kpr,
5°. [(a,b, 06) fc DM ) (a.b,A)¢D 1. i » 1,2,3.
(a.b.ab) /beG Hi 1 H1

Theorem 2. Every solution (Hi«H2'H3) ¢ f\ Of the equation
(2) Hl (a,b,06) ¢« H2 (b,c,p) = H3(a,c,0!>p)

can be extended in a unique way on the triplet of sets

k> (°Ht x DHt V G* °K2 X °H2 x G* °H3),
* | IS |

and this extending belongs to the set I "e

Proof >

Let the triplet of functions (Hi»H2'H3" belonging to the set fA
satisfy equation (2) and let a, b, ¢ be arbitrary elements of the set A
satisfying conditions 3° and 4° of definition 12. From conditions 3°
4° of definition 12 it follows that

"

and

°H3 * °M3 X °H3 * G*

Let the triplet of the functions (Hi*H2'H3) be an extension on the trip-

let of sets (3) of the solution Then, evidently

4) H3 - V

Let Ca.b."6) 6 On . Then we have
H2

T~Ca.a.e)  H2(a,b,06) > H3(T,b/t) -
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Fron @™ and conditions 2° and 3° of definition 12 it follows, that
(G,a,e) € D . That fact and (4 inmplies, that
1

H1(a,a,e)-H2(a,b™) = H3(@,b,0)
Now, using the fact that H”i ,a,e) 6Kr, we obtain
{5) H2 (@,b,ot) = H”a.a.e) =H3(@,b,0(,)-
Let (@,b,0/) €09 - We obtain
Hj @,b.on © H2(.b,c,e) = H3 (a,c,00) -
Regarding conditions ¢) and G) we have
H1 @b,0()- H* (1,b,e)« H3(i,c,e)= H3(a,c,oi) -

Hence

HI(0,b,0D)-Hj"@,b,e)« H1(@,b,e)» H2(b,c,e) = H*a.bH b .E .€e)

H™e.b.e) 6 and HM(i,b,e) t Kr and H2(b,c ,©)=Kr , therefore

®) He.b.c6) - H1(@b,®) =H™i.b.e) =HMa.b.e) .

Fron ¢), G), (6) we obtain that (~.H"HA) is the unique extension
of the solution Moreover,

HjCa.b.e) = Hl(a,b.,e) for bt Dp

and

H2(b,c,e) = H2(.b,c,e),
whence

H?S,b,e) 6 Kr for b tDp and H2(b,c,e) 6 Krf. which means that
the triplet is an element of the set fj.

Now we shall prove that the triplet fTHi»H2>H3) where the functions
H1(H2 ,H3 are defined by conditions ®), B), (@, is a solution of equ-

ation @ -
Let (a,b,oi)eDp ,(M,c,A) €Dp . Than (@,c,oith) 6 O and we have
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which completes the proof.

For the triplet of functions (H1"H2"H3) € [ satisfying equation @)
condition

O

X X G for i»1 2.3

°u _ °u_ °u_
Hi Hi Hi

need not be satisfying. It is illustrated by the following

Example 2. Let us put A ={1,2,3,4", G - , let (K be the
multiplicative group of real numbers and let the functions be
defined as follows

It is easy to verify, that the triplet (H1>H2'H3) 18 the 8°lution from
the set 'l of equation 2 and that for the function Hj

PH 7/ 0* xDy xG.
H1 H1

From theorem 2 we can conclude that it is sufficient to consider only

those solutions fron the set P», for which condition @)
is satisfying.

Definition 13. We will denote by N2 the set of all triplets

W ® H2"H3" £ pxAxG—C-*K~ , Tor which conditions 1° and 2° of defini-
tion 12, condition (7) and the following conditions are satisfied:

0 Vel Aelrgoo = b
H1 H1
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It sesyose ttat P2 s tte st of ail triplets (WHMHY e T,
for vhich codiion  ¢) s satisfyirg.

