On some homomorphisms in product Brandt groupoids

Basic notations. By $f: A \rightarrow B$ we shall denote the function (called partial function) the domain of which is contained in the set *A* and the range of which is contained in the set *B*. The domain of the function f will be denoted by D_f and the range will be denoted by q_f . If *F* is a function of the form

$$
F: A \times B \times G \rightarrow K,
$$

then we shall denote:

$$
D_F^1 = \{x \in A : \bigvee_{y \in B} \bigvee_{\alpha \in G} ((x, y, \alpha) \in D_F) \},
$$

\n
$$
D_F^2 = \{y \in B : \bigvee_{x \in A} \bigvee_{\alpha \in G} ((x, y, \alpha) \in D_F) \},
$$

\n
$$
D_F^3 = \{ \alpha \in G : \bigvee_{x \in A} \bigvee_{y \in B} ((x, y, \alpha) \in D_F) \}.
$$

Let B be an arbitrary non-empty set and let \cdot be an arbitrary partial mapping of the set $B \times B$ in the set *B*. We shall call the pair (B, \cdot) the multiplicative system. When $S \subseteq B$ and *S* with the operation • restricted to the set *S* is a multiplicative system, then we call *S* the subsystem of the multiplicative system (B, \cdot) . The multiplicative system (B, \cdot) will be called associative, if the following condition is satisfied:

If in the equation

$$
x\cdot(y\cdot z)=(x\cdot y)\cdot z
$$

one of its sides or both of the products $y \cdot z$, $x \cdot y$ are defined, then both sides of the equation are defined and the equality holds. If in the associative multiplicative system *(B,* •) the following conditions are satisfied:

a) For every element *x* of *B* there exists exactly one left unit f_x and exactly one right unit e_x such that $f_x \cdot x = x \cdot e_x = x$,

b) If the product $x \cdot y$ is defined, then $e_x = f_y$,

c) For every element *x* of *B* there exists exactly one element x^{-1} (inverse to *x*) such that $x \cdot x^{-1} = f_x$, $x^{-1} \cdot x = e_x$,

d) For every of the element x , y there exists such an element z that both the products $x \cdot z$, $z \cdot y$ are defined, then we call this system the B randt g roupoid ([2]).

Let *A* be an arbitrary non-empty set and *G* an arbitrary group. In the set $A \times A \times G$ we define the operation $*$ as follows:

The product $(a, b, \alpha) * (c, d, \beta)$ is defined iff $b = c$, and then

$$
(a, b, \alpha) * (c, d, \beta) = (a, d, \alpha \cdot \beta).
$$

It is easy to verify that the set $A \times A \times G$, with such an operation $*$ is a Brandt groupoid. This groupoid is called a product Brand groupoid ([3]). A. Nijenhuis has proved the theorem which can be formulated in the following way ([1], p. 11): Every Brandt groupoid is isomorphic to some product Brandt groupoid.

Let (A, \cdot) , (B, \cdot) be multiplicative systems. We shall say, that the function *F:* $A \rightarrow B$ is a solution of the equation

$$
F(x) \circ F(y) = F(x \cdot y)
$$

if for every $x \in D_F$, $y \in D_F$, $(x, y) \in D_{\square}$, $x \cdot y \in D_F$ the product $F(x) \circ F(y)$ is defined and the equality (i) holds. We mean the same when we say that the function F is a homomorphism of (A, \cdot) into (B, \circ) .

We shall say that the function \bar{F} : $A \rightarrow B$ satisfying (i) is the extension of the solution *F* of equation (i), if $\bar{F}|_{D_F} = F$. We mean the same when we say, that *F* is the extension of *F* onto the set D_F .

Extensions of some homomorphisms in the product Brandt groupoids. Let $(A \times A \times G, *)$ be an arbitrary product Brandt groupoid and let (K, \cdot) be an arbitrary associative multiplicative system.

