On some homomorphisms in product Brandt groupoids

Basic notations. By $f: A \Rightarrow B$ we shall denote the function (called partial function) the domain of which is contained in the set A and the range of which is contained in the set B. The domain of the function f will be denoted by D_f and the range will be denoted by q_f . If F is a function of the form

$$F: A \times B \times G \twoheadrightarrow K,$$

then we shall denote:

$$D_F^1 = \{ x \in A : \bigvee_{\substack{y \in B \\ x \in A}} \bigvee_{\substack{\alpha \in G \\ \alpha \in G}} ((x, y, \alpha) \in D_F) \},$$

$$D_F^2 = \{ y \in B : \bigvee_{\substack{x \in A \\ \alpha \in G}} \bigvee_{\substack{\alpha \in G \\ \alpha \in G}} ((x, y, \alpha) \in D_F) \},$$

$$D_F^3 = \{ \alpha \in G : \bigvee_{\substack{x \in A \\ x \in A}} \bigvee_{\substack{\gamma \in B \\ \alpha \in B}} ((x, y, \alpha) \in D_F) \}.$$

Let B be an arbitrary non-empty set and let \bullet be an arbitrary partial mapping of the set $B \times B$ in the set B. We shall call the pair (B, \bullet) the multiplicative system. When $S \subset B$ and S with the operation \bullet restricted to the set S is a multiplicative system, then we call S the subsystem of the multiplicative system (B, \bullet) . The multiplicative system (B, \bullet) will be called associative, if the following condition is satisfied:

If in the equation

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

one of its sides or both of the products $y \cdot z$, $x \cdot y$ are defined, then both sides of the equation are defined and the equality holds. If in the associative multiplicative system (B, \cdot) the following conditions are satisfied:

a) For every element x of B there exists exactly one left unit f_x and exactly one right unit e_x such that $f_x \cdot x = x \cdot e_x = x$,

b) If the product $x \cdot y$ is defined, then $e_x = f_y$,

c) For every element x of B there exists exactly one element x^{-1} (inverse to x) such that $x \cdot x^{-1} = f_x$, $x^{-1} \cdot x = e_x$,

d) For every of the element x, y there exists such an element z that both the products $x \cdot z$, $z \cdot y$ are defined, then we call this system the Brandt groupoid ([2]).

Let A be an arbitrary non-empty set and G an arbitrary group. In the set $A \times A \times G$ we define the operation * as follows:

The product $(a, b, \alpha) * (c, d, \beta)$ is defined iff b = c, and then

$$(a, b, \alpha) * (c, d, \beta) = (a, d, \alpha \cdot \beta).$$

It is easy to verify that the set $A \times A \times G$, with such an operation * is a Brandt groupoid. This groupoid is called a product Brand groupoid ([3]). A. Nijenhuis has proved the theorem which can be formulated in the following way ([1], p. 11): Every Brandt groupoid is isomorphic to some product Brandt groupoid.

Let (A, \cdot) , (B, \circ) be multiplicative systems. We shall say, that the function $F: A \Rightarrow B$ is a solution of the equation

(i)
$$F(x) \circ F(y) = F(x \cdot y)$$

if for every $x \in D_F$, $y \in D_F$, $(x, y) \in D_{\bullet}$, $x \cdot y \in D_F$ the product $F(x) \circ F(y)$ is defined and the equality (i) holds. We mean the same when we say that the function F is a homomorphism of (A, \bullet) into (B, \circ) .

We shall say that the function $\overline{F}: A \twoheadrightarrow B$ satisfying (i) is the extension of the solution F of equation (i), if $\overline{F}|_{D_F} = F$. We mean the same when we say, that \overline{F} is the extension of F onto the set $D_{\overline{F}}$.

Extensions of some homomorphisms in the product Brandt groupoids. Let $(A \times A \times G, *)$ be an arbitrary product Brandt groupoid and let (K, \cdot) be an arbitrary associative multiplicative system.