Lema 7. If tte triplet of fuctiaos HjHHY) 6 2 B te olu-
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an abritrary elerat, for which codirion @ holds. Ve hae
HY'S be) «H2(bce) =HI@.be) ~HR2b.ce)
ad, becaase HL(?bE) 6 Kr,
H@,c,e) » H™4a.b, )= Hi(a,b,e)= HXDb,C,e)-

Aaon lemes 6 ad 5 we doain
H@,c.e) e KT.
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B by

€ Ve, b, L E-C-O-
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Fan tre doe asidatios it follos tet it s ufficiet © asi-
ter egaian 2 N te st 1 dehird as follons
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3. Azl npgoer [, p-3YA. Tre reaults of 0. A2l aem te e,
wen (G saaeeleait gop, KD Basmgap ad te fuc-
tas ae cchined on tte st A XA



Theorem 3. The triplet of functions (">h2 qs3) £a x A X G— e—>KJ2

is a solution from the set I' of equation (2) iff have the form
\l9 Hl(.b.bl.} = fjCa) < gto)” 2 (b ,
an H2 @,b,oi) = f2(@ - g(p6)-13 Cb),
(2 H3(@.,b,0) = fl4a) «g(pO*f3 (b) .
where 8B arbitrary functions irom the set [A~ K jsuch that
@is) there exists such an a e , that f7a) 6Kr,
Q) there exists suich a ¢ 6DF , that f3(© £Krr«
@® 2t _A-"Kny.
@ - g is anarbitrary hmonapgiamad® G35  into (K, suh
tat g £k,
@ @V .g@6 D, .M - RO Co. RO , g=DO-/J)F3 O)FD,
for afdO- ,b £B. ,ctD, , eC.
T1 T2 T3
Proof. Let us assume that the functions have the form
O - @2) ad let a, ¢' be arbitrary elements such that conditions @)
and (@4 are fulfilled. e

g® ¢ Kr, therefore g@®@ 1is an unit in (k,*) and we have

H1(5.b,e) - Fi(iyf2lib), i.e. HAS, b, €6 «r for b £D2 ,

H2 (b,c,e) = ML) 3 for b eD* .

Thus, by lema 5, H2(b,c,e) 6 Krr.

It is easy to see that conditions 1° and 2° of definition 12 and con-
dition ¢) are implicated by (I7) . Hence the triplet (H1,H2,H3) belongs
to theset 1 . Let non (@,b,d) £pH and (b,C, a) é DH .

Then (@,c, A"fH)60H and we have 1 2

H1@,b.oN*2 @.c,/)

RO )R0)R2OTY F o) fj@.g0D)-gi"-fuCc) »

™>@)=9 cl-(b)> f3(©) = H3 (a,c, a,’|b) ,

44



hence (Hi"H2,H3) is the solution of equation ().
Let us suppose now that (h"Hj .Hj)¢ T satisfies ¢) and let a and c
be arbitrary elements, for which conditions @ and (9 hold. Then

Hr 8,b,e) "H2(b,cfit] * H'a.c.46). H2(c,c,e) for b,cé , Icé G,
and therefore
Ue) (hi (@,b,e), Hl(,.c,09) € D,.

Let *b be an arbitrary, fixed element from the set DEI .

We put! 1
fl@s = H1l(@a,b,e) for af-oj
2@: = HCi.a.e)-Tx(i) for a€,
2@ := H(b,a,e) for aso”n,
g (©: = H* (S.b.e™™.b,”) for oLtG.

For a € DF ,d6G we have
1

@) (H1 @b,®) , H2(b.c.e)) € O,-

Moreover,

HMi.b.e)-H"b.c.e) =H3(i,c,e)
and hence, since Hj(l,b,e)6Kp,

H2(b,c.e)» H-*(i ,b,©)=H3(i,c.e) ,

ie., by (9)
€o) (H1(@.b,d0) . H*Ci.b.e)) ¢ D,.
Thus
(f1 @, gH))eD. for a( 0,‘2,oi e G
and
@& . 24a)) 6 0, for aeof ,0i6G.

