JERZY GOLAB

On a certain mixed boundary problem
for iterated Helmholtz equation in the half-space

In the paper we shall give the solution of the equation
(1) (A-C22u(X) = A2u(X)-2C2Au(X)+ C*u(X) = 0, X = (xt,x2,x3
C being a positive constant in the half-space
Et = {(*!, X2,X3: |*J<oo0, (i = 1,2),x3>0}

satysfying the mixed boundary conditions

2) hu(x1, x2,0) + DXiu(xj, x2,0) = f r(x3, x2)

and

3) hAu(xif x2,0) + D X}Au(xl, x2,0) = f 2(xi,x 2),

where/((i = 1,2) are given functions defined in 2-dimensional Euclidean space E 2>

h is a negative constant.
We briefly call the problem (1), (2), (3) (M)-problem.

1. Green function for the (J1/)- problem.

Let X — Xt = (x3,x2,x3) denote an arbitrary point belonging to Et and

let X2 = (x,,x2, —x3) and X3 = (xt,x2, —x3—v), where v~0. Next

let

Y —(Y1,y2,¥Y3) be an arbitrary point in 3-dimensional Euclidean space E3 and

Yo X and let s = \X,Y\,j = 1,2,3.
Let us consider the following integrals

I1(X, Y) = ft°e-c™*dv, lpg(X, Y) = fel D ZiX(e-Cr)dv,
o} o

where p, g, r= 0, 1,2, 3,4 and O0<p+/~+r<4.
Let

W= {(X, Y): \xA<a(i= 1,2),0<b3*x3<b2, 0<b2<ysaA<bn}

a, blt b2 being arbitrary positive numbers.
Now we shall prove
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Lemma 1. The integrals I(X, Y), lpy(X, Y) are uniformly convergent in the
set W.

00

Proof. The integral j ehvdv is the majorant for the integral 1(X, Y) and there-
(o]

fore 1(X, Y) is uniformly convergent in the set W. We have
AW eCri) = e~OPp(Y\-XUYTr-x2Yb+Xb+ 0,11,

where P is polynomial with the following constituents
it . .

- R
03)"r("i - *4),102- xm(y 3+x 3+ v)'3,
&ty (/= 1,2,3) being positive integers.
In the sequel we shall use the inequality

4) e~4 > for ae (0, e), <p>0.

By (4) we get
XX, Y)\<K(C)- J eXbl+vY*-"dv~rK{Cy\bir I J ehdv,
o o]

where K denotes the number of the terms of polynomial P, p = y+ <§+(52+ <.
Since the integral at the right-hand side in the above inequality is convegergent thus
the integrals Ipv{X, Y) are uniformly convergent in every set W.

By lemma 1 we get

Lemma 2. The integrals Ipg(X, Y) and I(X, Y) exist in W and the function
1(X, Y) is of class C\fV) and Ipg(X, Y) = Dp&IXil (X, Y).
The fundamental solution of the equation (1) in E3 is the function

(5) V{rj) = e~Cj (= 1,2,3).

Indeed

© AyV(rj) = v(r))[C2-2C(rj)-"J 0 = 1,2,3)
and

ayv(rj) = v(rj)(C*-4C*r-) (J= 1,2,3).
Hence
(7) (Ay-C22F(r,) = 0 (y= 1,2,3).
By symetry of the points Xt, X2 with respect to the plane E2 we get
8 ry= r2= [(yl-x N2+ 1y2-x 2Y+x\]b = R for y3= 0.
By (5) and (8 we abtain

9) DyiVv(ri)[yj=0 = ~D»V (r2Jyj,o = Cx3V(R)R~I.
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Lemma 3. Let thefunctions V(rj) (j = 1,2) be defined by theformula (5). Then
AJANCID+ANI-DIU-0=0.
Proof. By (6) we get
DYI[AYV(ri)+ AYV(r2] = CDyi[V(ri)(C-2rp)+ V(r2(C-2r21] =
= CiDyi[V(ri)+V(r2)]-2C{Dy3[V{ri)rV] + Dyi[V(,r2)r2'\ +

+ VirJraDAry + V(r2)r21Dyyr2) .
Since

DylJily?o = ~Dyrjlyjo = *3~~"
and
ANNOATITMun-o0 = -9 yN )'T 1]lm-0 = Cx3K(A)/IT2+x3K(A)/T3

by (9) we get the thesis of lemma 3.

