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Comments on a definition of entropy

In their monograph [1] Yaglom and Yaglom  introduced the concept of the 
entropy of a stochastic experiment, which is described by a finite space of elementary 
events. Let us assume that a stochastic experiment a describe a probabilistic system 
(Ea, S ,P ) .  I f  the space E a is at most denumerable, then S  =  2E‘ , and in order to 
define the functional P  it suffices to indicate the sequence of the probabilities of all 
monoelementary random events in S.
Let

E  =  { e , , e2, ...} and let p t =  jP({ef}) for i — 1 ,2 , . . .  
and

2> i  =  i
i

The entropy of a random experiment a is given by the expresion:

(1) H(oi) =  -  'Z P ilh p t,
i

where Ibx denotes log2x. It is assumed that for pk =  0, pklbpk =  lim plbp =  0.
p-*0 +

In [1] the entropy definition is restricted to a finite space; however, the relation (1) 
also includes the case of a denumerable set comprising all the experimental results 
possible a priori.

In [5] (pag. 530-531), and also in [4] (pag. 62) the concept of entropy of an at 
most denumerable set is introduced in the sense of the entropy related to the choice 
of one element of this set. It is easily seen that this concept coincides with the concept 
of the experimental entropy, and that the space of elementary events o f the experi
ment is the set in question; the probability p t of the choice of an element ef from this 
set is simply the probability of the stochastic event { e j .

In the same book [5] (pag. 534-537) the concept of entropy of a discrete and 
continuous distribution is introduced. This concept is the counter part of the concept 
of entropy of a random variable found in other publications whose subject are the 
basic conceptions of the theory of information (v. [3] and [2]).

In this connection the question arises concerning the relation between the con
cept of the entropy of a random experiment and the concept of entropy of a random
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variable (alias the entropy of the distribution of this random variable) mapping the 
space of elementary events describing this random experiment.

I f  E x is an at most denumerable space of elementary events —  then every func
tional £ mapping E x into the set of real numbers is a measurable functional in the 
system (Ex, S , P ). Suppose O E x) =  {cq, a2, . . .} ,  and let us regard Ç(EX) as a new 
space of elementary events; then Są =  is the cr-field of random events. The 
functional Pą is defined by the indication of the sequence including the probabilities 
o f all the monoelementary random events.

=  P ( { e e E x: Ç(e) =  a,}) .

Thus the random variable £ leads from the probabilistic space (Ex, S ,P )  to a new 
probabilistic space (£(Ea) , S ( , P (). It is easily seen that if the random variable is 
many-valued then the probabilistic system (Ç(EX) ,  S { , Pą) does not differ from 
a formal point of view from the system (E x, S ,P ) .
In the case of a many-valued random variable £

Thus in this case the entropy of the experiment a —  in the sense of definition (1) —  is 
identical with the entropy of a many valued random variable £ mapping E x.

# (a) =  # ( 0  •

This entropy does not depend on values assumed by this random variable. In the 
formation of this entropy are engaged only the probabilities in the distribution of 
the random variable, and the sets of numbers which are the probabilities in the 
distribution of all many-valued variables mapping the same space are all still equal.

It is obvious that H (0  =  H (Ç +  c), where c is an arbitrary constant. For b ф 0 
the coresponding relation is

H ( 0  =  Н (Ы  +  с) .

More generally, i f /  is a Borel many-valued function (it ensures the measurability 
of composition /  (£) —  then

m o  =  H ( f ( o )  ■

However, it is not true that “ two random variables have the same entropies, one of 
the variables being the product of the other by an arbitrary constant” —this statement 
stemms from [2], pag. 195.

Let us assume that the distribution £ is a two points uniform distribution; 
thus H ( 0  — 1. The random variable 0^ has a one-point distribution, whence 
Щ 0 О  — 0- The constant number mentioned on page 195 in [2] must be different 
from zero.

For a continuous random variable whose density is /  the entropy H ( 0  is 
defined by the formula below:

(2) H ( 0  =  ]fą{x)lbfą(x)dx  .
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The main difference between the properties of the entropy of a discrete random 
variable and the entropy of a continuous random variable consists in the fact that 
the entropy of a continuous variable can assume negative values.

In (3) the following modification of the entropy of a continuous random variable 
is proposed:

00

(3) H (£) =  j  f i(x)lbl^fą(x)dx, where /. is a constant.
—  00

Let us examine the family of all continuous random variables whose density functions 
are bounded. If  for the random variable £ of this family q is a number for which

Л /{ (* )< ? >

then, assuming l, — -  we have l,f.(x)< 1, whence:
q

A / 4(x )/W ^/?(x)<0  ,
X

thus H (Ç )>  0.
Let assume that and are continuous random variables whose densities are 

respectively / 4l(jCjf and f (l(x2), and that

and А /г /« ,(* 2)<1 •
II 12

Moreover we assume that /  ( x , , x:2) is a two-dimensional density of the random 
vector [<^ ,£2], and that the random variables <*;, and £2 are independent.

The entropy of the random vector \£x, £2J is the counter part of the entropy of 
the composition of two experiments a and /?; their respective spaces of elementary 
events Ea and E t map the many-valued and continuous random variables Çx and <J2.

(4) Я ( К 2, f 2)] =  -  J J f(x t , x2)Iblf{X l, x2)dxldx2 .
— 00 — 00

The random variables are independent, whence it follows

Я(К 1.Ы) = я«2)+я«2)
This equality, however, requires in turn the relation /  =  /2 - /2. Let us consider the 
random vector [£ j, £2], whose two-dimensional density is defined in the following 
way:

\c  for (x t , x 2) e Q  
I 0 for the remaining points of the plane

f ( x  1, x 2) =  j*

where Q =  j(x, , x 2): ^  —x 2| ^  and x 2>  — x u  x2<  — x t -ł-e^/2^-. From the fact

that /  (x j , x 2) is the density of the random vector it follows that c =
2s
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We have for i — 1 ,2

T i  f o r * ' s f e ' V 5~ p ]

и * , )  - 1 9 ' ы  for M < i f r and

W _ v /2 < 271
0 for the remaining X j ,

where ^ (x ,)  is a function whose values are smaller than —=  . For every e value
y/2

ft ,(x i)<  1» whence it follows that for / , =  /2 =  1

# ( «  =  -  Ï  M x ,) lb fb (x i)d x t> 0
— 00

For I — l\-1 2 =  1 we have:

Я ( К , , £2]) =  -  ?  I  / ( * 1. x 2) l b f ( x 1, x 2)d x i .
— CO — 00

In the set Q f ( x l , x 1) =  —  ; hence it results that for s <  -  we have
2e 2

l b f ( x i , x 2) > 0  ;

in turn it follows from this relation that

я а ^ . ^ х о .

Thus the above proposed modification of the definition of entropy for random va
riables belonging to a family of variables with limited densities does not remove 
the difference mentioned above between the entropies of discrete and continuous 
variables.
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