The triplet (hi .Hg.-HJ) satisfies ¢), therefore
(gti) , f3ca) £ D, for afO~.t/EG,
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From the definitions of functions we obtain that conditions (B
- (@B are fulfilled. We shall show that for the function g condition
(16) holds. From the definition of the function g we obtain that

ge) 6 kr.
Let oi, A be arbitrary elements of *te set G. We get

Ao - 91p) - H2(b,c.e) =
m H11(@,b,a) *HACa.b,<»m H"'1(a,b,e) m4™"a-.n). H2(b,c,e) -
- H-1(i,b,e) . H1(G,b,0(,)-H 1(i,b,e)-H1( .b.e)- HO(b,c,») *
m H'1( b.e). H1(i,b,0i,)*HCb,c,p) «
= H"a.b.e) sH1(a,b,0i*p) - H2(b,c,e) = g (bl Iy » H2(L,C,€e)
H2(b,c,e) £ Krr therefore
g (oivg (p) » 9 blI'(x>/
i.e. g is a homomorphism of (@D into (»>"\m
Let (a.b.0i) be an arbitrary element of the set D|—|3- By (20) we get
H3 (@,b,d0) » H1l(@,b,e)* H2(b,b,01) *
¢ Hi(a,b.e)" H*™a.b.e) - HY(i .b.e) *H2(b,b,04) «

s HMa.b.e)* HjHT.b.e)* H™i/boi) H2(b,b,e) = a)- gM'fgo») ,
thus H3 has form (12).
Let (a,b,¢cC) be an arbitrary element of the set o, . We ge.
Hi (Ba,)- H2 @b,ol) = H3@b,C<.) - i
. Hence, because H"™a.a.e) e Kr and H3 has the form (12) we have
Hgfa,b,d) « H*Ca.a.0)- H3(@,b,0L) =
- H*~S_a.e)* fj(&) *g(e0 f3() -

* f2(a) » g («<)» f3Cb)-
thus H2 has the form MI).
Let (a,b,cE.) be an arbitrary element of the set
H1l(a,b,cL.™).H2(b,c,e) « H3(S ,C,cL) ,

°Hte We get
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whence
H1(a ,b,0) m 2(h=1f3E) - a)» g(o6W3 (©).

B3© €Krr and T2 (b) E Kr, therefore

Hra.b.ot) = X&)~ dJ.)-
thus has the form (10) , which completes the proof.

Theorem 4 . If the triplet Hj*H2>H3)E [ satisfies (),
™~ f [dh-l---*IQi IZ € Ldn——--* ~36 [Di-z---* KL» 9 is an homomorphism of
@D Into > , and conditions (Io)- G@G2) and (17) hold for the func
tions HItH2 ,H3 and FItf2,f3.g- then TFICi)€K], gE) e Kr, T3COtKF
where a, ¢ are arbitrary elements satisfying (8 and ).

Proof. Llet us put a ml, a=¢€e in (lo). We obtain

(S ,b,e)* fiGa).ge)- j1b for b €
Because H"a.b.e) € Kr and f*@) ¢ Kr, we have
) fl@-e=gce) € Kr.

The function g is a homomorphism, thus

= g@) - TL@-g@) =g®) ,

and therefore, by @D, gE) isan unit in (kry» . By @D we
obtain also that f/~S) é Kp.

let usput a=1i4, b=c, céeme iIn (Il). We obtain, using the above
considerations and lema 5, that

37) é K-

which completes the proof.
Let us denote by J1 the set of all quadruples of the functions

@j..£2» «9), Tor which conditions @) - @7 are fulfilled.
Theorem 5. Two quadruples of the functions CTfi*R «f3>9)) and
« A3 ,2) from the set 1 dictate the same solution of eguation
@ iff
1° 0. *D for 1=1,2,3,

1 1
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2°. there exists = such that (fjCa) , ni)(0, , (f2(b) ,m) é 0.

(n-1, gw) ~ D,, (g ki) , ra 6 D, and

ki (a) fiCa) mi
k2(b) = f2(b). ra
k3 (c) * mi1*f3Cc),

g2Yet) * nf'1'9 )’ m

for arbitrary atD. , mb” D, , e 60,
rl 2 T3

, «i6G.

