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Some remarks on congruences in multiplicative systems

1. Introduction

1.1. It is well known that in a grbupoid (G, ¢) every relation g0cG xG
generates a congruence (one side congruence) in (G, ¢). In [1] (see p. 37, 38) we find
the construction of such generated congruence in a semigroup (G, ¢) for an arbi-
trary Bo-

The equivalence classes of a congruence g in (G, ¢) constitute the partition of G
which is invariant under the operation ¢, i.e. if A is an equivalence class of g, x e G,
then x-A and A & are contained in an equivalence class.

The invariant (one-side invariant) partitions of more general systems are used
in the theory of the equation of translation and in the theory of algebraic objects
(see [2], [3], [4D).

In this paper we consider congruences in multiplicative system (S, °), where
the domain DO of the operation “°” is a nonvoid subset of Sx S. We first examine
the connections between congruences and homomorphisms of such systems. Later
we construct certain one side congruences in a category.

1.2. Let (S, 0) be a multiplicative system. The domain of the operation ° will
be denoted by Da For arbitrary nonvoid A, B¢cS we denote, as usual

Aos = {x°y: xeAnyeB} = {seS: V (X,y)epoas ~ X°y}.
X ,vits

By analogy to [1] (see p. 21) we define a left [right] ideal of (S', °) as a nonempty sub-
set A of S such that S oAc A[A°Sc.4].

It is evident that every left [right] ideal of (S, °) is closed under the operation °,
i.,e. AoAc A. UA oA & 0 then the left [right] ideal A can be treated as the multi-
plicative system (A, *), * being the restriction of ° to A.

1.3. Let (Si)ie] be a given partition of S, i.,e. S = (ISt St O for ieJ,

lej

SinSj=0 fori®j, i,jel. After [2] we recall the notion of the invariant parti-
tions. (Sj)iel is said to be left invariant under o (shortly 1-invariant) in (S', °) pro-
vided it satisfies the condition
V soSiCS§Sj.
]

ield sesS el
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An r-invariant partition is defined by the condition

AAV st°sczSj.

led ses jeld

Let now A be a left ideal of (S, °) and (At),eT a given partition of A, (A))leT is said
to be left invariant (1-invariant) in (S, °) partition of A provided it fulfils
A AVsoa<=at.
teT ses xeT
Obviously if we replace the condition s «A, <=ATby At°sc AT then we obtain an
r-invariant in (S, °) partition of A.

If * is the restriction of “°” to A then (A, *) can have l-invariant [r-invariant]
partitions which are not 1-invariant [r-invariant] in (S, °). There is evidently true
the following:

Lemma 1. Let (St)iej be an [-invariant partition of (S, O) and A be a given left
ideal of this system. Denote / = {e/: Str>A ¢ 0}. Then (Stn A)iel is an
lI-invariant in (S, °) partition of A.

The analogous statement is true for r-invariant partitions in right ideals of (S, °).

1.4. We introduce now the definitions of congruences in (S, °).

Definition 1. Let gqc S xS be an equivalence relation in S.

() g is said to be a left congruence {shortly l-congruence) [right congruence,
(r-congruence)] in (S, °) iff

A  (((a, b) e DOa(a, c) e DOAbqgc)=>a ° bga ° C)

a,btces

A ((In,a)e DO0a (c,a)e DO: bpc)™b °age °a) .
a,b,ces

(2) g is said to be a congruence in (S, °) iff

A  (((a,c)e D0a (b, d) £ Daa agha cgd)=>a ° egb ° d).
ath.c.des

(3) g is said to be the I-congruence [r-congruence, congruence] in (S, o) generated
by a given gOc S x S provided it is the minimal l-congruence [r-congruence, con-
gruence] in (S, °) containing g0. (g is the intersection of all the I-congruences \r-con-
gruences, congruences] in {S, °) containing q0).

