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On some homomorphisms in Ehresmann groupoids

Introduction. In the first section of this paper we consider the extensibility of 
homomorphisms defined on some subsystems of Ehresmann groupoids. We gene­
ralize the results of J . Aczél, J . A . Baker, D . Ż . Djokovié, P. Kannappan, F . Rado, 
given in [2]. In [1] J . Aczél solved the functional equation

K [F (x , z ) , F (y , z)] =  F (x , y ) ,

where К  is the operation inverse to the group operation. In the second part of this 
note we generalize this result solving the functional equation

F(x) ° 2  1 F (y )  =  F ( x o ^ y ) ,

where oj-1, « J 1 are operations inverse to operations in Ehresmann groupoids. Be­
sides in the second part of this paper we solved the equation

F(x) • F (y )  =  F i x o - 'y ) ,

where • is the group operation and ° _1 is the operation inverse to the operation in 
Ehresmann groupoid.

Preliminary. In [5] W. Waliszewski gave the following definitions of Ehresmann 
groupoid and Brandt groupoid: The pair (E , •), where £  is a non-empty set and • is 
a binary interior operation defined for some pairs ( x ,y ) e E x E ,  will be called 
Eh resm an n  g ro u p o id  if the following axioms are satisfied

(a) If in the equation

x - ( y z )  =  (x -y )-z

one of its sides or both of the products y-z, x -y  are defined, then both sides of this 
equation are defined and the equality holds,

(b) For every element x e E  there exists exactly one left unit f x and exactly one 
right unit ex such that

f x-x  =  x-e* =  x ,

(c) If the product x -y  is defined, then ex =  f y,
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(d) For every element x e  E  there exists exactly one element x  1 (inverse to a) 
such that

x - x " 1 =  f x, x~* -x  = ex .

An Ehresmann groupoid (E , •) will be called a B ra n d t g r o u p o id , if the 
following condition holds.

(e) For every two elements x , y  e E  there exists such an element z e E  that the 
products x -z , z -y  are defined.

Let (E , •) be an Ehresmann groupoid. I f  the product x0 • ... -x„ is defined, then
П Tt

we write x0* ... -x„ =  x t. I f  S tc E  for / =  then Y l denotes
i=0 i= о
n

the set of all product ]~J x (, where x t e S t. I f  S c E ,  then -S'-1  denotes the set of 
i= о

all elements inverse to the elements o f the set S. E °  denotes the set of all elements 
е е  E  such that the product e • e is defined and е е =  e. Moreover, we call S  the 
subsystem of (E , •), if S -S c z S .

Let (E 2, °) be Ehresmann groupoids. We say, that the function
F : E X-^ E 2 is a homomorphism of (E x, •) into (E 2, °) if  for arbitrary x , y e E x 
such that the product x -y  is defined the product F (x )  о F  (у) is defined and the equality

F (x )  о F (y )  =  F  (x -y )

holds. We mean the same, when we say, that the function F  satisfies the above 
functional equation.

Let A  be an arbitrary non-empty set, G  an arbitrary group. In the set A x  A x G  
we define the operation * as follows: The product (a, b , a) * (c , d , fS) is defined iff 
b — c, and then

(a , b , a) * (c , d , /?) =  (a , d , a/? ) .

It is easy to verify, that the set A x  A x G with such an operation is a Brandt groupoid. 
This groupoid will be called a p ro d u c t B ra n d t g ro u p o id .

A . N ije n h u is  has proved the theorem which can be formulated in the following 
way ([4], p. 11): Every Brandt groupoid is isomorphic to some product Brandt 
groupoid.

On some extensions of homomorphisms in Ehresmann groupoids

Lemma 1. Let E u E 2 be Ehresmann groupoids, let S  be a subsystem o f E x such 
that E x cz S, let h be a homomorphism o f  S  into E 2, let n be an arbitrary positive 
integer such that

(1) E 1 = Y [ s ( - 1),
i=0

and let к be an arbitrary non-negative integer. Moreover fo r  arbitrary sequences
n — 1 л — 1

(x0, . .. ,  * „ _ !)  6 S ”, (y 0 , ... ,  yn_ t) e ST such that the products П  П > '<Г 1)< are
i=0 i=0
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defined and the equality