Proof. It is easy to verify, by (I0) - (12) and 1°, 2°, that both
quadruples dictate the same solution of equation (2). Let now the quadru-
ples k/fi,f2,f".gi) 6 A and (ki,k2,k3,g2) € A dictate the same solu-
tion of equation (2) . We get

D, * = Du , 0%2“ Du * O, . * Du = °b and
H1 ki H2 k2 f3 "2 k3

=4 ELD* NQ)RErKLO for aeDF\. b(OF\ d ¢ G,
b/ fg (@) (o ‘f3cb) » kgCa) +g2 Coi), k3 0>) for ac¢Df . beDf , oi€ G.
Let 5, c be arbitrary, fixed elements, such that for the functions fAfn
conditions (13 and (14) hold.
Let us put a =i, o(/* e in a) . W get

fl(a) «fgl(b) = k1Ci)*k"1(b) for b fe Df~.

whence, because k~"Cb) € Kr, we obtain

k™) » FiCi)*f24b)>k2),
hence
&) £Kr.
Let us put bee, Qi = e in b). W get

fgCa') « f3(e) = k2(a)-k3Cc) for afDf”,
and therefore, because k2(a) £ Kr,
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K3E = kg* @ "fo(@ “3(c) -

From lemma 5 we have

K3¢ € K-
lLet us put a=5, oil=¢e ina/. We get
kiCa®)" k"'1™) = F1Ca)* 2 1Ch) for b EOF,

thus

(22)  f'Ha)- k~a) - fgl(b)«k~(b)

Let vB denote

@D m:- @ k=@

OfF course, m 6Kr> By a/, putting Ql=-e, we obtain

KI A k21%) * f1Cq)«fj105) for aéDfl* béof2"

1e0-

ki@ « fi@-fgl(@-k Q@) -
Thus, by (22) and ¢3)

K@ « fjra)*m -
By G2) we obtain

k) - 20 kjCe) for bfD™,
i e.

k2 = f20)>m.
By b/, putting @ s e we obtain

RE@AMBO « k)< k3® for aEo”~, bFfDF ,
hence

KO =k a). R@>RB0),



e ® - 1= 21 1 B D).
Thus, by (2)and (2)
k® =m1.BEO .-
From condition a/, putting a =a, we hawe

kj~i)* gloh)* k"17~) = A~AC*)* f24b) for béDf , OteG.
Hence

g2U) = k”1(5) g”lpi) + FACDH)* k2(b) ,

-
®

921]) = *-1, 9AW)' m,

which completes the proof.
By theorem 5 we obtain the following

Corollary 2. If two quadruples (fx>f2 =f3 eA and
N ode ks g2 €N dictate the same solution of equation @) and k**
or k =f or ks = 13, then these quadruples are identical.

Theorem 6 . If the solution (Hi*H2H3™ of equation () may be dic-
tateo -y a quadruple (F . f2,f3,0)&] , then it may be extended on the
triplet of sets (a x Ax G, Ax Ax G.Ax A xg) and this extending be-
longs to the set |
To prove this it is sufficient to extend the functions ™ and ® on
the set A in an arbitrary manner and to extend the function f on the

sst A so, that for any afA there is £ @) £ Kr.

Let us observe that the structure of the sets OU ,DU ,DU determi-

o p . _H1I H2 H3
ned by the definition of the set 1 iIn an essential manner affects the

form OF the solution of equation (2). It is illustrated- by the following
Example 3. Let us put:

A=1U,2,3,4-,

3H= JH= Dh3 1.2.e;,t1.3.e).:4.2.e),fi.l.e),(2,2,e) ,(3,3.¢), (4.4 e)j,

c >
where J el is a group.
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let H be a function defined as follows:

10.2.9) | 13,9 G20 @39 @le @29 (3.9 @4-
H 2 i 4 3 5 1 1 1 1

CH 1is the subset of the set A x A x {e\, of course. It is easy 1o ve-
rify that (oH,©) is the closed substructure of the product Brandt grou-
poid @ XA X ® ,X). Let K be the multiplicative group of real num-
bers. It is easy to verify that the triplet (h ,H,h) satisfies equation @,
Let us suppose that H have the form

H@,b.© = fjta). ge)> Cb) .
Then g 1is the homomorphism and therefore g =1. We have

fL(D)"f21C2) * 2 and i (4D-F42) » 3,
hence
@ ftTD-fHY) = § .

Moreover, we have

o)  FiH3) *4 and  FLA)-P1O)

Il
(¢)]

hence
flu): fiH4) - §

which is contrary to (24). Thus the solution (h.HH) of equation

hes not the fom @, AD ., ().