DEFINITION 1. We will denote Γ_1 the set of all functions $F: A \times A \times G \rightarrow K$ such *that the following conditions*

(1)
$$
\bigwedge_{(x, y, a) \in A \times A \times G} \bigwedge_{\beta \in G} [(x, y, a) \in D_F \Rightarrow (x, y, \beta) \in D_F],
$$

(2)
$$
\bigvee_{\alpha \in A} \bigwedge_{(x, y, a) \in D_F} [(x, a, e) \in D_F \land (a, y, e) \in D_F] \text{ hold.}
$$

THEOREM 1. Every solution $F \in \Gamma_1$ **of the equation**

(3)
$$
F(x, y, \alpha) \cdot F(y, z, \beta) = F(x, z, \alpha \cdot \beta)
$$

can be uniquely extended onto the set $D_F^1 \times D_F^2 \times G$ *and this extension belongs to* Γ_1 ^{*·*}

Proof. Let $F \in \Gamma_1$ be an arbitrary solution of equation (3), let a be an arbitrary element satisfying (2) and let $(x, y, \alpha) \in D_F^1 \times D_F^2 \times G$. Then $(x, a, e) \in D_F$, $(x, a, \alpha) \in D_F$, $(a, y, e) \in D_F$, $(a, y, \alpha) \in D_F$, $(a, a, \alpha) \in D_F$. Since F is a homomorphism then the products $F(x, a, e) \cdot F(a, a, \alpha)$ and $F(a, a, \alpha) \cdot F(a, y, e)$ are defined. Let us put $\overline{F}(x, y, \alpha) = F(x, a, e) \cdot F(a, a, \alpha) \cdot F(a, y, e)$ for $(x, y, \alpha) \in D_F \times D_F^2 \times G$. It is easy to see that $\overline{F}|_{D_F} = F$.

Let $(x, y, \alpha) \in D_{\overline{F}}$ and $(y, z, \beta) \in D_{\overline{F}}$. We have

$$
F(x, y, \alpha) \cdot F(y, z, \beta) = F(x, a, e) \cdot F(a, a, \alpha) \cdot (F(a, y, e) \cdot F(y, a, e)) F(a, a, \beta) \cdot F(a, z, e) = F(x, a, e) \cdot (F(a, a, \alpha) \cdot F(a, a, e) \cdot F(a, a, \beta)) F(a, z, e) = F(x, a, e) \cdot F(a, a, \alpha \cdot \beta) \cdot F(a, z, e) = \overline{F}(x, z, \alpha \cdot \beta).
$$

Thus \bar{F} is an extension of *F*. It is easy to see that $\bar{F} \in \Gamma_1$ and that \bar{F} is the unique extension of *F.*

In virtue of theorem 1 we can restrict our considerations concerning the extensibility to these functions of the set Γ_1 for which the following condition

$$
(4) \tDF = DF1 \times DF2 \times G \text{ holds.}
$$

DEFINITION 2. We will denote by Γ the set of all functions $F: A \times A \times G \rightarrow K$ *such that conditions* (2) *and* (4) *are fulfilled.*

THEOREM 2. The solution $F \in \Gamma$ of equation (3) can be extended on the set $(D_F^1 \cup D_F^2) \times (D_F \cup D_F^2) \times G$ *iff the equation*

(5)
$$
F(a, x, e) \cdot \mu_x = F(a, a, e)
$$

has a solution for every $x \in D_F^2$ *and the equation*

(6)
$$
v_x \cdot F(x, a, e) = F(a, a, e)
$$

has a solution for every $x \in D_F^1$ ($a \in A$ *is an arbitrary, fixed element satisfying* (2)).

Proof. Let \bar{F} be an arbitrary extension of the solution $F \in \Gamma$ of equation (3) on the set $(D_F^{\dagger} \cup D_F^2) \times (D_F^{\dagger} \cup D_F^2) \times G$. It is easy to verify that $\mu_x = \overline{F}(x, a, e)$ and $v_x = \overline{F}(a, x, e)$ are solutions of equations (5) and (6), respectively. Now we go to prove the sufficiency of conditions (5), (6). Let us put

(7)
$$
\overline{F}(x, y, \alpha) = \mu_x \cdot F(a, a, \alpha) \cdot v_y \quad \text{for} \quad x, y \in D_F^1 \cup D_F^2, \alpha \in G
$$

where μ_x and v_x are solutions of equations (5) and (6), when $x \in D_F^2$ and $y \in D_F^1$ respectively and however $x \in D_F^1$ we put