DEFINITION 1. We will denote Γ_1 the set of all functions $F: A \times A \times G \twoheadrightarrow K$ such that the following conditions

(1)
$$\bigwedge_{(x, y, \alpha) \in A \times A \times G} \bigwedge_{\beta \in G} [(x, y, \alpha) \in D_F \Rightarrow (x, y, \beta) \in D_F],$$

(2)
$$\bigvee_{\substack{x \in A \ (x, y, a) \in D_F}} \bigwedge_{\{x, y, e\} \in D_F} [(x, a, e) \in D_F \land (a, y, e) \in D_F] hold.$$

THEOREM 1. Every solution $F \in \Gamma_1$ of the equation

(3)
$$F(x, y, \alpha) \cdot F(y, z, \beta) = F(x, z, \alpha \cdot \beta)$$

can be uniquely extended onto the set $D_F^1 \times D_F^2 \times G$ and this extension belongs to Γ_1^*

Proof. Let $F \in \Gamma_1$ be an arbitrary solution of equation (3), let a be an arbitrary element satisfying (2) and let $(x, y, \alpha) \in D_F^1 \times D_F^2 \times G$. Then $(x, a, e) \in D_F$, $(x, a, \alpha) \in D_F$, $(a, y, e) \in D_F$, $(a, y, \alpha) \in D_F$, $(a, a, \alpha) \in D_F$. Since F is a homomorphism then the products $F(x, a, e) \cdot F(a, a, \alpha)$ and $F(a, a, \alpha) \cdot F(a, y, e)$ are defined. Let us put $\overline{F}(x, y, \alpha) = F(x, a, e) \cdot F(a, a, \alpha) \cdot F(a, y, e)$ for $(x, y, \alpha) \in D_F^1 \times D_F^2 \times G$. It is easy to see that $\overline{F}|_{D_F} = F$.

Let $(x, y, \alpha) \in D_F$ and $(y, z, \beta) \in D_F$. We have

$$\overline{F}(x, y, \alpha) \cdot \overline{F}(y, z, \beta) = F(x, a, e) \cdot F(a, a, \alpha) \cdot (F(a, y, e) \cdot F(y, a, e)) F(a, a, \beta) \cdot F(a, z, e) = F(x, a, e) \cdot (F(a, a, \alpha) \cdot F(a, a, e) \cdot F(a, a, \beta)) F(a, z, e) = F(x, a, e) \cdot F(a, a, \alpha \cdot \beta) \cdot F(a, z, e) = \overline{F}(x, z, \alpha \cdot \beta) .$$

Thus \overline{F} is an extension of F. It is easy to see that $\overline{F} \in \Gamma_1$ and that \overline{F} is the unique extension of F.

In virtue of theorem 1 we can restrict our considerations concerning the extensibility to these functions of the set Γ_1 for which the following condition

$$D_F = D_F^1 \times D_F^2 \times G \text{ holds}$$

DEFINITION 2. We will denote by Γ the set of all functions $F: A \times A \times G \twoheadrightarrow K$ such that conditions (2) and (4) are fulfilled.

THEOREM 2. The solution $F \in \Gamma$ of equation (3) can be extended on the set $(D_F^1 \cup D_F^2) \times (D_F^1 \cup D_F^2) \times G$ iff the equation

(5)
$$F(a, x, e) \cdot \mu_x = F(a, a, e)$$

has a solution for every $x \in D_F^2$ and the equation

(6)
$$v_x \cdot F(x, a, e) = F(a, a, e)$$

has a solution for every $x \in D_F^1$ ($a \in A$ is an arbitrary, fixed element satisfying (2)).

Proof. Let \overline{F} be an arbitrary extension of the solution $F \in \Gamma$ of equation (3) on the set $(D_F \cup D_F^2) \times (D_F \cup D_F^2) \times G$. It is easy to verify that $\mu_x = \overline{F}(x, a, e)$ and $v_x = \overline{F}(a, x, e)$ are solutions of equations (5) and (6), respectively. Now we go to prove the sufficiency of conditions (5), (6). Let us put

(7)
$$\overline{F}(x, y, \alpha) = \mu_x \cdot F(a, a, \alpha) \cdot v_y$$
 for $x, y \in D_F^1 \cup D_F^2, \alpha \in G$

where μ_x and v_x are solutions of equations (5) and (6), when $x \in D_F^2$ and $y \in D_F^1$ respectively and however $x \in D_F^1$ we put