It is easy o verify also that this solution (H,H,H) of equation @ can

not be extended on the triplet of . sets(AXAX yg , AX Axjej, A X A x (ej]-
Now we shall consider equation (2) on the Ehresmann groupoid.

Let ( o) be an arbitrary closed substructure of the Ehresmann groupoid

€ 0)- We will denote by R"1 a subset of E defined as follows:

R-1 -:=IxXx :XtEn x-16 R .

-3
Theorem 7. If the triplet of functions (H1,H2,H3)¢é [R--* Ejj

where (B*,© is an Ehresmann groupoid and R« R 1 =E, is the solu-
tion of the equation

@  HIM2EG) =H3Co) -
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then there exists an extension of this solution on the triplet of sets
€ ,E.,e), and it is assigned in an unique manner.

Proof. We shell show first that (r™ o) is a closed substructure of (C,0)
Let X,y be arbitrary elements of the set R such that (X,y)éD . Then

v_1e R, x_1¢ R, (y-1,x1) €D 5 whence y-1o0x-1£R. Thus XoyéR-1.
It is easy to verify that every unit of the groupoid (E,o0) belongs to
set Rn R 1. The following cases are possible :

1. x(R, vVytR,
2°.  UuR, yfR.
3% x(R, VYTtR,
4°.  X*R, ysR*
5°. x R, ViR,
6°. x(R, ycR,

X0y cR,
XOYytR,
X oy cR,
x oy (R,
X oy iR,

XOoytR.

X be an arbitrary element of the set R. The triplet

(H1 H2»H3 satisfies equation (16, therefore

HIXED)<H2CX D » H3 (%X 1

HINXr)- H2(xr>- H3~xr) *
H1C) =H2(xD= H3 ).,

HIIXI}H2 ) = H3 () -

Using the above equalities and the fact that in Ehresmann groupoid

Xr 1 We get:
WiM 4 H2X)l

VHINE ) x 4 H3Vx)) i

H2 Y HaCx))r

$h2w \ "(HiCX))r
VoV Xy F(HZOP)r

\H3VX a
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- HIDO y(nitWyr=
WH2 2x) 1

m (H2Cx)) B “k 14))r*

= wan =0 DX,

(H3U)) X (H3H x))r"



whence

\HL (xr) ' HL1 (x)) é° ' (Hi ")+ i) ] £°0>(H2Xr "' H2t ") ~°c»
£6) |/
X2 W* H2™ D) ™ °c "H3 &) " H3 X)) tDo*(H3 ) = H3(?) 00"

_1- 1£ Rn R_1 and we have

let x£RaR Then X

HAXN . H20)-H-1(X)*H"VDHL (xr) »

= hl(xD)*h2(x){hi Cx-1).H2C)] =+ Hl(xr) =
= H1(x).H2(xr) *[H1(xn). H2(xrj 1.
* H1CX) “H2(xr) “H21(xr) .H-1(xD) .H1(Xr) - HJX) -

We can show analogously that

Fe<x1) H21(x' A \H2Ar) = H2<x)
and
H3 (x1) *nd1” - 1). H3(xr) - H3Cx)
Let us put;
f &® for x£R,
W I HL e-RINx  yHE ) for x{ R

where i1 =1, 2, 3.

From the above considerations and by (%) it follows that HL>H H3 are
functions.

We shall show now that the triplet (H1"H2*H3) 1is an extension of the so-
lution of equation (26) on the triplet of sets (e,E,e).

Of course

Hij R = Hi fr 1=5n2, 3.