(2) " г Ы -1 '1 =  Т ы - 1)1
i =  O i =  О

л— 1
Л о /Л , /et f/ie products ]~[ {h (xfif п‘, П  ( h ( y f f  l)' be defined and the equality

1 = 0 i =  О

(3) П(А(*оГ1), = Ш а д Г 1)‘

holds. Then fo r arbitrary sequences (x0, ... ,  xn) e S n + , (y0, . .., yn+k) e S " +k+l such
n n +  k

that the products ]”[ П  y \ ~ 1)1 are defined and the equality
i =  0 i = 0

(4)
n n +  k

Г Ы " 1)‘ =  Г Ы - 1)‘
i = 0  i =  0

n +  k

holds the products П  (A(Xi))( 1}‘, (A(^())(_1)‘ are defined and the equality
i = 0 i = 0

П (А (^ Г 1),-П (* Ы )(" 1)'1=0 i=0
holds.

P ro o f. We shall proceed by induction on A:. Let A: =  0 and let (x0 , x„) e S n+l,
n n

(y0, y„) e S "+1 be arbitrary sequences such that the products П  y i-1)l

are defined and the equality
i = 0  i = 0

(5) П Г Ы " ''
i =  0 i—0

holds. We can write equality (5) in the form

л — 1
(6) х0 ' П ^ 1,' . ь Г Т 1 =  П ) ' ! ' ,)‘

»= 1 i=  0

In virtue of (1) it follows, that there exists a sequence (z0, z„) e S n+1 such that
Л

the product П  zj-1 )‘ is defined and
i =  0

(7)

Hence

(8) П *<-!>' . t f - v r y l  . [zi-1»"]-1 = Xt-Z0 • П •
i =  2 i = l
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From (6) and (7) we obtain

whence

X o - f [* t tV = Г Ы -1)<.i = 0 i= 0

(9) л-о̂ о •’n V ” ' = "п Д'Г,)‘ - Æ T  • Й-4 "]-1 •
i = 1 i=  0

We have

(10) Ь Г Т ’- Й - Т '  -  •
ffarJn) 1 for even number n, 

[y„'z„ for odd number n ,

and

(ID / . - . г ' - й - ’’] -1 -1
(z„ • i)“1 for even number n , 

y„_t .zn for odd number n.

For (8) and (9) by (10) and (11) we obtain for even number n

(12) fl ’ (zn-y«) 1 = X j -Zq - П zj
i=  2 i=  1

and

(13) •̂ o'Zo ■ П zi-1>‘ = П • (z„ y „ -
i = 1 i= 0

< - n ‘

From (12), (13) and the assumption of the lemma it follows, that for the sequences 
(x2, z„-y„), (x j -Zo .Z j , . . . ,z „ _ j )  and the sequences (x0 -z0 , z { , z n_ l ),
(y 0 , •••» У п - 2 >  2п ' У п - \ )  products below are defined and the equalities

l — 2
f l  (A(*i))( 1)1 '( A(z" •>’*)) 1 =  А (*Г*о ) ' П  (a (z j))( 1V

i= 1

Hx0-z0) • П ( л (2;))( 1)1 = П  (a W ) (' 1)I,(A(z. 7 . - i)) 1i = 1 i=0

n— 2

(14) 

and

hold.
Since Л is the homomorphism from S' into £ 2, therefore from (14) and (15) we obtain, 
respectively

(16)

and

(17)

Ш М я А ^ ’Ч а д Г - Ш В Д ) * - ” 'i= 1 i= 0

h(x0) ■ f l  (Mzi))(- 1)‘ =  П  Ш Г " '  ■
i= 0
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From (16) and (17) we get

т к * д Г 1* =  П Ш Г ” -
( = 0 i =  0

Thus for к =  0 and the even number n the lemma is true. Let now n be an odd 
number. Similarly as above, from (8), (9), (10), (11) we obtain

n— 1
(17')

and

(18)

П  x\ i r -(yn-z„) =  (-VfZo) • П  z<i 1)1
i = 2 i = 1

(*o • zo) ■ П  z<i 1)1 =  r i  y\ и ,(Уп- 1  • zn) ■
i = 1

n — 2

n .
i = 0

In virtue of (17'), (18) and the assumption of the lemma it follows, that for the 
sequences (x2, ... ,  xn, y„-z„), (xj 'z 0, z , , z„_, )  and the sequences