(8)
$$\mu_x = F(x, a, e)$$
 and when $y \in D_F^2$ we put

(9)
$$v_y = F(a, y, e) .$$

It is easy to verify, that the function \overline{F} is defined on the set $(D_F^1 \cup D_F^2) \times (D_F^1 \cup D_F^2) \times G$. From (8) and (9) it follows that $\overline{F}|_{D_F} = F$. Now we shall show, that \overline{F} satisfies equation (3). Let x, y, z be arbitrary elements from the set $D_F^1 \cup D_F^2$ and let $\alpha, \beta \in G$. If $y \in D_F^1$ we obtain

$$\overline{F}(x, y, \alpha) \cdot \overline{F}(y, z, \beta) = (\mu_x \cdot F(a, a, \alpha) \cdot v_y) \cdot (F(y, a, e) \cdot F(a, a, \beta) \cdot v_z) =$$

$$= u_x \cdot F(a, a, \alpha) \cdot (v_y \cdot F(y, a, e)) \cdot F(a, a, \beta) v_z =$$

$$= \mu_x \cdot F(a, a, \alpha) F(a, a, e) F(a, a, \beta) \cdot v_z =$$

$$= \mu_x \cdot F(a, a, \alpha \cdot \beta) \cdot v_z = \overline{F}(x, z, \alpha \cdot \beta) .$$

69

If $y \in D_F^2$ we have

$$\overline{F}(x, y, \alpha) \cdot \overline{F}(y, z, \beta) = \mu_x F(a, a, \alpha) \cdot F(a, y, e) (\mu_y \cdot F(a, a, \beta) \cdot v_z) =$$

$$= u_x \cdot F(a, a, \alpha) \cdot (F(a, y, e) \cdot u_y) \cdot F(a, a, \beta) \cdot v_z =$$

$$= \mu_x \cdot F(a, a, \alpha) \cdot F(a, a, e) \cdot F(a, a, \beta) \cdot v_z =$$

$$= \mu_x \cdot F(a, a, \alpha \cdot \beta) \cdot v_z = \overline{F}(x, z, \alpha \cdot \beta) .$$

Thus \overline{F} satisfies equation (3), which completes the proof.

COROLLARY. From theorem 2 it follows, that if (K, \cdot) is a group, then every solution $F \in \Gamma$ of equation (3) can be extended in an unique way on the set $(D_F^1 \cup D_F^2) \times (D_F^1 \cup D_F^2) \times G$.

THEOREM 3. If the function $F \in \Gamma$ is a solution of equation (3) such that

$$(10) D_F = M \times M \times G$$

then it can be extended on the set $A \times A \times G$.

Proof. Let $F \in \Gamma$ be a solution of equation (3) such that condition (10) holds and let a be an arbitrary, fixed element from the set M. Let us put

$$F(x, y, \alpha) = \begin{cases} F(x, y, \alpha) & \text{for} & (x, y, \alpha) \in D_F \\ F(x, a, \alpha) & \text{for} & x \in M, y \in A \setminus M, \alpha \in G, \\ F(a, y, \alpha) & \text{for} & x \in A \setminus M, y \in M, \alpha \in G, \\ F(a, a, \alpha) & \text{for} & (x, y, \alpha) \in (A^2 \times G) \setminus D_F. \end{cases}$$

We shall show, that the function \overline{F} defined above is the extension of F. From the definition of the function \overline{F} it follows that $\overline{F}|_{D_F} = F$. The following cases are possible:

1°. $x \in M$,	$y \in M$,	$z \in M$,
2° . $x \in M$,	$y \in M$,	$z \notin M$,
$3^{\circ}. x \in M,$	y ∉ M,	$z \in M$,
4° . $x \in M$,	y ∉ M,	z ∉ M,
5° . $x \notin M$,	$y \in M$,	$z \in M$,
6° . $x \notin M$,	$y \in M$,	z∉ M,
7°. $x \notin M$,	y ∉ M,	$z \in M$,
8° . $x \notin M$,	y ∉ M,	z ∉ M.