In case 1° the equality )=H2()= H3(Gwoy) bolds, of course.
In case 2° we get

Vx> T2MY)= Hi M “H2 (yi)* [ ]
= HB(x). H'1(y-D) .H"Uxoy) . (xoy) *H. (yr) -
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B H3(®)“ JACxoy)* H2Cy-1J ] * H3(xoy) =
« H3CX) "H”1()* K3 (oY) = H3(GXay) » H3(xoy) -

In case 4° we have
HjOO-Hgty)- H1U BHAN1L(XDIHL(OF) =H2 (YI>H2\y " 1; H2(yr) =

. HACXAHAUX=AHAXLH Ay~ H-Uy-~H-Uy HA yI.HAYI-

Hatx"Cx-"_HAXN-T H3Q®). [hi OH)2G-D] "™ "3<vr)

H3(X . [HL(xD) . v2Cx-D) 1" 1 Hl(xry 2o (n In " HH2cYD]"- H3(yr) «

H3 (xj)'H'1Cx"1)-HNICy"1) . H3(yr) »

<

H3(xD,HIE T = H2Cx>D] 'L, H3(yD) -
- FEACY) D=HC(x0y) -1)=H3(Coy) 1) » H3(xay) -

In cases 3°, 5°, 6° the proof is analogous. It follons fron the above
considerations that every solution (hj>H2*H3)" R— °f equation
f23) can be extended on the triplet of sets (E,E,e).
From the properties of the structure (R,0) and from the fact that in the
Ehresmann groupoid the inverse elements are uniquely assigned it follows
that the extension is uniquely assigned.
From corollary 7 of the paper [2J we can conclude that in the case, when
€ ., 1is not an Ehresmann groupoid, then the solution (h from
the set LR— »EY of equation (&%) cannot be extended on the triplet of
sets (e Ee)-

let (@ XA xG,*) be an arbitrary product Brandt groupoid, let R,X)
be its arbitrary closed substructure, such that RvR-1 = A XA xG ad
let C8>) be an arbitrary Brandt groupoid. Morerer, Ig!3 ., , ,,HJ) be
an arbitrary triplet of functions fron the set (R— »BJ . From theorems 3
and 7 we obtain

Theorem 8. The triplet of functions "Hj«H2,H3" satisfies equation
@ , iff the functions H, ,H2,H3 have the form

Hilx.y.j = 9[- Q\y) for c.yoi)e R
F(xy.d) = f2(3. g0+ £30y) for (xy.x) 6 R
F8(x.y.0l) = 100 '19G>1 for X,yn) LR
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where are arbitfary functions from the set f—*"], g is
a homomorphism of (@,» iInto @G,.) and for the functions Tfi«R2” 379
condition (17) holds.

Now we shall show that there exist such essential closed substructu-
res (r, ), that the following conditions hold:

a/ RuR1-=E
and

b/ fthere exists in R such an element x, that x1£ R and X
is not a unit of (e,9)
It is illustrated by the following

Example 4. Let us consider the pair Brandt groupoid (jl1,2,3]x j1,2,3j,X)
and the substructure (r x) of this groupoid such that

R.(@.D - (22, G, (1.). ). &35 B.2).

It is easy 0 verify that (R,X) 1is the closed substructure of our Brandt
groupoid) that Ru R 1 ={1,2,3]x j1,2,3] and that x =,3) is such an
element of the set R that x-1£R.

Example 3 shows that the assumption Ru R 1 * E is essential in the-
orem 7. The following example shows that the assumption that (R.0) is an
closed substructure, is essential, too.

Example 5. Let us consider the product Brandt groupoid (a x A xl€] x)
where A ={f 2 ,3]- Let R be the following subset of the set A x A X{€] :

R={(.l.e). @.2,e), (r-2,e), 2,3,e), 3B,1l.e), (3B.3.9)]-
let H be a function defined as follows:

d.le) A28 €29 .3,e) G.1.e) 3.3.9
H 1 9 1 5 7 1

It is easy to see that (r ,x ) 1is not the closed substructure of

@ xXAXe] ,x), that RVR1=AXxAXe] - Let % be the multi-
plicative group of real numbers. It is easy to verify that the triplet of
functions (h ,H,h) satisfies equation (25). We shall show that there does
not exist the extension of the solution (h,H,H) on the triplet of sets
6@ XA X\ ,A XA Xe] , AxAxE)-

Let us suppose that the triplet (H*.Hg.Hg) is the extension.

Then we have

H3 (1,3.8) » H1(1,2,6)«H2(2,3,8) = H(.,2.9=He 3.8 =45,
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nence

H3 (G ,3.©9m H1(l,3,e)* H2(3,3.€) » H(1,3.e). H2(3,3.e) = 45,
and therefore

H (1,3,e) =45.
Thus

H(L,1,6)- H3(I,1.eV H1(l,3,e).-H2(3,1,8)- H™1 ,3,8)-H(B,1,6) « 457,

which is contrary to the fact that H(,l,e) » 1.