IfD0O = S xS then these definitions lead to well known definitions of congruences
in a groupoid and the following statement is true: an equivalence relation g is S is
a congruence in (S', °) if and only if it is both a 1-congruence and a r-congruence
in(S,°).1fDO0 ¢ S xS then the above mentioned statement is not true. For example
put S = {a, b, c,d} and define ° by the table (see p. 149).

Let q be such the equivalence relation in S that Sjg = {{a, b), [c, d}}. This g is
both a I-congruence and a r-congruence in.(S', °) but it is not a congruence in this
system. It suffices to observe that agb and cgd, b = a°c, ¢ —bod and ~bqc.

Of course, if g is a congruence in {S, °) then it is a 1-congruence and an r-con-
gruence in this system.
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a d b
b C C
c d
d a (o

D efinition 2. Let A be a left [right] ideal of (S, °), g an equivalence relation
in A. Then q is said to be a strong I-congruence [r-congruence] in A provided itfulfils
the condition

s,a)e DOA(s,b)e D0Oa aeb)=>s° °b
sﬂéSa,%eA((( ) (s,b) a aeb) ogs ° b)

[N N (((@>5)6 D0On (b, s) e DOnagb)=>a °sqgb ° *)].
seS abe A

There is true the following

Theorem 1.

(1) A partition (5j))i6/ of S is l-invariant [r-invariant] in (S, °) iff it is the parti-
tion into equivalence classes of certain I-congruence [r-congruence] in (S, °).

(2) A partition (A))leT of a left [right] ideal of (S, °) is l-invariant [r-invariant]
in (S, °) iff it is the partition into equivalence classes of certain strong I-congruence
[r-congruence] in A.

Proof. We give the proof of the statement (2); the statement (1) can be proved
analogously. We are going to examine the case where A is an l-ideal of (S, °) (the
other case is analogous). Suppose that (A,)teT is an l-invariant in (S, °) partition
of a left ideal A of (S, °). If xgyo t\/T x,ye A, forx,ye A, then g is an equivalence

e

relation in A and A, are its equivalence classes. Let us take se S,a,be A such thatapb,
i.e. a,b e A, for some teT and (r,a)e Da, (s,b)e Dc. We find a Te T such that
s °A<=At.Thuss°a,s°be Axands ° ags ob. Conversely, suppose that q is a strong
I-congruence in A and consider the partition (A,)tfT of A into its equivalence classes.
For any seS and teT if s° A, = 0 then j°A,cA,. Assume that s»A, ¢ 0.
Thus we can find an ae A, such that (s, a) e DO. The element must belong to
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an equivalence class, say Ax, xeT. Let x e A, and (s, x) e DO. Since agx and q is
a strong 1l-congruénce in A then s°ags°x, i.e. s» xeAt. Thus s°A,cAr.

1.5. We recall the notions of a homomorphism and an isomorphism of multi-
plicative systems.

Definition 3. Let (S, 0), (T, A) be multiplicative systems andf be a mapping
of S into T.

(1) fis said to be a homomorphism of (S, °) into (T, A) iff it sulfils the following
conditions:

i A *>¥)eDo=>(f(x),f(y)) e Da,
x, yesS

(ii) A (X,y)e DO0O=>f(x °y) = f(x)AT(y).
X,yeS

(2) A homomorphismf of (S, °) into [T, A) is said to be an isomorphism of {S, °)
onto (T, A) if and only if it satisfies the conditions:
(iii) f is a bijective mapping of S onto T,

(iv) A (x>Y)e Doo(f(x), f(y)) e Da.
Xyes

(3) If there exists an isomorphism of(S, °) onto (T, A) then we say that the systems
(S, o) and (T, A) are isomorphic.

2. Congruences and homomorphisms of multiplicative systems

2.1. Let q be a congruence in (5, °). For an arbitrary x e S the equivalence
class of q containing x will be denoted by [x]e. The operation ° in S induces the
operation O in S/q, defined as follows:

(i) Da - {(A, B)6S/qXS/q: V A = [a]lsnB = [blen(a, b)e DO},
a,beS

(ii) if (A, B)e Dg and A = [ale, A = [ble, (a, b)e DO then AQB = [a° b]t.
The system (S/q, O) will be called the quotient system of (S, °) towards the con-
gruence Q.