(*0 z0> Z1 > •••> Zn — 1 ) > (.Vl > ••• > .Уп-2 > Зл- 1 ”zn)

the products below are defined and the equalities

(19)

(20)

П ( M * i ) ) ( V)‘ -h (yn' zn) =  h {x ,-z 0)- П (A(z,))( 1)1,
i= 2 t = 1

h(x0-z0)- П  (*(Zi))<_ 1)ł = П  (h(ydy~l),-Hyn- i - zn)

hold, h is a homomorphism from S  into E 2, thus from (19) and (20) we get

П (М ^)Г1,‘ = П(АЫ)(- 1)‘ ,
i = 0  i= 0

which completes the proof in the case when к =  0. Let now lemma 1 be true for 
some positive integer k. Let (x0, ... .  xn) e S"1+1, (y 0, yn+1, y „ +i+1) e
e gn+k + 2 j j g  arbitrary sequences such that the below products are defined and the 
equality

(21)
n n + k + l

U ^ ~ i y =  П

holds. From (1) it follows, that there exists a sequence (z0....... z„) e <S",+1 such that
П

the product z \~ l)l is defined and
1 = 0

(22)

Hence

(23)

n n + k + l

Г М " ” ' -  П
i=  0 i = 1

i — 1

n +  k + l

0 ’Г * о ) - П 2Г .1)‘ =  П  J i ~ 1)‘( < y - i v +k+,)(_1)
i =  2 ----

_ 1 )n + k+ 2
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From (23) it follows, that for the sequences

(y i -z 0 , z l r . . . ,z n), (y 2, . . .

the inductive assumption is fulfilled.
Thus

y«+k+1, e (-i)"**+ o
n + k+ I

(24) h (y i -z0) - U № d ) '
i = 1

X-D ‘ =
i + k+1

П
i =  2

(Н удУ [h(e ( - t ) " +k+>)]( ir
n + k + t

Since h is the homomorphism from S' into E 2, thus А(еу( - 1)»+*+«) e E 2 and from (24) 
we obtain "+k+1

(25)
i= 0

« n+fc+1
П ( а д Г 1)‘ = П Ш Г " 1

i — 1

From (21) and (22) we get

(26) П =  (Jo -^o )' П z\~iy •
1 = 0 i=l

We have proved above, that lemma 1 is true for к — 0. Therefore by (26) we get, 
that the products below are defined and the equality

(27) П (/!0'i))<~1,‘ =  h(y0-z0)- П  (/i(z;))<_1)‘
i = 0 i = l

holds.
Since A is a homomorphism, thus by (27) we have

(28) П  (М х())(_1)‘ =  h{y0) - П  (A(Zj))( -1 ) l .
i—0 i= 0

Comparing (28) with (25) we see that the equality

П ( л  w r 11' =',+f f 1(A(j,))(- 1)‘
i= 0 t-0

holds, which completes the proof of lemma 1.
R em a rk  1. One can prove, that from (1), (2) and (3) it follows, that every 

homomorphism from S  (not necessary, such that £ °  <= S ) can be uniquelly extended 
on the set S  и E °. Thus the assumption E °c z S  is not essential in lemma 1.

T h e o r e m  1. Let E u E 2 be Ehresmann groupoids, let n be an arbitrary positive 
integer, let S  be a subsystem o f E x such that E °c z S  and

(1)
i—O

and let h b e a  homomorphism from S  into E 2. Then the homomorphism h can be extended 
to a homomorphism H  from E x into E 2 i f f  the following condition is fulfilled : fo r  arbi-
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п — 1
trary sequences (x0, . . . ,  xn„ t) e S n, (y0 » ••• 9yn- i ) e S *  such that the products 1)<,

i = 0
n— 1

are defined and the equality

(2) Г Ы ~ 1)' =  Г Ы '
i = 0 i=0

n—1 n-  1
holds, the products П  (Л(Х;))(_1)‘, П  (̂!0 ’i))<~1)< are defined and the equality

i = 0

П ^ Г ^ Ш л ы Г 1’1

n— 1 n— 1
1)* _  ГГ

(3)
n — 1

П !
i - 0

holds.
I f  the extension H  exists, then it is unique.