Let
(10) G(X, Y) = h~1[V(rh)+ V{r)1+U (X, Y),
where
J(X, Y) = J ew(r3ddv = J eH~XI~yi)V(rAdt
o Xy+y3
and

d = {yi-xIY+{y2-x 2y +t2.

Using lemmas 2 and 3 we shall prove
Theorem 1. Thefunction G given byformula 10isthe Greenfunction with the pole
at point X, for the problem (M).

Proof. We shall verify that the function G as function of the point Y (Y ¢ X)
satisfies the equation (1) and homogeneous boundary conditions

(U) [AG(X, Y)+ DwG(X, Y)],_0=0
and
(12) [hAYG (X, Y)+ DyiAyG(X, Y)]|,,_0= 0.

Moreover for every fixed X we have

(13) limAj.G(A", Y) = 0 when |orj-*oo .
Since
(14) DyiJ(X, Y)ln_o = —h@eh(,- X3V(rd)dt- V(R),

thus by (8), (9) and (14) we get

[hG(X, Y)+ DyiG(X, ¥)]i ,,0= 0
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By (6) and lemma 3 we obtain
hArG (X, y)[w.0= 2CV(R)(C-2R~1)+

+2hJ CK(rd (C - 2K dt,
(15) X
DytArG(X, Y)\nMo= -2hjCV (u){C-2r;l)ehi-x)dt+

—2CV(R)(C—2R~1) .

From (15) follows the boundary condition (12).
Now we shall prove the condition (13). By (10), () and lemma 1 we have

limAyG(Z, Y) = A-LlimCF(r)(C-2rr2)+ limCF(r3(C-2rin]+
—2Cjc;’ limV(r3(C—2r3ij)etmdv = 0 as  |OF|—oo .
By lemma 2 and formulas (8 and (7) we get
(Ay -C 22G(X, Y) = h~1[(Ay—C 22V(r]) + (Ay—C 22V(r2]+
+20eh(Ay—c 22V(r3dv = 0.

2. The formulae for the solution of the problem (M).
Assuming that the functions/, (i = 1,2) are bounded and measurable in E2
and continuous at the point X° = (x°, x°) we shall prove that the function

(16) u(X) = «,(30+ «2W
where
«,(*) = J[byG{X, Y)—2C2G(X,
El
and
u2(X) = -A jjf2(Y3G(X, Y)lyi,0dY3
El
and

A = h(8nC) \ Y3= (y,,y2), </¥Y3= <lyry2

is the solution of the problem (M).
By (15) we have

«,(30 = —2ACIJ |/, (Y J[A- IK(N)(C—21 1)+
Ei
(162) + f MrX3)V(rg (Cc -2 utyd/1dY3

u2X) = 2ACj\f2Y3)[h-1V (R)+jek* Xi)V(rAdt]dY3
Ei %
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3. The theorem on the change of derivation with integration for the integrals
ut(X).

Let us consider the integrals

B A = J\f{Y3V(R)R~'dY3 0= 1,2)

Ei

and
KviX) - J\MfmDZi*>[V{R)R-I1]dY, 0=1,2),
Ei
where
p, g, r=0,1,2,3,4 and O<p4-#+r<4.
Let = {(*!, x2,x3): |x,|<a0 = 1,2),0<b1”x3"b2), a, bu b2 being ar-

bitrary positive numbers.
Lemma 4. If thefunctionsf (i = 1,2) are bounded and measurable in E2, then
the integrals KfX) and Kpg(X) (i = 1,2) are uniformly convergent in the set fVI.
Proof. We shall give the proof only for the integrals KfX) and K~,(X). The
proof for the integrals K2{X) and K 2x(X) is similar. Applying the triangle inequality
we get