It is clear that h: S3 x—>[x]e is a homomorphism of (S, °) onto (S/q, Q). This
homomorphism h is said to be the natural homomorphism of (S, °) onto (S/q, ©)e

2.2. The following theorem is analogous to the fundamental theorem on homo-
morphisms of algebraic structures.

Theorem 2. Letf . S-*T be a homomorphism of (S, °) into (T, A), f (S) =T,
and let be satisfied the condition:
(H): A _(*»ebDa=>V _((*>y)£Danu = f(x) Av —f(y)) .

yvel X.yeS

Then

() q = f~ xf is a congruence in (S, °),

(2) (S/q, O) and (T, A) are isomorphic and there exists an isomorphism e of
(S/a, Q) onto (T, A) such thatf = cph, where h is the natural homomorphism of (S, °)
onto the quotient system (S/q, O).
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Proof. First observe that if x,ye S then xgyo \J u = f(x) nn =/ (y)of(x)

ueT

=/ (y) and thus g is an equivalence relation in S. Later if xgy, zgt, (x,z)eDO
and (y,t)e Dathen f(x) =f(y), f(z) =f(i), (f(x),f(z))eDA, (f(y),f(0)eDA
and f(x oz) = f(x)Af(z), f(y ot) = f(y)Af(t); thus f(x °z) =/(y ot) and
x ozgy ot. Hence (1) is proved.
To prove (2) observe that Ae Sjq OI\/TA =/ - 1{t}) so that if as A then
e

/(a) = t. Next for arbitrary reSw e put

<p(Me) = fix) m
(p is a bijective mapping of Sjg on T. Let now A, Be Sjg and (A, B) e DQ. We
find a6 A, be B such that (a, b) e DO and we obtain
AQB = [aob]e, cp(A) =/(a), g>(B) =f(b) .

Thus (f(a),f(b))e Dd and e¢(AQB) =/(a»i) = f(a)Af(b) - e(A)Ae(B). Sup-
pose at last that u,veT and (u, v) e DA. By the hypothesis (H) we find x,yeS
such that u=/(x), v=f(y) and (x,y)eDa Hence un = <p([x]t), v - <p([yle
and ([x]c, [y\)e Dq.

Thus we have proved that (pis an isomorphism of (Sjg, O) onto (T, A). For
given x e S we immediately obtain (p{h(x)) = <p([x]Je) = f(x) and the proof is
complete.

Corollary 1 The hypothesis (H) in theorem 2 is essential.

To see it consider S = {a, b, c, d, e}, T — {x,y} and define the operations
A by the tables:

a b
b a
C e
AX){
d a
X X X



Let us putf(a)=f(b) = x,f(c) =f(d) =f (e) = y. It is evident that/ is a homo-
morphism of (S, °) onto (T, A) which does not fulfil (H). We see that condition (2) of
theorem 2 is not true, since (x,x)eDA and (/- 1({x})./- 1{s:})) bD Q.

3. Certain congruences in categories

3.1. Let (K, o) be a category (see [2]), K° the set of its units. As in [2] we define

for ee K°
Ke = {xeK: (x,e)e DO},

K = {xeK: (e,x)eDO0),

{xeK: (e,x)ep0a(x,e)e Da}.

eKe

Of course the following equalities are true: eK = e° K, Ke= K °e, eKe= (e°K) °e
= eo(Koe) = eK 0 Ke.

Furthermore eKe is a subsemigroup of a category (K, °) with the unit e, Ke is
a left ideal and eK is a right ideal of (K, °).

3.2. Let q0czK x K. Denote by /K the identity relation in K. We shall construct
a congruence q in (K, °) determined by q0.

Definition 4. IFe introduce the relations:

Q =80 u 601~ 'k,

('2: {(">)): V ((c,a)e Dan(c,b)e DOnx = c°any = c¢° bnag”),

Qz — Qi u s>
6 = Uf3,(?3 hemg wn-Ir iterate of g3.
n=
Lemma 2. Let CBbe the relation introduced by definition 4.
If x,y,peK, xa3y and (p,x)e Da then (p,y)e DO.

