Some remarks on congruences in multiplicative systems

1. Introduction

1.1. It is well known that in a groupoid (G, \cdot) every relation $\varrho_0 \subset G \times G$ generates a congruence (one side congruence) in (*G ,* •). In [1] (see p. 37, 38) we find the construction of such generated congruence in a semigroup (G, \cdot) for an arbitrary *во-*

The equivalence classes of a congruence ρ in (G, \cdot) constitute the partition of G which is invariant under the operation \cdot , i.e. if *A* is an equivalence class of ϱ , $x \in G$, then $x \cdot A$ and $A \cdot x$ are contained in an equivalence class.

The invariant (one-side invariant) partitions of more general systems are used in the theory of the equation of translation and in the theory of algebraic objects (see [2], [3], [4]).

In this paper we consider congruences in multiplicative system (S, \circ) , where the domain D_0 of the operation "^o" is a nonvoid subset of $S \times S$. We first examine the connections between congruences and homomorphisms of such systems. Later we construct certain one side congruences in a category.

1.2. Let (S, \circ) be a multiplicative system. The domain of the operation \circ will be denoted by D_0 . For arbitrary nonvoid $A, B \subset S$ we denote, as usual

$$
A \circ B = \{x \circ y: x \in A \land y \in B\} = \{s \in S: \bigvee_{x, y \in S} (x, y) \in D_{\circ} \land s = x \circ y\}.
$$

By analogy to [1] (see p. 21) we define a left [right] ideal of (S, \cdot) as a nonempty subset *A* of *S* such that $S \circ A \subset A[A \circ S \subset A]$.

It is evident that every left [right] ideal of (S, \circ) is closed under the operation \circ , i.e. $A \circ A \subset A$. If $A \circ A \neq \emptyset$ then the left [right] ideal A can be treated as the multiplicative system $(A, *), *$ being the restriction of \circ to A .

1.3. Let $(S_i)_{i \in J}$ be a given partition of *S*, i.e. $S = \bigcup S_i$, $S_i \neq \emptyset$ for $i \in J$, *le j* $S_i \cap S_j = \emptyset$ for $i \neq j$, $i, j \in J$. After [2] we recall the notion of the invariant partitions. $(S_i)_{i \in J}$ is said to be left invariant under \circ (shortly 1-invariant) in (S, \circ) provided it satisfies the condition

$$
\bigwedge_{i \in J} \bigwedge_{s \in S} \bigvee_{j \in J} s \circ S_i \subset S_j.
$$

10- 147

An r-invariant partition is defined by the condition

$$
\bigwedge_{i \in J} \bigwedge_{s \in S} \bigvee_{j \in J} S_i \circ s \subset S_j.
$$

Let now *A* be a left ideal of (S, \circ) and $(A_t)_{t \in T}$ a given partition of *A*, $(A_t)_{t \in T}$ is said to be left invariant (1-invariant) in (S, \circ) partition of *A* provided it fulfils

$$
\bigwedge_{t \in T} \bigwedge_{s \in S} \bigvee_{\tau \in T} s \circ A_t \subset A_{\tau}.
$$

Obviously if we replace the condition $s \circ A_t \subset A_t$ by $A_t \circ s \subset A_t$ then we obtain an r-invariant in *(S ,* °) partition of *A.*

If * is the restriction of " \circ " to *A* then (A, \ast) can have 1-invariant [r-invariant] partitions which are not 1-invariant $[r-invariant]$ in (S, \circ) . There is evidently true the following:

LEMMA 1. Let $(S_i)_{i \in J}$ be an *l*-invariant partition of (S, \circ) and A be a given left *ideal of this system. Denote* $I = \{i \in J: S_i \cap A \neq \emptyset\}$. Then $(S_i \cap A)_{i \in I}$ is an *l*-invariant in (S, \circ) partition of A.

The analogous statement is true for r-invariant partitions in right ideals of (S, \circ) . 1.4. We introduce now the definitions of congruences in *(S ,* °).