V 1 Al0O1B8I>i?0=>i|0r3 4~<4 ] 0r3p.
Ro>OX€W y3

Let
= {Y3: \OY3A\*R0},H'(X, Y3 = V(R)R~\M1 sup |/i(r3)].
Ei

We have the inequality
M K JF\fi(Y9\HLX, YdY3 = KAX)+KI2(X),
Ei
where
Ku(X) = JJIf,(Y3H\X, Y3dY3 and

Kro0

B A = N \MY3\H\X,Y3dY3.
ENNK*0

Since H 1(X, ¥3) is analytic function of point X for Y3e KRo thus Kn (X) is also
the analytic function in Wx. By (4) for ¢ = 2 we get

W R-*dY3<9Mlc~* JJ Jordr Xr3.
EiE O Ei\K Ro

Let e be an arbitrary positive number. Applying the polar coordinates to the last
integral we obtain

K12(X)N"16KM2C ~2J) Q~2dQ<e for
Ko

R0O>16uM1(eC2~1 and every Xe Wt.
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Let
DZDH\X, Y3 = Hpr(X, Y3 .
We have
HPir(X, Y3 = V(R)P(x3,R,yl-x1,y2-x 2

where P is a polynomial being a finite sum of the terms
J(X, Y3 = xIR-"yt-xrf'r-xJ1

where /?, Sl( &2 being positive integers and y~P + 8 x+82+ \.
It is enough to prove that the integral J $fx(Y3)J(X, Y3dY 3is uniformly convergent
in the set Wx El

Applying in the last integral formula (4) and the change of variabliejil:,

17) Yy X—XX = gcoscp, y2—x2 = QsiTup(0”Q<co,0"(p”~2n)
we get

IJEJA(Ys)J(x, Y9dYan2nMxC -% QdQ
r
The integral on the right-hand side of the last inequality is convergent for Xe Wt
and consequently the integral KPV(X) is uniformly convergent in every set Wt.
From lemma 4 follows
Lemma 5. If the functions f (i — 1, 2) satisfy the assumptions of the lemma 4,
then the integrals KfX) and Kpor(X) (i = 1, 2) exist in Wx and the functions K fX)
are of class C4 in the domain Wy and

DZixMX) = Kpv(X) .

Let

L\X) = Jj/(Y3[jV V(f3(f3y-1dvldY3 (i =1,2)
i E2 )

LMr(X) = J\fi(Y3 D ZiZ\eV(r3)(r3 -Ildvldy3
where B

h = [(Al' n 1)2+ (YZ-’\ 2)2+ (ns+ (()2]4-
Now we shall prove the following

Lemma 6. If the functionsf (i = 1,2) satisfy the assumptions of the Lemma 4,
then the integrals L'(X) and Lpg{X) (i = 1,2) are uniformly convergent in every
set Wx

Proof. Applying in the integrals L \X ) the change of variables (17) and for-
mula (4) we get

Ne 0KC, (r3“1-dY~dvAInC, J elf[J (b\ + g2H~ '~ °\d Qldv
9 2 0 0
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where .
c, = Micy*
and

Mt= SUPI/FX (/=1,2).
Ei

The integral on the right-hand side of the last inequality is convergent for a>1,
and consequently the integrals L‘(X) are uniformly convergent in every set Wt.
We have

= V(ri)P(yi-xl,y2-x 2,xi+v,f3) = Hpg(X, Y3
where P is a polynomial being a finite sum the terms
M3Y(Y1~x2Y \y 2- x2¥\x 3+ vf3

where y, 6,/ =1,2) being positive integers and y” 1+ (5%+<52+<53. Let K denote
the number of constituents of the polynomial P. Applying inequality (4) and the
change of variables (17) we obtain

IHpAX, r3|<AC-ad3(-'-*>

and

14 r(*)l < 2aAC, ferf4(b\+Q D> -y-+QdQdv .

Hence the integrals Lpo(X) (/ =1,2) are uniformly convergent in every set WI.
By lemma 6 we get
Lemma 7. If the functionsf t(/ = 1,2) satisfy the assumptions of the Lemma 4,
then the integrals L‘(X), Lpoy(X) (i 1,2) exist in Wt and the functions L\X) are
of class C4 in the domain W1 and

Lhp(X) = DZALKX) .