(8)
$$
\mu_x = F(x, a, e) \text{ and when } y \in D_F^2 \text{ we put}
$$

$$
(9) \t v_y = F(a, y, e).
$$

It is easy to verify, that the function \overline{F} is defined on the set $(D_F^1 \cup D_F^2) \times (D_F^1 \cup D_F^2) \times G$. From (8) and (9) it follows that $\bar{F}|_{D_F} = F$. Now we shall show, that \bar{F} satisfies equation (3). Let x, y, z be arbitrary elements from the set $D_F^1 \cup D_F^2$ and let $\alpha, \beta \in G$. If $y \in D_F^1$ we obtain

$$
\begin{aligned} \overline{F}(x, y, \alpha) \cdot \overline{F}(y, z, \beta) &= \left(\mu_x \cdot F(a, a, \alpha) \cdot v_y\right) \cdot \left(F(y, a, e) \cdot F(a, a, \beta) \cdot v_z\right) = \\ &= u_x \cdot F(a, a, \alpha) \cdot \left(v_y \cdot F(y, a, e)\right) \cdot F(a, a, \beta) v_z = \\ &= \mu_x \cdot F(a, a, \alpha) F(a, a, e) F(a, a, \beta) \cdot v_z = \\ &= \mu_x \cdot F(a, a, \alpha \cdot \beta) \cdot v_z = \overline{F}(x, z, \alpha \cdot \beta) \,. \end{aligned}
$$

69

If $y \in D_F^2$ we have

$$
\begin{aligned} \overline{F}(x, y, \alpha) \cdot \overline{F}(y, z, \beta) &= \mu_x F(a, a, \alpha) \cdot F(a, y, e) (\mu_y \cdot F(a, a, \beta) \cdot v_z) = \\ &= u_x \cdot F(a, a, \alpha) \cdot (F(a, y, e) \cdot u_y) \cdot F(a, a, \beta) \cdot v_z = \\ &= \mu_x \cdot F(a, a, \alpha) \cdot F(a, a, e) \cdot F(a, a, \beta) \cdot v_z = \\ &= \mu_x \cdot F(a, a, \alpha \cdot \beta) \cdot v_z = \overline{F}(x, z, \alpha \cdot \beta) \,. \end{aligned}
$$

Thus \vec{F} satisfies equation (3), which completes the proof.

COROLLARY. From theorem 2 it follows, that if (K, \cdot) is a group, then every solution $F \in \Gamma$ of equation (3) can be extended in an unique way on the set $(D_F^1 \cup D_F^2) \times (D_F^1 \cup D_F^2) \times G$.

THEOREM 3. If the function $F \in \Gamma$ is a solution of equation (3) such that

$$
(10) \t\t D_F = M \times M \times G
$$

then it can be extended on the set $A \times A \times G$ *.*

Proof. Let $F \in \Gamma$ be a solution of equation (3) such that condition (10) holds and let a be an arbitrary, fixed element from the set *M .* Let us put

$$
F(x, y, \alpha) = \begin{cases} F(x, y, \alpha) & \text{for } (x, y, \alpha) \in D_F \\ F(x, a, \alpha) & \text{for } x \in M, y \in A \setminus M, \alpha \in G, \\ F(a, y, \alpha) & \text{for } x \in A \setminus M, y \in M, \alpha \in G, \\ F(a, a, \alpha) & \text{for } (x, y, \alpha) \in (A^2 \times G) \setminus D_F. \end{cases}
$$

We shall show, that the function *F* defined above is the extension of *F.* From the definition of the function \bar{F} it follows that $\bar{F} \vert_{D_F} = F$. The following cases are possible:

It is easy to see, that in cases 1° and 8° the corresponding equalities hold. In case 3° we have

$$
\overline{F}(x, y, \alpha) \cdot \overline{F}(y, z, \beta) = F(x, a, \alpha) \cdot F(a, z, \beta) = F(x, z, \alpha \cdot \beta) = \overline{F}(x, z, \alpha \cdot \beta).
$$

In case 4° we have

$$
F(x, y, \alpha) \cdot \overline{F}(y, z, \beta) = F(x, a, \alpha) \cdot F(a, a, \beta) = F(x, a, \alpha \cdot \beta) = \overline{F}(x, z, \alpha \cdot \beta).
$$

It is easy to verify that in all the other cases the corresponding equalities hold. Thus *F* satisfies equation (3), which completes the proof.

