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On some homomorphisms in product Brandt groupoids

Basic notations. By/: A<»B we shall denote the function (called partial function)
the domain of which is contained in the set A and the range of which is contained
in the set B. The domain of the function/ will be denoted by Df and the range will
be denoted by Qt. If F is a function of the form

F: AxBx G-»K,

then we shall denote:

Df= {xeA:V V ((*.¥>a)eA)} »
jreB B«G

D2 = {y 0B: XI(EIA a}é (*>>">«)e A)} >
D| = {aeG:\/ V ((>v>3eA)} »
XfA ytB

Let B be an arbitrary non-empty set and let « be an arbitrary partial mapping
of the set BxB in the set B. We shall call the pair (B, *) the multiplicative
system. When SczB and S with the operation ¢ restricted to the set S is a multipli-
cative system, then we call S the subsystem of the multiplicative system (B, °).
The multiplicative system (B, ¢) will be called associative, if the following condi-
tion is satisfied:

If in the equation

x-(yz) = (x-y)-z

one of its sides or both of the products y-z, x-y are defined, then both sides of the
equation are defined and the equality holds. If in the associative multiplicative
system (B, ¢) the following conditions are satisfied:

a) For every element x of B there exists exactly one left unitf x and exactly one
right unit ex such thatfx-x = x-ex —Xx,

b) If the product x-y is defined, then ex = fy,

c) For every element x of B there exists exactly one element x~ 1 (inverse to x)
such that je-*-1 = fx, x~*-x = ex,
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d) For every of the element x, y there exists such an element z that both the
products x-z, z-y are defined, then we call this system the Brandt groupoid ([2]).

Let A be an arbitrary non-empty set and G an arbitrary group. In the set
Ax Ax G we define the operation * as follows:
The product {a, b, et) * (c, d, 18) is defined iff b —c, and then

(a, b, &) *(c, d,p) = (a, d, ct-fi) .

It is easy to verify that the set AXAxG, with such an operation * is a Brandt
groupoid. This groupoid is called a product Brand groupoid ([3]). A. Nijen-
huis has proved the theorem which can be formulated in the following way ([1], p.
11): Every Brandt groupoid is isomorphic to some product Brandt groupoid.

Let (A,-), (B, °) be multiplicative systems. We shall say, that the function
F: A-o0>B is a solution of the equation

(1) F(x) oF(y) = F(x-y)

if forevery xe DF,yeD F, (x,y) e D>, x-y e DF the product F(x) ° F(y) is defined
and the equality (i) holds. We mean the same when we say that the function F is
a homomorphism of (A, ¢) into (B, °).

We shall say that the function F: Ao*B satisfying (i) is the extension of the
solution F of equation (i), if F|Bf = F. We mean the same when we say, that F is
the extension of F onto the set DF.

Extensions of some homomorphisms in the product Brandt groupoids. Let
(AXAXG,*) be an arbitrary product Brandt groupoid and let (K, ¢) be an arbitrary
associative multiplicative system.

Definition 1. We will denote I 1 the set of allfunctions F: Ax Ax Go*K such
that the following conditions

(1) a 4 [(xy oge =>(x,y,P)e DF],
(1y,«)eilxAxe pfG3
2 \Y A [(x,a,e)e DFA(a,y,e)e DF] hold.
XcA (i,y,a)cDp
Theorem 1. Every solution Fe T 1 of the equation
(3) F(x,y,u)-F(y,z,p) = F(x,z,0t-p)

can be uniquely extended onto the set DFx DFxG and this extension belongs to fy

Proof. Let Fe I ybe an arbitrary solution of equation (3), let a be an arbitrary
element satisfying (2) and let (x,y,0)eDFxDFxG. Then (x, a,e)e DF,
(x,a, a)e DF, (a,y, e)e DF, (a,y, a)e DF, (a, a, et)e DF. Since A is a homomor-
phism then the products F(x, a, e)-F{a, a, a) and F (a, a, a)*F(a,y, e) are defined.
Let us put F(x,y, et) = F(x, a, e)-F(a, a, ct)-F(a, y, e) for (x,y, a)e DFx DFxG.
It is easy to see that F\Df = F.
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Let (x,y, e Dp and (y, z, P) e Dp. We have

F(x,y, a)- F(y, z, P) = F(x, a, e)-F(a, a, ot)-(F(a, y, e)-F(y, a, e))F(a, a, /?)s
*F(a, z,e) = F(x, a, e)-{F(a, a, a)-F(a, a, e)-
mF(a,a, P))F(a,z, e) = F(x, a, e)-F(a, a, x-p) m
*F{a,z,e) = F(x,z,crP).
Thus F is an extension of F. It is easy to see that F e [', and that F is the unique
extension of F.

In virtue of theorem 1 we can restrict our considerations concerning the exten-
sibility to these functions of the set ' { for which the following condition

4) Df — DpX DpxG holds.
Definition 2. We will denote by I the set of all functions F: Ax Ax G-e>K
such that conditions (2) and (4) are fulfilled.
Theorem 2. The solution Fe I of equation (3) can be extended on the set
(Dp v Dp) x (Dp n Dp) xG iff the equation
(5) P(a,x,e)-ux= F(a,a,e)
has a solution for every x e Dp and the equation
(6) vx-F(x,a, e) = F(a, a, €)
has a solution for every x e Dp (ae A is an arbitrary, fixed element satisfying (2)).