From Lemmas 5 and 7 follows

Theorem 2. If the functionsfl (/ = 1,2) are bounded and measurable in
then the integrals u~X) and D f'XIXsUi(X) (/ =1,2) exist in W1 and the functions
Ui(X) (" = 1,2) are of class C4 in E3 and

DZixM*) = AI\ffY3ID Z~G {X, Y)-2C2G(X, Y)]\yi~0dY3
Ei

and
DZix,u2(X) = -A \Wf2Y3)D ZiXiG (X, Y)\yi=0dY3.
Ei

4. Synthesis of the problem (M).
Now we shall prove

Lemma 8. If thefunctions/, (/ = 1,2) are bounded and measureable in E2, then
the functions a, satisfy the equation (1) in E3.
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Proof. By theorem 1 and 2 we get
(N-C 2Q2unX) =

= /<n/j(")[AYy(Ax-C 326 (Z, I)-2C AAx-C A2 (X, ¥)],«o™ 3

Ei
and

(A-C22v00 = —AJEf2AY3(Ax—C 292G (X, Y)\yi. 0dY3.

Ei

We shall verify the boundary condition (2). By formula (16a) and theorem 2 we
obtain

DXiu{X) = 2ncn/Ar3[2A-1*sr(4)/r 3+

Ei
+ Ch~IX3V(R)(R~1C+2R~2)+ hJ eh(~Xi)V(rd)(C+2r4 1)dt+
(18) + V(R)(C+2R~1]dY3
DX3u2(X) = -2 A ttf2[Y3[Ch-ix3V(R)R-"+
Ei
+hjeH~Xi)V(r4)dt+ V(R)]dY3.
Let

F(X) = JJ XeEt .
Ei

Lemma 9.

F(X)->2k as  X->(x°,x°2>0+) .
Proof. We get by (8

F(X) = 3Ix J(yl-x )2+ (y2-~ 22+ x"]-32
Ei

A{-CT{yl-x D2H y2-xb+x\)i,1}dY3.

Applying in the last integral the change of variables

(19a) y1—xi = x3QCOS(p,y2—x2 = x3Qnng>(0"e<co, 0<<p<24)
and

(19b) e2+ 1 = zl<z<o00)

we get

2)(1+ed_3Zxp[—Cr3(l+e12]6d = 2r|j:Le~Cxitz~2dz
o

00

We shall prove that the integral ] e~Cx**z~2dzis uniformly convergent for x3e <0, a).
i

We have

|lz2e C4,|*z-2 ad jlz 20z = 1

sc<l,ao) X]«<0,a>
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and

HT2nle Cxi*z 2dz = 2n] (lime Cxz)z 2dz = 2n as x3-0+.
i i

Let
w X) = 4ACh~1JJ3/,(r3 V(R)R~3dY3(i=1,2), JTe£3 .
El

Now we shall prove

Lemma 10. If thefunctions/ (0 = 1,2) are bounded, measurable in E2 and con-
tinuous at the point X3 = (x?,x°), then

M t(X)->ft(x1, x°) when  *-+(*?,x°2,0+).

We shall prove the lemma 10 only for M fX). The proof for the integral
M 2(X) is analogous.

Let
d(X°3, Y3) = /i(Y3)HFi(XDJ
and
M3(X) = Atfjd(X°, Y3Ix3V(R)R~3dY3
Ei
where

At = 4ACh-1= (2n)-1.
Now the integral M fX) may be written in the form:
M,(X) = A J2Xt)F{X)+M 3{X) .
By lemma 9 we get
AtM XbFAXy+M Xt) as X~(X°3,0+).