n— 1
P ro o f. Let Я  be the extension of h onto the set E 1. Let the products Y\

i = о
я— 1

be defined for the sequences (x0, x „ _ 1) e S", (y0 , ..., y „ - i )  e S n and
1=0

let equality (2) hold. Я  is a homomorphism from E l into E 2, thus the products
П- 1 n- 1

[\  (# (x ,)) (- 1)ł, П  (Н(Уд)(1)1 are defined and the equality 
i=o »=о

n — 1 n — 1
y - D ‘ _  ГГ ( t i l  л, Y\<“ !)“(29) П  ( # ( * ())<_1) =  П  ( Щ у д Т

i = 0  i =  0

holds. H  is an extension of h, therefore from (29) we get equality (3), which completes 
the first part of the proof. Let us put

(30) # (x )  =  П  (A(x,))( 1)1 for x e E t ,
1 = 0

П
where (x0, . .. ,  x„) e S n + 1 is an arbitrary sequence such that the product Y  х Г 1)( is

»=0
n

defined and x  =  Г [ x --1)<. From lemma 1 (the case when к =  0) it follows, that H  is 
i — 0

a function from E 1 into E 2. Let x, y, z be arbitrary elements of the set E 2 such that

(31) x  y  =  z .

In virtue of (1) it follows, that there exist sequences (x0...... x , ) e S " +1,
(y0 , . .. ,  y„) e S" + 1, (z0, ... ,  zn) e S n+1 such that the products below are defined 
and the equalities

(32) *  =  П  y  =  U y i ~ iy> * -  П=  П  1)1
i = 0 i = 0

hold. By (31), (32) we get

т ы _1)< =  г ы -1 ’1-»=o 1=0
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Concerning lemma 1 it is easy to show, that the products

П  (M*/))<-1)i • П  {h (yôT 1Y, П  (й0,))(“,)'
i = О »= О i=0

are defined and the equality

П  (H xù T 1* • П  (A w r * 1 = П
i = 0  i = 0 i=0

holds. Thus H ( x ) - H ( y ) =  H{x-y) ,  i.e. H  is a homomorphism from E l into E 2. 
Now we shall show, that H  is the extension of h. Let x e S.  Since E ° c S ,  thus for 
x  e S  we have

(33) X =  x - f i  e(x~ n ‘ .
i=0

Since H  is a homomorphism and by (30) we get

tf(x ) =  h(x)-  П (Л(0 ) (- 1)‘ =  h(x) ,
i= 1

thus H  is an extension of h. From (30) it follows, that H  as defined by (30) is 
the unique extension of h, which completes the proof of theorem 1.

R em a rk  2. By remark 1 we can conclude, that the assumption E ° c z S  is not 
essential in theorem 1. In particular cases, when Ehresmann groupoids E u E 2 in 
theorem 1 are gtoups and n =  1, 2, 3, 4, we obtain theorems 2, 3, 4, 5 from the 
note [2], respectively.

On the solutions of the equation F{x ,  z , a) -F{y ,  z,  / i )  =  F( x ,  у ,  cr / Р 1)
J . Aczél has proved ([1], p. 41-42) the following theorem 

T h e o r e m  2. Let A be an arbitrary set, (B , •) an arbitrary group and К  an ope­
ration in В  defined as follows

K { x , y )  =  x - y ~ l fo r  x ,  у  e В  .

Then the function F : A x  A—>B is the solution o f the equation

K [ F ( x ,  z), F ( y ,  z)] =  F{x ,  y)

if f  it has the form F ( x , y )  = / ( x ) - ( / ( y ))_1 for x , y e A ,

where f  is an arbitrary function mapping A into B.
We are going to generalize this result. Let (E , •) be an Ehresmann groupoid. We 
call the operation К  the operation inverse to the operation •, iff the following con­
ditions are fulfilled:

a) K{x ,  v) is defined iff x -v -1 is defined ,
(34)

b) if K ( x , y )  is defined, than K ( x , y ) =  x - y  1 .
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T h e o r e m  3. Let ( E 1, «j), (E2, »2) be Ehresmann groupoids, let K t, K 2 be opera­
tions inverse to the operations *lt - 2, respectively. Then the function F : E l—*E2 is 
the solution o f the equation

(35) K 2[F ( x ) ,F ( y ) ]  =  F [ K f x , y ) ]  

iff  it satisfies the equation

(36) F(x)  *2 F(y)  =  F ( x - 1y) .