DEFINITION 1. Let $\rho \subset S \times S$ be an equivalence relation in S.

(1) *q is said to be a left congruence {shortly l-congruence) [right congruence,* $(r\text{-}congruence)]$ *in* (S, \circ) *iff*

$$
\bigwedge_{a,b,c \in S} \{ ((a, b) \in D_o \land (a, c) \in D_o \land b\varrho c) \Rightarrow a \circ b\varrho a \circ c \}
$$

$$
\bigwedge_{a,b,c \in S} \{ ((b, a) \in D_o \land (c, a) \in D_o \land b\varrho c) \Rightarrow b \circ a\varrho c \circ a \} \bigg] .
$$

(2) ϱ *is said to be a congruence in* (S, \circ) *iff*

$$
\bigwedge_{a,\,b,\,c,\,d\in S} \bigl((a,\,c)\in D_\circ \wedge (b,\,d)\in D_\circ \wedge a\varrho b\wedge c\varrho d)\Rightarrow a\circ c\varrho b\circ d\bigr).
$$

(3) *g is said to be the l-congruence [r-congruence, congruence] in (S ,* o) *generated* by a given $\varrho_0 \subset S \times S$ provided it is the minimal *l*-congruence [r-congruence, con*gruence*] *in* (S, \circ) *containing* ϱ_0 . (ϱ *is the intersection of all the l-congruences* [*r-congruences, congruences*] *in* (S, \circ) *containing* ϱ_0 *).*

If $D_0 = S \times S$ then these definitions lead to well known definitions of congruences in a groupoid and the following statement is true: an equivalence relation ρ is *S* is a congruence in (S, \circ) if and only if it is both a 1-congruence and a r-congruence in (S, \circ) . If $D_{\alpha} \neq S \times S$ then the above mentioned statement is not true. For example put $S = \{a, b, c, d\}$ and define \circ by the table (see p. 149).

Let *g* be such the equivalence relation in *S* that $S/\rho = \{\{a, b\}, \{c, d\}\}\$. This *g* is both a 1-congruence and a r-congruence in (S, \circ) but it is not a congruence in this system. It suffices to observe that *agb* and *cgd,* $b = a \circ c$, $c = b \circ d$ and $\sim bqc$.

Of course, if ϱ is a congruence in (S, \circ) then it is a 1-congruence and an r-congruence in this system.

DEFINITION 2. Let A be a left [right] ideal of (S, \circ) , ϱ an equivalence relation *in A. Then q is said to be a strong l-congruence [r-congruence] in A provided it fulfils the condition*

$$
\bigwedge_{s \in S} \bigwedge_{a,b \in A} \left(((s, a) \in D_o \land (s, b) \in D_o \land a \emptyset) \Rightarrow s \circ a \emptyset s \circ b \right)
$$

$$
\bigg[\bigwedge_{s \in S} \bigwedge_{a,b \in A} \left(((a, s) \in D_o \land (b, s) \in D_o \land a \emptyset b) \Rightarrow a \circ s \emptyset b \circ s \right) \bigg].
$$

There is true the following

THEOREM 1.

(1) *A partition* $(S_i)_{i\in I}$ of *S* is *l*-invariant [r-invariant] in (S, \circ) iff it is the parti*tion into equivalence classes of certain l-congruence* $[r$ -congruence] in (S, \circ) .

(2) *A partition* $(A_t)_{t \in T}$ *of a left* [right] ideal *of* (S, \circ) *is l-invariant* [r-invariant] *in* (*S*, \circ) *iff it is the partition into equivalence classes of certain strong <i>l*-congruence *[r-congruence] in A.*