Proof. By the definition xa3yoxa2y vr = y and it suffices to prove that xg2y

and (p, x) e DO imply (p,y)e Da
But if xg2y then there exist a,b, ce K such that (c,a)e Da, (c,b)e Da, aglb
and x = ¢c°a, y —c°b. Thus (p,c°a)e Da and in consequence (p,c)eDO.

Hence by (c, b) e D,, we obtain (p,c°b)e Dai.e. (p,y)e Da

Lemma 3. |1 f g3 is the relationfrom definition 4 then it is a reflexive and symmetric
relation in K, fulfilling the condition (see def. 1 (1)):F

* A (((’>,x)e DaA(p,y)e DOa xa3y)=>p ° xg3p oy) .

x.y.peK
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Proof. By its definition g3 contains the identity relation on K, whence it is
reflexive. : }

Since is symmetric, by the definition of q2 we conclude the symmetry of 2
and consequently that of g3.

Suppose now that xg3y, (p, X) e Da, (p,y) e Da, x,y,pe K. Notice that X03;
implies x —y or x —c°a, y = ¢c°b, ag3b for some a, b, ce K.

In the case where x = y since (p, Xx) e DOthenp °x = p °Yy and p °xg3p °y.

In the other casep ° x —p°(C°a) = (p°c)°ap°y=p°(°b) —(p°c)°hb,
whence p ° xg3p °vy.

These lemmas are useful to prove the following

Theorem 3. The relation g defined in definition 4 is a left congruence in (K, o).

Proof. There is iKczQ3<=e and q is a reflexive relation in K. Let xg~1y i.e. ygx.
Thus for some positive integer n there is yg"3n and there exist ult..., such that
yg3ul,ulg3u2, ..., u,-1g3x. Since g3is symmetric it follows that xg3un™I, ...,u1g3y,
whence xgy, what proves the symmetry of g.

The transitivity of g is immediately seen from its definition (g is the transitive
closure of g3).

Suppose now that x,y,p SK, xgy, (p,x)Da and (p,y)DO0. There is — as
above — xg3ul,ulg3u2,...,un Ig3y for suitable ul,...,un_1 from K. Since
(p,x)e DO, then using lemma 2, we obtain succesively

(p, tq) e DO, (p, u2) e DO, ..., (p, wa_,) 6 DO.
Applying lemma 3 we conclude that there is
p oxg3p »«!,/>" u”g3p ou2, ...,p oun_tg3poy .

Then p °xg3p oy and p ° xgp °y.

Remark 1 (a) It is immediately seen that if g0 itselfis a left congruence in (K, °)
then gt = go» Qzc 6o>and g3c g 0, Q*Qo- Further notice that if 0Ois a left congruence
in (K, 0) and every equivalence class of 00 is contained in some ideal eK, ee K°,
then 0 = Qo, and every left congruence in (K, °) possesing above mentioned pro-
perty (every equivalence class is contained in eK) can be constructed in the same
manner as g in definition 4. (b) It follows from theorem 1 that the equivalence classes
of 0 form an 1-invariant partition of (K, °). (c) Theorem 4 and lemma 1 allow to
construct strong left congruences in Ke. (d) After simple modifications of the above
considerations we can obtain r-congruences in (K, °) and strong r-congruences
in eK. (e) The following example shows that g need not contain g0. We take
K = {a,b,c,d}, Oo= {(a, b),(b, c)} and define the operation ° as follows
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c b C
Ci a d
Then
ei = {(a, b), (b,c), (b, a) (c, b), (a,a),{b b), (c, c) (d d)},
Qi = {(«, d), (d, &), (a, a), (b, b), (c, c), (d, d), (b, c), (¢, b)},
B3 = Qi, Q= B3 and BO”B-
3.3. In the sequel we suppose that ee K° and Q0a eKx eK. Our purpose is to

prove in this case that the relation g, constructed as in definition 4, is an 1l-con-
gruence in (K, o) generated by go-

Lemma 4. If ee K° and Q0c eK x eK then BocC B-

Proof. Let xQOy. Then x,ye eK i.e. X = e°X, y = e °y. Since then
xgly. Thus xq2y and consequently

QoMQi *QiNQ3MQ m

Lemma 5. If ee K° and Q0c eK x eK then g3 is the least reflexive and symmetric
relation in {K, °) containing Bo and sulfilling the condition (*) of lemma 3.