P ro o f. Let the function F  satisfy equation (35) and let e e  E°.  We obtain 

F( e ) - [F ( e ) ] - 1 =  K 2[F(e), F(e)] =  F ( K f e ,  e)) =  F ( e - e ~ l) =  F(e)  i.e.

(37) F(e) e E°2 .

Let us replace x  by / y_ t in (35). By (34) we get

H f y - 0 ' 2  [ H y ) ] - 1 =  F l y - 1) ,

and hence, by (37)

(38) [ F l y ) ] - 1 = F { y - 1) .

In virtue of (34) and (38) we can conclude, that equations (35) and (36) are equivalent, 
which completes the proof.

T h e o r e m  4. Let (A x A x G , *) be an arbitrary product Brandt groupoid, let 
IE , •) be an arbitrary Ehresmann groupoid. Then the function F : A x  A x  G -^ E  
satisfies the equation

(39) F ( x , y , c c ) - F ( y , z ,  fi) =  F ( x , z , a . - P )  

i f f  it has the following form

(40) F ( x , y ,  a) =  f i x ) - д {cc)-[f ly)]-1 fe r  (x , y ,  a) e A x A  x G

where f  is an arbitrary mapping from A into E , д is an arbitrary homomorphism o f  the 
group (G , •) into IE , •) and fo r arbitrary (x , y , a) e A x A x G  the product 
/ ( x )  • g (a) • [ /( /) ] " 1 is defined (thus the functions o f the form  (40) are the only homo- 
morphisms o f the product Brandt groupoid (A x  A x G , *) into the Ehresmann groupoid

IE , •))•
We omit the proof of the above theorem, because it is quite similar to the proof 

of this theorem in the case, when (E , •) is a group, which was given by A . Grząśle- 
wicz ([3], p. 16). In virtue of theorems 3 and 4 we obtain the following

T h e o r e m  5. Let (A x  A x  G , * )  be an arbitrary product Brandt groupoid and let 
IE , •) be an arbitrary Ehresmann groupoid. The function F : A x  A x  G—+E satisfies 
the equation

(41) F ( x , z , o i ) - F ( y , z ,  p - 1)  =  F ( x , y ,  c r p ' 1) 

i f f  it has the form  (40).
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It is easy to see, that in a particular case, when (G , •) is an one-element group we 
obtain from theorem 5 the result obtained by J .  Aczél (theorem 1).

Let now (E , °) be an arbitrary Ehresmann groupoid, let (H , •) be an arbitrary 
group with the unit e' and let be the operation inverse to the operation °. We shall 
consider the functional equation

(42 ) F( x ) -F { y)  =  F ( x  о i y ) .

T h e o r e m  6. The function F : E —>H is the solution o f equation (42) i f f  it is the solu­
tion o f  the equation

(43) F ( x ) -F ( y )  =  F ( x o y )  

and
[F(x)]2 =  e' fo r  all x  e E .

P ro o f. Let F : E —>H be the solution of equation (42) and let е е  E ° .  By (42) 
we have

F(e) -(F(e)  =  F ( e ) , 
i.e.

(44) F(e) =  e' .

Let x  be an arbitrary element belonging to the set E. Then r  is defined and 
from (42) we obtain

Fix) -F{x)  =  F i x  o x - 1) =  F i f x) ,

whence, by (44),

(45) [E(x)]2 =  e' .

Moreover, for x e E  we get

F i x - 1 ) =  Fiex о x -1 ) =  Fiex ° t x) =  F i e f ) - F i x ) , 

whence, by (44)

(46) F i x - 1) =  F i x ) .

Let now the product x  ° у  by defined. Then the product x ^  y ~ x is defined and by (42),
(46) we get Fi x  ° y) =  F i x  °j y ~ x) =  F(x) • F i y ~ 2) =  F ix ) - F l y ) ,  which completes, the 
first part of the proof. Let us consider the function F : E —>H satisfying equation (43), 
let [F(x)]2 =  e' for every x e E  and let x y  be defined. It is easy to see, that then 
F l y -1 ) =  F (y ) and by (43) and (45) we obtain F (x  y) =  F (x  ° y ~ 1) =  F i x ) - F l y - 1 ) 
=  F i x ) - l F ( y ) r 1- F i y ) - F i y )  =  F i x ) - F l y ) ,  \yhich completes the proof.