It is easy to see, that in cases 1° and 8° the corresponding equalities hold. In case 3° we have

$$\overline{F}(x, y, \alpha) \cdot \overline{F}(y, z, \beta) = F(x, a, \alpha) \cdot F(a, z, \beta) = F(x, z, \alpha \cdot \beta) = \overline{F}(x, z, \alpha \cdot \beta).$$

In case 4° we have

$$\overline{F}(x, y, \alpha) \cdot \overline{F}(y, z, \beta) = F(x, a, \alpha) \cdot F(a, a, \beta) = F(x, a, \alpha \cdot \beta) = \overline{F}(x, z, \alpha \cdot \beta).$$

It is easy to verify that in all the other cases the corresponding equalities hold. Thus F satisfies equation (3), which completes the proof.

THEOREM 4. A function $F \in \Gamma$ satisfies equation (3) iff it has the following form

$$F(x, y, \alpha) = f(x) \cdot g(\alpha) \cdot k(y),$$

where:

 1° . g is an arbitrary homomorphism of the group (G, \bullet) into (K, \bullet) ,

2°. f and k are arbitrary partial mappings of the set A into K such that $D_f \cap D_k \neq \emptyset$, the product $k(x) \cdot f(x)$ is defined and $k(x) \cdot f(x) = g(e)$ for $x \in D_f \cap D_k$,

3°. The products $f(x) \cdot g(\alpha)$, $g(\alpha) \cdot k(y)$ are defined and the equalities $f(x) \cdot g(e) = f(x)$, $g(e) \cdot k(y) = k(y)$ hold for $x \in D_f$, $y \in D_k$, $\alpha \in G$.

Proof. Let $F \in \Gamma$ satisfy equation (3) and let a be an arbitrary element from the set A for which condition (2) is satisfied. Let us put

$$g(\alpha) = F(a, a, \alpha) \quad \text{for} \quad \alpha \in G,$$

$$f(x) = F(x, a, e) \quad \text{for} \quad x \in D_F^1,$$

$$k(x) = F(a, x, e) \quad \text{for} \quad x \in D_F^2.$$

From the definition of the functions g, f, k it follows immediately, that conditions 1°, 2°, 3° of theorem 4 are satisfied. For $(x, y, \alpha) \in D_F$ we have $F(x, y, \alpha) = F(x, a, e) \cdot F(a, a, \alpha) \cdot F(a, y, e) = f(x) \cdot g(\alpha) \cdot k(y)$, which completes the first part of the proof.

Let now conditions 1°, 2°, 3° of theorem 4 be fulfilled for f, k, g. Let us put $F(x, y, \alpha) = f(x) \cdot g(\alpha) \cdot k(y)$ for $(x, y, \alpha) \in D_f \times D_k \times G$. It is easy to verify, that $F \in \Gamma$. Let $(x, y, \alpha) \in D_F$ and $(y, z, \beta) \in D_F$. Then $(x, y, \alpha \cdot \beta) \in D_F$ and by 2° and 1° we have

$$F(x, y, \alpha) \cdot F(y, z, \beta) = f(x) \cdot g(\alpha) \cdot k(y) \cdot f(y) \cdot g(\beta) \cdot k(z) =$$
$$= f(x) \cdot g(\alpha) \cdot g(\beta) \cdot k(z) =$$
$$= f(x) \cdot g(\alpha \cdot \beta) \cdot k(z) = F(x, z, \alpha \cdot \beta),$$

which completes the proof.

If in the above theorems we replace (K, \cdot) by the semigroup of all partial mappings of a set X (with the superposition of mappings) and we put

$$\varphi(\mu, x, y, \alpha) = [F(x, y, \alpha)](\mu) \quad \text{for} \quad (x, y, \alpha) \in D_F, \mu \in D_{F(x, y, \alpha)}$$

then the function φ satisfies the translation equation

$$\varphi(\varphi(\mu, y, z, \beta), x, y, \alpha) = \varphi(\mu, x, z, \alpha \cdot \beta).$$

Thus we can use the above theorems in the theory of translation equation.

References

- [1] A. Nijenhuis: Theory of the geometric object. Amsterdam 1952.
- [2] W. Waliszewski: Categories, groupoids, pseudogroups and analitical structures. Rozprawy Mat. 45, Warszawa 1965.
- [3] J. Tabor: The translation equation and algebraic objects. Ann. Polon. Math., XXVII (1973).