Proof. We give the proof of the statement (2) ; the statement (1) can be proved analogously. We are going to examine the case where \vec{A} is an 1-ideal of (S, \cdot) (the other case is analogous). Suppose that $(A_t)_{t \in T}$ is an 1-invariant in (S, \circ) partition of a left ideal A of (S, \circ) . If $x \varrho y \Leftrightarrow \bigvee x, y \in A$, for $x, y \in A$, then ϱ is an equivalence *teT* relation in *A* and A_t are its equivalence classes. Let us take $s \in S$, $a, b \in A$ such that $a\varrho b$, i.e. $a, b \in A_t$ for some $t \in T$ and $(s, a) \in D_o$, $(s, b) \in D_o$. We find a $\tau \in T$ such that $s \circ A_i \subset A_i$. Thus $s \circ a$, $s \circ b \in A_i$ and $s \circ ags \circ b$. Conversely, suppose that *q* is a strong l-congruence in *A* and consider the partition $(A_i)_{i \in \mathcal{T}}$ of *A* into its equivalence classes. For any $s \in S$ and $t \in T$ if $s \circ A_i = \emptyset$ then $s \circ A_i \subset A_i$. Assume that $s \circ A_i \neq \emptyset$. Thus we can find an $a \in A_t$ such that $(s, a) \in D_0$. The element so a must belong to an equivalence class, say A_x , $\tau \in T$. Let $x \in A$, and $(s, x) \in D_0$. Since $a \varrho x$ and ϱ is a strong 1-congruence in *A* then $s \circ age \circ x$, i.e. $s \circ x \in A_r$. Thus $s \circ A_t \subset A_r$.

1.5. We recall the notions of a homomorphism and an isomorphism of multiplicative systems.

Definition 3. Let (S, \circ) , (T, Δ) be multiplicative systems and f be a mapping of *S* into *T*.

(1) *f* is said to be a homomorphism of (S, \circ) into (T, Δ) iff it sulfils the following *conditions:*

(i) $\bigwedge_{x, y \in S} (x, y) \in D_{\circ} \Rightarrow (f(x), f(y)) \in D_{\Delta},$ (ii) $\bigwedge (x, y) \in D_{\circ} \Rightarrow f(x \circ y) = f(x) \Delta f(y).$ *x,yeS*

(2) *A homomorphism f of* (S, \circ) *into* (T, Δ) *is said to be an isomorphism of* (S, \circ) *onto* (T, Δ) *if and only if it satisfies the conditions*:

- (iii) f is a bijective mapping of S onto T ,
- (iv) $\bigwedge_{x, y \in S} (x, y) \in D_0 \Leftrightarrow (f(x), f(y)) \in D_4$.

(3) If there exists an isomorphism of (S, \circ) onto (T, Δ) then we say that the systems (S, \circ) and (T, Δ) are isomorphic.

2. Congruences and homomorphisms of multiplicative systems

2.1. Let *q* be a congruence in (S, \circ) . For an arbitrary $x \in S$ the equivalence class of *q* containing *x* will be denoted by $[x]_p$. The operation \circ in *S* induces the operation \odot in *S*/*g*, defined as follows:

(i)
$$
D_{\odot} = \{ (A, B) \in S | \varrho \times S | \varrho : \bigvee_{a, b \in S} A = [a]_q \wedge B = [b]_q \wedge (a, b) \in D_{\circ} \},\
$$

(ii) if $(A, B) \in D_0$ and $A = [a]_0$, $A = [b]_0$, $(a, b) \in D_0$ then $A \odot B = [a \circ b]_0$. The system $(S/\varrho, \odot)$ will be called the quotient system of (S, \circ) towards the congruence *Q.*

It is clear that *h*: $S \ni x \rightarrow [x]_p$ is a homomorphism of (S, \circ) onto $(S/\varrho, \odot)$. This homomorphism *h* is said to be the natural homomorphism of (S, \circ) onto $(S/\rho, \odot)$.