Now, using the above considerations and theorem 1 we shall formulate
a theorem about the solutions of equation (25) on the Ehresmann groupoid.
Let (., be an arbitrary Ehresmann groupoid, let @Ev»*)VveEéT be the
decomposition of this groupoid on Brandt groupoids and let (m,/1 be an
arbitrary structure. It is easy to prove the following

Theorem 9. The triplet of functions (Hi*H2 *3) € [e— satis-

fies equation *5) , iff for any vfcT the triplet of functions (H\,H2>H3)

satisfies equation (5), where is the restriction of the function
, 1 =1,2,3, to the set Ey.

Fron the above theorem, theorem 8, and since every Brandt groupoid is iso-
morphic to a product Brandt groupoid,we can easily get the form of the so-
lution (Hj ~2 .H8) ofF equetion fes) in the case, where the functions
H1"H2 ,H3 belong to the set [e——»B] . Now we shall consider in detail
the solutions from the set [ of equation ¢), which have the fom
(H,H,H). Above all we shall prove the following

Lema 8. If g is 8 homomorphism of the group (GO iInto the
structure (K,*) end gCe)6Kr, then

g @6 for obe G.

Proof. Let ot be an arbitrary element from the set G, let g be
an arbitrary homomorphism of G® into (K,.) such that g(e)6 Kr/ let
X,y 6 K be such elements that Oc,gC¥)) £ 0,, ((y-gdB))é 0, and

Xigpo « Yy igEo.
Multiplying this equality by ot i) fron the right side, we obtain
*e9 @ Wmy-g@ -

g@ £ Kr, therefore x =y, and thus g66) £ Krr* Analogously we can

prove that @£ i .Hence, for gW) condition 1° OF definition 9
holds.
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Sine

(gc°6))r = (gfe6))x m gCe);
for g 00 conditions 2° and 3° of definition 9 hold. g(ai-1) is the
solution of the equation

g @)*x = g(s),

therefore for g(s6) condition 4° of definition 9 is fulfilled. Thus
g (oc) ¢ <r which completes the proof.

From lemma 8 it follows that in the case, where (A X A x G,x) is
a Brandt groupoid, condition (I6) in theorem 3 is equivalent to the follo-
wing condition

(27) g is a homomorphism of the group (G,*) into CKrt") -
It is easy to see, verifying the definition of the set [ , that the fol-
lowing theorem is true:

Theorem 10. The triplet of functions (h,H,h)€[a x A x G- »k]3
belongs to the set I , iff the following conditions hold:

@8) Vv (Du- Mx Mx g),

MCA H
(29) \/ /\ ( H(i,b,e) 6 k),
SfM b£H r

where M is a set satisfying (28) .

Theorem 11. If the function H6[_A x A x G—B—»kK3 has the property
(28), M is a set satisfying (28) and the triplet (H,HH) satisfies equa-
tion (?) then the following conditions

@V A [rono £]

a€M b6

(31) A [ HCa,a.B) 6 Kr],
M

9B

(32) /\ L H(a,b,e) 6 K1
4 a,be€ M r

are equivalent.

Proof. Let Hé[a X A xG-«—>kJ be an arbitrary function satisfy-
ing the assumptions of the theorem and let M be a set satisfying (30).
First, nme shall show that (30) implies (31) . Let 5 be an arbitrary ele-
ment such that (30) holds. Then we have