Let K(X$, 6) and K (X3, ~<5) denote the circles with radii § and centres at the
points X3 and X3 respectively. From the continuity of the function f x we obtain
A V [Y36K(X°3, s)*\d(x°3, r3|<is].

e>0 K(X3,i)

Let
MAX) = (2n)-1 J J d(X°3, Y3x3V(R)R~3dY3
X(xS,h
and

M3(X) = (2n)~' JJ d(X°3,Y 3x3V(R)R-3dY3.
Eilm °i.i)

Then M3(X) = MA(X)+ M5X). For the integral M4(J1)) we get the estimation
v4nryl<le(2a)-11ixr3F (£)£- 3dF3<ie  for 0<x3«5(e).
Ei

Let
[2T$r3)<i6  and Dt = EAK(X3,0), D2 = EAK(X3,iS) .
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For M 5(X) holds
IMS(X) | <(25) - 101 [] /(7 31+
+ 1/,(*30] 1*3N N)n-3<*y3*rm17r1J J+-3K (/o /?-3dr3.
Di

Applying in the integral jJ2x3V(R)R~3dY3 the transformation (19a) we get
d

\MEDX\<2MIi 5 exp[-Cx3(@2+ 1) U2 (1+e2)_3/2e A <~

for
b
a3l — and 0<x3<<5(e), where s, = (2x3
and finally
IM3(X)|<8 for [X2X3]<min|~, 5(e)J .
Let

NX) = J[FI(Y3)x3V(R)R~"dY3(n,i=1,2), Xe £3 .
Ei

Lemma 11. If thefunctionsf (/ = 1,2) satisfy the assumptions of the lemma 4,
then X,(X)—0 ns X-+(X£,0+) (/ =1,2).
Proof. We shall prove lemma 11 for the integral N fX). The proof for the
integral N2(X) is similar. We have
jjx3V(R)R~ndY3.
El

Applying the transformations (19a), (19b) and the formula (4) we get

00

|fl'](X)K2nClxI~"~a_J zl~n~*dz<e for x3<06(s) and 2—n<a<3-mn,
i

where
Ct= M1C~a If n= 2, then ae (0,1 andif n= 1, then ae(1,2).
Now we shall prove

Theorem 3. If thefunctionsf (i = 1,2) are bounded, measurable in E2 and the
function fx is continuous at the point X 3, then

[hu(X)+D Xtu(Xy}-+M Xt) as X->(X8,0+).
Proof. By (16a) and (18) we obtain

hu(X) + DXiu(X) =

= 2AXC $$ LY 3)h~1x3{2V (K)R-3+ CV (R)[R-1+ 2R -2]}dY 3+
Ei

+2AXCAf2Y3)h~1x3V (R)R-1dY3.
Ei
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In virtue of lemma 10 we have

4AICh-2x3]\fI(Y3)V (R)R-3dY3Afi{Xt) when X—>(X3,0+).
El

Moreover from lemma 11 follows

J1fm x 3V(R)R-"dY3~0 as  X-*(X°3,04)(«, /| — 1,2).
Ej

Now we shall prove the boundary conditions (2).

Theorem 4. |f thefunctionsft(/ = 1,2) are bounded, measurable in E2 and the
function f 2 is continuous at the point X 3, then

IhAu(X) + Dx,Au(X)h+f2(Xt) as X-+(X°,0+).
Proof. By theorem 2 and formula (16a) we get
hAUI(X) + DX}JAufX) =

- AM M Y 3hIARG (X, Y)-2C 2ArG (X, F)] +
£i

+ DXI[A2G (X, Y)—2C2ArG (X, Y)]\,modY3 =
= -2AC5JIM Y 3x3V(R)R~1dY3
Ei

and

hAu2(X) + DXiAu2(X) =
= 2A1Ch~1J $f2(Y3)x3V(R)[2R-3+2CR-2-C 2R~1]dY3.
Ei

By lemmas 9, and 10 we get
hAu2(X) + DX3Amj(A)—0 as *->(*?,0+)
and
hAu2(X) + DXiAu2(X)->f2(X°3) as X-(X$,0+).

From the theorems 3, 4 and lemma 8 we have the fundamental

Theorem 5. If the functionsf (i —I1, 2) are bounded, measurable in E2 and con-
tinuous at the point X°, then the function n defined by formulae (16) or (16a) is the
solution of the equation (1) in the domain E3 and satisfies the conditions:

lim [hu(X) + DXiu(X)] = ffX 1) when  X-*(X°3,0+)

and

lim[/iAu(Z) + -Dx,A«W] =/ 2*S) when *->(*?,04+).
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