2.2. The following theorem is analogous to the fundamental theorem on homomorphisms of algebraic structures.

THEOREM 2. Let $f: S \rightarrow T$ be a homomorphism of (S, \circ) into $(T, \Delta), f(S) = T$, *and let be satisfied the condition:*

(H):
\n
$$
\bigwedge_{u,v\in T} (u,v) \in D_d \Rightarrow \bigvee_{x,y\in S} ((x,y) \in D_o \land u = f(x) \land v = f(y)).
$$

Then

(1) $\rho = f^{-1} f$ is a congruence in $(S, \circ),$

(2) $(S | \varrho, \varphi)$ and (T, Δ) are isomorphic and there exists an isomorphism φ of $(S | \varrho, \Theta)$ *onto* (T, Δ) *such that* $f = \varphi h$, *where* h is the natural homomorphism of (S, \circ) *onto the quotient system* $(S | q, \odot)$ *.*

Proof. First observe that if $x, y \in S$ then $x \in y \Leftrightarrow \bigvee u = f(x) \wedge u = f(y) \Leftrightarrow f(x)$ *u e T* $= f(y)$ and thus *q* is an equivalence relation in *S*. Later if *xgy*, *zgt*, $(x, z) \in D_0$

and $(y, t) \in D_0$ then $f(x) = f(y), f(z) = f(t), (f(x), f(z)) \in D_A$, $(f(y), f(t)) \in D_A$ and $f(x \circ z) = f(x) \Delta f(z)$, $f(y \circ t) = f(y) \Delta f(t)$; thus $f(x \circ z) = f(y \circ t)$ and $x ∘ zgy ∘ t$. Hence (1) is proved.

To prove (2) observe that $A \in S / \mathbb{Q} \Rightarrow \bigvee A = f^{-1}(\{t\})$ so that if $a \in A$ then $i \in T$ $f(a) = t$. Next for arbitrary $x \in S$ we put

$$
\varphi([x]_{\varrho})=f(x).
$$

 φ is a bijective mapping of *S*|*g* on *T*. Let now *A*, *B* \in *S*|*g* and $(A, B) \in D_0$. We find $a \in A$, $b \in B$ such that $(a, b) \in D_0$ and we obtain

$$
A \bigcirc B = [a \circ b]_e, \varphi(A) = f(a), \varphi(B) = f(b).
$$

Thus $(f(a), f(b)) \in D_A$ and $\varphi(A \odot B) = f(a \circ b) = f(a) \Delta f(b) = \varphi(A) \Delta \varphi(B)$. Suppose at last that $u, v \in T$ and $(u, v) \in D_A$. By the hypothesis (H) we find $x, y \in S$ such that $u = f(x)$, $v = f(y)$ and $(x, y) \in D_{\infty}$. Hence $u = \varphi([x]_p)$, $v = \varphi([y]_p)$ and $([x]_o, [y]_o) \in D_{\odot}$.

Thus we have proved that φ is an isomorphism of $(S|\varrho, \Theta)$ onto (T, Δ) . For given $x \in S$ we immediately obtain $\varphi(h(x)) = \varphi([x]_p) = f(x)$ and the proof is complete.

COROLLARY 1. The hypothesis (H) in theorem 2 is essential.

To see it consider $S = \{a, b, c, d, e\}$, $T = \{x, y\}$ and define the operations \bullet , Δ by the tables:

Let us put $f(a) = f(b) = x$, $f(c) = f(d) = f(e) = y$. It is evident that f is a homomorphism of (S, \circ) onto (T, Δ) which does not fulfil (H). We see that condition (2) of theorem 2 is not true, since $(x, x) \in D_{\Delta}$ and $(f^{-1}(\{x\}), f^{-1}(\{x\})) \notin D_{\odot}$.

3. Certain congruences in categories

3.1. Let (K, \circ) be a category (see [2]), K^0 the set of its units. As in [2] we define for $e \in K^0$

$$
K_e = \{x \in K: (x, e) \in D_0\},\,
$$

\n
$$
{}_{e}K = \{x \in K: (e, x) \in D_0\},\,
$$

\n
$$
{}_{e}K_e = \{x \in K: (e, x) \in D_0 \land (x, e) \in D_0\}.
$$

Of course the following equalities are true: $_{e}K = e \circ K$, $K_{e} = K \circ e$, $_{e}K_{e} = (e \circ K) \circ e$ $= e \circ (K \circ e) = {}_{e}K \cap K_{e}.$

Furthermore ${}_{e}K_{e}$ is a subsemigroup of a category (K, \circ) with the unit e, K_{e} is a left ideal and K is a right ideal of (K, \circ) .