57



HB ,a.©=H@.,a,©) = H(@,8,e) for a £ M.
H@B,a,e) £ Kr and H@,a,e) £ «r therefore

(€5)) H@,a.e) 6 Kp.
Moreover,
H@b5.9*H@ae =H@a.9,
hence
H(a,a,e) € Kr«
Thus condition (30) implies G .
Let now a,b be arbitrary elements of the set M, and let X,y £ K be
arbitrary elements such that (H(a,b,e), x)6-D,, (H(,b,e), y)éO, and
H(a,b,e)*x = H(a,b,e)*y .
Multiplying the above equality by H(b,a,e) from the left side, we get
H(b,b,e)>x = H(b,b,e)>y.
H(b,b,e) E Kr, thus
X =y,
hence H(a,b,e) é K*p. Analogously we can show that H(.a,b,e) 6 Krr«
thus for H(a,b,e) condition 1° of definition 9 holds.
Moreover (H@,b,eMr “ H(b,b,e), H@,b,e))" « H(@,a,e) and H(,a,e),
H(b,b,e) belong to the set Kp, therefore conditions 2° and 3° of de-
finition 9 hold. It is easy to verify that H(b,a,e) is the solution of
the equation
H(a,b,e)*x = H(,a,e),

hence condition 4° of definition 9 holds. From the above considerations
we can conclude that H(a,b,e) € Kr> Thus condition @I) implies condi-
tion @) .

Of course, Condition () implies condition (30), which completes the
proof.

In exanple 9 we shall show that in condition @I) of theorem 11 we cannot

replace the general quantifier by the existence quantifier. By theorems 10
and 11 we obtain the following

Theorem 11". The triplet of functions (HH,HMTJA X A X A—0~“%J3 sa-
tisfying equation (2), belongs to the set T , Iff for the function H
condition (28) and one of conditions (30) , @), G2) hold.

Theorem 12. Let us assume that for the function H the assumptions
of theorem 11 are satisfied. Moreover, if one of conditions () ,@D,
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(@32, holds and (G,.) 1is a group, then
H@,b,00) € Kr for (a,b,06)e DH.

Proof. Let M be a set satisfying (23), and let a,b be arbitra-
ry elements belonging to the set M. Then the function g defined as

follows
g@ =H@.b.® for ai, e G:beM

is a homomorphism of (G,«) Into (k,«), such that gE) £ Kr. There-
fore by lemma 8,
H(,b,00) € <r for <t6G, bsM.

Hence, from theorem 11 and from the equation (2) we obtain
H@,b,06) = H(a,b,e)>H (s.b.d) ,

thus H @,b, @) 6 Kr, which completes the proof.

From theorems 3, 10, 11 we obtain the following corollary:

Corollary 3. The triplet of functions G ,H,H)¢[a x A x G—e—»k]™
is a solution from the set [ of equation (2), iff the function H has

the form
H@.b,oc) = (@ "gW)"f-1(b),
where
¢+) T 1is ah arbitrary element from the set [A-o0 >K j,

350 g is an arbitrary homomorphism of the semigroup (@G,.) into @)
such that g() 6 Kr,

3% (F@g@o. and @), F'4b)) GD. for a.bfe0*. 06£G.

Proof. It is sufficient to prove that for functions T~fg.fg.g for
which conditions (I3) - (7)) hold, and which dictate, by o - (2 , the
solution (h.H,h) of equation (), the following conditions holds

a D, =D, =D, ,

Al L 2 3 1
b/ A f-Ca) = f~Ca)l.
aeo, 1 * J
T
By theorem 10 we can conclude that the condition a/ is fulfilled.
Let a be an arbitrary element belonging to By dh, @, B
we get 1

H(a,a,e) = ft(a).g(e)<f (a)= f2Ca)'9Ce) ' fga)= ft(DMg(@e) - fg @.
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gte) is an unit in (kr,*), therefore o€ is an unit in ,*) ad
me have

@r H@,a,e) = fjC)s O0)» 2@ B@ =T 3@~

Fron theorem 11 it follovs that H(a,n,e) € K*. Moreover, £ G) @ Kr»
thus FXCa) £ Kr and 13Ca) € Kr.

Therefore, in virtue of (37) we get

f2n(a) « f3(a) ant fr Ca) - f2ta)

Thus condition b/ is fulfilled, and this completes the proof.
From the abuve corollary and lenma 8 we obtain the following cc.oll”ry.

Corollary 4. The function H, such that (H,H,H)el is a homo-
morphism of a product Brandt groupoid into C.*) If H 16 form

H@bM = F@=gW, *F O,

where
f is an arbitrary element from the set [a—X I'l

g 1is an arbitrary homomorphism of group (E»0 into Kp,)#

and for ¥ and g condition (¥) is fulfilled.
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