In the particular case, when in theorem 6 (£ ,  •) is the product Brandt groupoid 
iA x A  x G , *), equation (42) has the form

(47) F i x ,  z,  a.) -Fly,  z,  P) =  F i x , y ,  a.-0 -1 ) .
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Corollary 1. The function F : A x  A x  G—>H satisfies the equation (47) iff  it 
has the form

(48) F ( x ,  y ,  a) =  k(x) -h(d)-k(y)  ,

where к is an arbitrary function mapping A into FI such that [к(х)]г — e' and 
k (x) -k (y)  =  k ( y) -k (x )  for  all x , y e A ,  h is an arbitrary homomorphism from the 
group (G , •) into the group (H , •) such that [g (a)]2 =  e' fo r  every oceG and 
k ( x ) - g (a) =  g(oi)-k(x) for all a e G, x  e A.

P ro o f. Let F:  A x  A x  G ~*H  satisfy equation (47). In virtue of theorem 6 F  satis­
fies the equation

(49) F ( x ,  y ,  a) ' F ( y , z,  p) =  F(x ,  z,  a f i )

and [F (x , y ,  a)]2 — e' for (x,  y ,  tx) e A x A x G.  By theorem 4 F  has the form (40). 
Thus for a. e G, x e  A  we obtain

e' =  [ F ( x , x ,  a)]2 =  f ( x ) -g ( c t ) - [ f ( x ) ]~ 1- f ( x ) - g ( a ) - [ f ( x ) ] ~ 1 =

=  / ( * H 0  (a)]2 • [ / (* ) ] " 1
whence

(50) 'S
T К» II

For a =  e and x ,  y e  A

we get

e' =  [ F ( x , y , e ) f  = / « ‘ [ / ( д О Г 1 • / ( * ) '[ /О О Г
whence

(51) / ( « И / О О Г 1 = / ( y ) - [ / W ] - 1 .

Let us put
k(x)  = f ( x ) - [ f ( a ) ] ~ 1 for x e A ,  

h(a) = /(a )-0 (a ) -[ /(a )]_1 for a e G ,

where a is a fixed element in A.  For a, /? e G  we have 

h(a)-hfi)  = f ( a ) g ( a ) - [ f ( a ) r l - f ( a ) - g ( P ) [ f ( a ) ] - 1 =

=  f ( a ) g ( a - p ) [ f ( a ) ] - i =  h(a-p)
and by (45)

[h{d)f  =  [ / ( « ) •  9 (a)‘ ( / ( a ))-1]2 =  [F{a, a,  a)]2 =  e ' .

By (51), (46) and (50) we obtain

h(ct)-k(,x) =  f ( a ) - g ( u ) - [ f { a ) ] ~ 1- f ( x ) - [ f ( d ) ] ~ l =

=  /(« )•  0 (« )•[/(« )]“ 1 • /  («) • [ /  (x)] - 1 = /(a ) -0 (a ) - [ / (x ) ] -2 =

=  F ( a , x , u )  =  F ( x , a ,  a -1 ) = / ( x ) - 0 (a_ 1) - [ / ( c )]_1 =

=  / ( * И / ( я ) Г 1/ ( я ) - 0 ( « И / ( * ) Г 1 =  H x ) - h (  a)
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for xe  A, a e G .
Moreover

Hx)-k(y) = / ( * И / ( а ) Г 1- / О 0 - [ / ( я ) Г 1 = / ( * ) •  [ /( a ) ] " 1 •/(«)• I / O 0 Г 1 =

= я * и /о о г 1 - /o o - i /w r 1 = /0 0 ■[/(«)]■_1 •/(«)•[/w r 1 -
= /  OO ' [ /  (e)l ~1 ~1 = Аг( У)- Лг( х)

and

k {x )h (* yk (y )  = / ( д с ) - [ / ( в ) Г 1* /( в ) ^ ( а) - [ / ( в ) ] -1- / ( Л -  [/(a )]"1 =

= / ( х ) ^ ( а ) - [ / ( а ) ] - 1-/(а ) - [ / Ы ] - 1 = /( x ) - ff(a)-[/(j')]-1 = 

=  F(x,y,a),

which completes the first part of the proof. It is easy to verify, that every function F  of 
the form (48) satisfies equation (47). It completes the proof.
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