Proof. According to lemmas 4, 3 it suffices to show that if y<=K x K is a reflexive,
symmetric relation containing q0 and fulfilling the condition (*) then <B<=y.

In fact if Qo”y, where y is a reflexive and symmetric relation in K then
Bolc Y~1= ¥ and so that {?ic:y.

Let now xe3y i.e. eitherx = yorx = p°a,y = p °b,aetbforsomea,b,pe K.
When x = y then xyy. In the other case by the above mentioned statement we obtain
ayb and since y fulfils (*) then there is xyy. Thus we have proved that B3c Y-

Now we can formulate the following
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Theorem 4. Ifee K° and g0c:eK x eK then g constructed as in definition 4 is the
least I-congruence in (K, °) containing q0 (generated by q0).

This theorem is an immediate consequence of lemmas 4 and 5 and theorem 3.

Corrolary 2. (a) From the above theorem we may conclude that for every
subset A of eK there exists an 1-congruence q in (K, °) such that A is contained in
one equivalence class of g. (b) It is very easy to obtain the analogous results for
r-congruences in (K, °).

3.4. For the sequel suppose that e e K°, H is a subsemigroup with the unit
the semigroup eKe and g0 = HxH. These assumptions we accept in the whole of
this section. Let g be the 1l-congruence in (K, °) generated by qO.

If {Kj)ieJ denotes the partition of K into the equivalence classes of g we obtain
by theorem 1 and lemma 1, that (Kyn Ke)iel,, J* = {ielJ: Kyn Ke® 0} is an
l-invariant partition of Ke in (K, < and if a is the strong 1-congruence in Ke deter-
mining the above partition then 0 = gn (KeXKe).

Theorem 5. The above defined relation a — q n (Kex Ke) is the minimal strong
|- congruence in Ke, containing q0.

Proof. It suffices to verify that if Ais a strong 1-congruence in Ke containing o0

then (re!
To prove it first observe that if xoy then xqy and x, y e Ke. Hence we can find
ul...,u,-i eK such that xq3u,,..., M, , Q3y. When x — ul then xXux. Suppose

now that x ¢ ux. We can find a, b, ce K such that x = c®°a, y = c°b and aQxb.
Since x e Kc then from x = c°a we obtain that ae Ke. From the assumption
B0 = HxH it follows that gx = HxH un iK. Thus, since aeK e and agyb, we can
conclude that b e Ke and finally uye Ke. Now observe that from agxb and a, be Ke
we may conclude that aeOh and consequently alb. Furthermore since A is strong
I-congruence in Ke then c °ale °b i.e. xlul.

The analogous considerations lead to the conclusion that u2, ..., u,_i 6 Ke
and uylu2, ..., w,_!'Ay. Hence xXy and consequently <rcA.

To determine the family of the equivalence classes of o in Ke we first recall after

[2] (see p. 34) that (J b°H = Ke i.e. that the family (b ° H)beKt covers Ke.
be K9

Lemma 6. For every x,ye K the following equivalence holds

x e KeAXQ3yo \J x,yed°H.

de Km

Proof. Of course we have xa3y nx e Keox e KBn(xg2y vx = y)ox e Kea

Ax-yvxeKeA V ((c,dyeD0Oa(c,b)e DOax = c»aAy =
atb,c*K

= c°ba(a,beHva= b))

Observe that a = b implies x = y and from x —y ax e Ke we have x = y —
= x oee x 04. In the other case we have x e Ke, x —c° a,y = ¢ °b,wherea, be H
and ce K. From HczeKe and (c, a) e DO, ae H we first obtain that ce Ke and then
x,yec®H. Conversely, if deKe and x,yed°®°H then x = d°hl y=d°h 2
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where hu h2 are some dements of H. Hence htgOh2 and in consequence xg3y. This
implies xg3y. Moreover, since H c eKe then d ° H<=Ke and therefore x,yeKe.
Thus our lemma is proved.