Proof. Let F be an arbitrary extension of the solution Fe I of equation (3) on
the set (Dp n Dp) x (Dp v Dp) x G. It is easy to verify that ux = F(x,a,e) and
vx = F(a, X, e) are solutions of equations (5) and (6), respectively. Now we go to
prove the sufficiency of conditions (5), (6). Let us put

@) F(x,y, a) = fix-F(a, a, ot)-vy for x,yeDpwun D\, aeG

where gx and vx are solutions of equations (5) and (6), when x e Dp and y e Dp
respectively and however x e Dp we put

8 ux = F(x, a, ) and when ye Dp we put

(9) w= F(a,y,e).
It is easy to verify, that the function F is defined on the set (Dp n Dp) x (Dp »n Dp) x G.
From (8) and (9) it follows that F\Df = F. Now we shall show, that F satisfies equa-

tion (3). Let x, y, z be arbitrary elements from the set Dp n Dp and let a, fi € G.

If yeD @ we obtain
F(x,y,d)-F(y,z,P)= (nx-F(a,a, ot)-w)-(F(y, a, e)-F(a, a, P)-vz) =

= ux-F(a, a, a)-(vy-F(y, a, e))-F(a, a, $)vz =

= nx-F(a, a, ot)F(a, a, e)F(a, a, P)-vz =

= nx-F(a, a, a-p)-vz= F(x, z, a-p).
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Ifye Dp we have

F(x,y,a)-F(y,z,p) nxF(a,a,a)‘F(a,y,e)(n,-F(a,a,P)-vt) =

= ux-F(a, a, a)-(F(a,y, eyu,)-F(a, a, P)-vt =
= fix F(a, a, d)-F(a, a, e)F(a, a, 0)-v, =

= nx-F(a, a, cc-p)-vx = F(x, z, a-p) .

Thus F satisfies equation (3), which completes the proof.

Corollary. From theorem 2 it follows, that if (AT, ¢) is a group, then every
solution Fe I' of equation (3) can be extended in an unique way on the set
(Dp n DR)X(Dp n Dj) x G.

Theorem 3. If the function Fe I is a solution of equation (3) such that

(10) Dp= MxMxG

then it can be extended on the set Ax Ax G.

Proof. Let Fe I be a solution of equation (3) such that condition (10) holds
and let a be an arbitrary, fixed element from the set M.
Let us put

F(x,y,a) for (x,y,a)e Df

F(x, a, a) for xeM,yeA\M, ae G,
F(a,y, a) for xeA\M ,ye M, ae G,
F(a,a,ct) for (x,y, a)b6(A2xG)\Df.

F(x,y,ai)

We shall show, that the function F defined above is the extension of F. From the
definition of the function F it follows that F\Df = F. The following cases are possible:

I°. xeM, yeM, ze M,

2°. xeM, yeM, zZpM,

3°. xeM, yhM, ze M,

4°, xeM, YOM, zZhpM,

5°. XtpM, yeM, ze M,

6°. xpM, yeM, roM,

7°. X M, yhM, ze M,

8. xbM, YbdM, zdM.

It is easy to see, that in cases 1° and 8° the corresponding equalities hold. In case 3° we
have

F(x,y, a)-F(y, z, P) = F(x, a, a)-F(a, z, p) = F(x, z, a-p) = F(x, z, a-p)
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In case 4° we have
F(x,y,tx)-F(y,z, P) = F(x, a, a) F(a, a, ff) = Fix, a, orP) = F(x,z,ct-p).

It is easy to verify that in all the other cases the corresponding equalities hold.
Thus F satisfies equation (3), which completes the proof.

Theorem 4. A function F e I' satisfies equation (3) iff it has the following form

Fix,y,et) =f(x)-g(a.)-k(y),
where:

I°. g is an arbitrary homomorphism of the group (G, ) into (K, *),

2°./ and k are arbitrary partial mappings of the set A into K such that
Df n Dkd¢ 0, the product k(x)-f(x) is defined and k(x)-f(x) = g(e) for
x e Df n Dk,

3°. The products f (x)-g(d), g(a)-k{y) are defined and the equalities
f(x)-g(e) =/(*), g(e)-k(y) = k(y) holdfor xeDf, ye Dk, ae G.

Proof. Let F e I' satisfy equation (3) and let a be an arbitrary element from the
set A for which condition (2) is satisfied. Let us put

fif@ = F(a, a,a) for aegG,
fix) = F(x, a, e) for xe Df,

k{x)

Fia, x,e) for xeDj.

From the definition of the functions g, f, k it follows immediately, that condi-
tions 1°, 2°, 3° of theorem 4 are satisfied. For (x,y, a)e DF we have F(x,y, a)
= F(x, a, e)-F(a, a, <x)-F(a, y, e) = f(x)-g(<x)-k(y), which completes the first
part of the proof.

Let now conditions 1° 2°, 3° of theorem 4 be fulfilled for f k, g. Let us put
F(x,y,oi) =/ (x)-g(a)-k(y) for (x,y, @)e Df x DkxG. It is easy to verify, that
Feol. Let (x,y,eteDF and (y, z,[i)e DF. Then (x,y,a-[S)e DF and by 2°
and 1° we have

F(x,y, a)-F(y, z, fd =f(x)-g(a)-k(y)-f(y)-g(P)-k(z) =
= f(x)-g(ct)-g(e)-g(P)-k(z) =

= fix)-g(afi)-k(z) = F(x,z,crp),

which completes the proof.
If in the above theorems we replace (K, ¢) by the semigroup of all partial
mappings of a set X (with the superposition of mappings) and we put

<p(p, X, y, a) = [F(x,y, a)](/0 for (v,y,a)e DF,ge DHxya
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then the function o satisfies the translation equation
e(cp(nyy, z, P), x, ¥y, a) = <p(u, X, z, a-js) .

Thus we can use the above theorems in the theory of translation equation.
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