THEOREM 4. *A function* $F \in \Gamma$ satisfies equation (3) iff it has the following form

$$
F(x, y, \alpha) = f(x) \cdot g(\alpha) \cdot k(y),
$$

where:

 1° , *g is an arbitrary homomorphism of the group* (G, \cdot) *into* $(K, \cdot),$

2⁰. f and k are arbitrary partial mappings of the set A into K such that $D_f \cap D_k \neq \emptyset$, the product $k(x) \cdot f(x)$ is defined and $k(x) \cdot f(x) = g(e)$ for $x \in D_f \cap D_k$,

 3° . *The products* $f(x) \cdot g(\alpha)$, $g(\alpha) \cdot k(y)$ are defined and the equalities $f(x) \cdot g(e) = f(x), g(e) \cdot k(y) = k(y)$ hold for $x \in D_f$, $y \in D_k$, $\alpha \in G$.

Proof. Let $F \in \Gamma$ satisfy equation (3) and let a be an arbitrary element from the set *A* for which condition (2) is satisfied. Let us put

$$
g(\alpha) = F(a, a, \alpha) \quad \text{for} \quad \alpha \in G,
$$

$$
f(x) = F(x, a, e) \quad \text{for} \quad x \in D_F^1,
$$

$$
k(x) = F(a, x, e) \quad \text{for} \quad x \in D_F^2.
$$

From the definition of the functions g, f, k it follows immediately, that conditions 1^o, 2^o, 3^o of theorem 4 are satisffed. For $(x, y, \alpha) \in D_F$ we have $F(x, y, \alpha)$ $= F(x, a, e) \cdot F(a, a, \alpha) \cdot F(a, y, e) = f(x) \cdot g(\alpha) \cdot k(y)$, which completes the first part of the proof.

Let now conditions 1^0 , 2^0 , 3^0 of theorem 4 be fulfilled for *f*, *k*, *g*. Let us put $F(x, y, \alpha) = f(x) \cdot g(\alpha) \cdot k(y)$ for $(x, y, \alpha) \in D_f \times D_k \times G$. It is easy to verify, that *F* \in *F*. Let $(x, y, \alpha) \in D_F$ and $(y, z, \beta) \in D_F$. Then $(x, y, \alpha \cdot \beta) \in D_F$ and by 2⁰ and 1° we have

$$
F(x, y, \alpha) \cdot F(y, z, \beta) = f(x) \cdot g(\alpha) \cdot k(y) \cdot f(y) \cdot g(\beta) \cdot k(z) =
$$

$$
= f(x) \cdot g(\alpha) \cdot g(e) \cdot g(\beta) \cdot k(z) =
$$

$$
= f(x) \cdot g(\alpha \cdot \beta) \cdot k(z) = F(x, z, \alpha \cdot \beta),
$$

which completes the proof.

If in the above theorems we replace (K, \cdot) by the semigroup of all partial mappings of *a* set *X* (with the superposition of mappings) and we put

$$
\varphi(\mu, x, y, \alpha) = [F(x, y, \alpha)](\mu) \quad \text{for} \quad (x, y, \alpha) \in D_F, \mu \in D_{F(x, y, \alpha)}
$$

then the function φ satisfies the translation equation

$$
\varphi(\varphi(\mu, y, z, \beta), x, y, \alpha) = \varphi(\mu, x, z, \alpha \cdot \beta).
$$

Thus we can use the above theorems in the theory of translation equation.

References

- [1] A. Nijenhuis: *Theory of the geometric object*. Amsterdam 1952.
- [2] W. W a lisze w sk i: *Categories, groupoids, pseudogroups and analitical structures.* Rozprawy Mat. 45, Warszawa 1965.
- [3] J. Tabor: *The translation equation and algebraic objects*. Ann. Polon. Math., XXVII (1973).