Lemma 7. For every x,ye K e we have
m

xayo \J {dt°Hndi+1°H ¢ 0,i=1 , m-1Axje (J dj°H).
[ dmeK e =1
Proof. First observe that xay implies that x,y e Ke and there exist ul,...,
such that xq3ul, um tg3y. Hence by the preceding lemma we may choose
dx, ..., dmb Ke such that x, u2e dY° H, ut,u2ed20H , u m 2,y e dm® H. These
dlt ...,d m have all the properties stated in the lemma.

Conversely, if we have d1,..., dmfulfilling all the conditions of our lemma then
m

x,ye (Jd,°H, so that they belong to Ke and there are some r, s such that
i=1

x edroH, yeds®°H. If r = s then by the preceding lemma we obtain xg3y and
xgy, i.e. xay because x,yeKe.

Otherwise suppose that r<s. From our assumption it follows that we can find
ur,ur+......... ms_ i satisfying the conditions

uredr®°H n dr+j oH ,

m+iedr+loH o dr+2°H,

us_ i eds_ ! °H r,ds°H .

Hence x,uTedr°H, ur,ur+i edr+l °H, ..., ,yeds®°H and by the preceding
lemma xg3ur, ..., w, jg3y. Thus we obtain xa3-1y and xgy, i.e. xay. Our lemma is
completely proved.

The next theorem states that Kefa is the maximal partition of Ke generated by
the covering (d ° H)dekm in the sense of definition 10 from [2].

Theorem 6.
If
() AeKJ5
then
(I1) there exists a G, 0 ¢ G<=.Ke possesing the properties
(1) ifG'cG and G' ® 0 ® G—G' then 0 ® (Jd°Hn \J d°H

deG deG -G’

@ A= (JdoH

and every set A fulfilling the condition (I1) is contained in an equivalence class of a
in Ke.

Proof. First we shall prove that (I) implies (I11). Let Ae Kjo and A = [a\a.
M
For given x e [a],, using lemma 7 we choose dl,..., dae Kt such that x, ae_(q dt° H
i-i
and dt°H n di+1 oH # 0 for /= 1,2,..., n—1
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nx

Denoting Gx = (J (3J we see that GxaKeand x e [alaiffr,ae 1J d°H. Let

i= deG x

G — (J Gx, then A = (J d°H. Suppose that G'cG and G' ® 0 ¢ G—G".

x e A deG

To prove the thesis of (1) consider first the case where ae (J d°H. From our

de G’

assumptions it follows immediately that (J d°H ® 0. Let Z be an element of this

deG -G’
set. Put Gz= (3t, 3 s}cGz, where3 /89 n 3jtl°H & 0 fori= 1 , 5—land
ze3, oH, aedsoH. If G'n Gz= 0 then GZ<=G-G'and U doHa (J d°H.

deGT deG -G’

Thus ae U d°H too and (1) holds.

deG -G’

If (G—G')nGz = 0 then using analogous considerations we come to conclusion
thatze (J d°HnNn (J o<=H.

de G’ deG -G’

At last if G'n Gz 0 # (G- G') n Gz then wechoose Kk, | belonging to
{1,..., s} such that dke G' and 3, e G—G'. Obviously Kk ¢ | and let us assume that
k<l.

There exists an re {k ,k+1,...,/} for which dreG"' and 3r+l e G —G'. Since
3r°H n 3r+l oH ¢ 0 then from above we obtain the thesis of (1). The proof in
the case where a belongs to the second factor of the product in (1) is analogous.

Now we are coming to prove that if a set A satisfies (I11) then there exists an
equivalence class B of relation a containing A. For, let x,ye A. Then we can find
a dxe G for which x e dx° H. We define by recurence the sets:

DO = {dx},Dk+l = {deG: doHn UPOH ®0}, k=0, 1,2,...

pel)k
Observe that for de Dk holds d° U n \J p°H = doH ¢ 0 i.z. de Dk+1l. Thus
Dk<=Dk+1 for(ﬁ =0,12,..
Let D = (J Dk. D is evidently contained in G and we shall prove that D = G.
k=10

Observe that ifpeG andp °"Hn (J d°H ¢ O then we can find a de D such

deD

thatp oH N3 °H ¢ 0. This 3 belongs to aDb Oandp°Hn \J d°H ¢ 0,

deD ,

so that pe Di+lcD. Hence the inequality G—D ® 0 implies

U d°Hn \Ud°H= 0,
Gec -0 dep
what contradicts the hypothesis (I1). Thus we have D = G.

Since ye A by the condition (Il) (2) there exist an integer s and a dse D, such
that yeds°H. Using the definition of the sequence DO, D,,.. we can choose
3S ! e Ds_j, 3j 26 Ds—2, dOe DO satisfying the conditions dt°H n di+1 °H ¢ 0
for /= 0, 1,... Since xedOoH = dx°H andy eds®°H from the above statement
by lemma 7 we obtain that xoy. Thus x, y are the elements of the same equivalence
class of a in Ke and our theorem is completely proved.
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Remark 2. (a) The analogous theorem for strong r-congruences in eK can be
proved too. (b) From theorem 5 of the paper [2] we conclude that every 1-invariant
partition of Ke in (K, °) is its decomposition into unions of equivalence classes of
a strong 1-congruence in Ke generated in it by g0 = Hx H, where 9 is a subsemi-
group of eKe with the unit e.

4. Congruences in semigroups

4.1. Since every semigroup (S, ¢) having the unit e is a category in which
eS = Se = eSe then we can apply directly the above obtained results to find con-
gruences and invariant partitions of such (S', *) (see also [2] p. 44-46).

4.2. Suppose now that (S, ¢) is a semigroup without unit. If an € S then we
put S'1= S'un {e} and define the operation o in S'l as follows: x °y = X-Y when
X,¥YeS and x °e —e °X when x e S1. Of course (S'L, °) is a semigroup with the
unit e.

Theorem 7. Let (S')i6j be an l-invariant partition of (S', °) and ee Sk, KelJ.
Then (5))(er—i¢in the case where Sk= {e} and (Si)iel, Si = Sifor i ¢ k,Sk= Sk—{e}
in the case where Sk ¢ (e} are l-invariant partitions of (S, ¢).

Proof. Consider firstthe case Sk = {e}. If ie J—{k} then StczS and (5j)jej - {>
is a partition of S. Since x °y = x-y ¢ e for x,y e S then it is also an 1-invariant
partition of (S, ¢). Let now Sk ¢ {e} and x be an arbitrary element of S. From the
supposition it follows that x ° Ska S, for a suitable le J. Hence xe<¢(Sk—{e})
= X 0(S'k—{e})<=S'(. If | @ Kk then StczS and S, is a component of the mentioned
partition (Si)ieJ of (S', ¢). If | —k then xe<(Sk—{e})cz(Sk—{e}) because x- ® e
for yeS. Thus, in the case where Sk ® {e}, we obtained that x-(Sk—{e}) is con-
tained in a component of the partition (S,)ifc] from the thesis.

Consider now the product x-S), jelJ, j ® k. It is evident that either
x-Sj = x 0SjCzSkor x-Sj = x 0SjCzSi where i ® k. The second possibility can be
rewritten as follows x-SycS;. The first of them since, Sjc:S'leads to x-SjCzSk—{e}
ie. X-SjCZSk. Thus the theorem is proved.

Remark 3. The considerations from remark 2 may be applied for semigroups.
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