3.2. Let $\varrho_0 \subset K \times K$. Denote by i_K the identity relation in K. We shall construct a congruence ϱ in (K, \circ) determined by ϱ_0 .

DEFINITION 4. We introduce the relations:

 $\varrho_1 = \varrho_0 \cup \varrho_0^{-1} \cup i_{\kappa},$

$$
\varrho_2 = \{ (x, y) : \bigvee_{a, b, c \in K} \big((c, a) \in D_{\circ} \wedge (c, b) \in D_{\circ} \wedge x = c \circ a \wedge y = c \circ b \wedge a \varrho_1 b \big),\
$$

 $\varrho_3 = \varrho_2 \cup i_K$ $\rho = \bigcup_{n=0}^{\infty} \rho_3^n$, ρ_3 being n-th iterate of ρ_3 .

LEMMA 2. Let ρ_3 be the relation introduced by definition 4. If $x, y, p \in K$, $x \rho_3 y$ and $(p, x) \in D_0$ then $(p, y) \in D_0$.

Proof. By the definition $x \rho_3 y \Leftrightarrow x \rho_2 y \lor x = y$ and it suffices to prove that $x \rho_2 y$ and $(p, x) \in D_0$ imply $(p, y) \in D_0$.

But if $x \rho_2 y$ then there exist a, b, $c \in K$ such that $(c, a) \in D_o$, $(c, b) \in D_o$, $a \rho_1 b$ and $x = c \circ a$, $y = c \circ b$. Thus $(p, c \circ a) \in D_0$ and in consequence $(p, c) \in D_0$. Hence by $(c, b) \in D_0$ we obtain $(p, c \circ b) \in D_0$ i.e. $(p, y) \in D_0$.

LEMMA 3. If ϱ_3 is the relation from definition 4 then it is a reflexive and symmetric relation in K, fulfilling the condition (see def. $1(1)$):

(*)

$$
\bigwedge_{x,y,p\in K} \bigl(((p,x)\in D_\circ \wedge (p,y)\in D_\circ \wedge x \varrho_3 y)\Rightarrow p\circ x \varrho_3 p\circ y\bigr).
$$

Proof. By its definition ϱ_3 contains the identity relation on *K*, whence it is reflexive. ; *}*

Since ρ_1 is symmetric, by the definition of ρ_2 we conclude the symmetry of ρ_2 and consequently that of ρ_3 .

Suppose now that $x \varrho_3 y$, $(p, x) \in D_0$, $(p, y) \in D_0$, $x, y, p \in K$. Notice that $x \varrho_3 y$ implies $x = y$ or $x = c \circ a$, $y = c \circ b$, $a \varrho_1 b$ for some $a, b, c \in K$.

In the case where $x = y$ since $(p, x) \in D_0$ then $p \circ x = p \circ y$ and $p \circ x \circ y$.

In the other case $p \circ x = p \circ (c \circ a) = (p \circ c) \circ a$, $p \circ y = p \circ (c \circ b) = (p \circ c) \circ b$, whence $p \circ x \varrho_3 p \circ y$.

These lemmas are useful to prove the following

THEOREM 3. The relation ρ defined in definition 4 is a left congruence in (K, \circ) .

Proof. There is $i_K \subset \varrho_3 \subset \varrho$ and ϱ is a reflexive relation in *K*. Let $x\varrho^{-1}y$ i.e. $y\varrho x$. Thus for some positive integer *n* there is $yg_3^n n$ and there exist $u_1, ..., u_{n-1}$ such that $y \varrho_3 u_1, u_1 \varrho_3 u_2, \ldots, u_{n-1} \varrho_3 x$. Since ϱ_3 is symmetric it follows that $x \varrho_3 u_{n-1}, \ldots, u_1 \varrho_3 y$, whence *xgy,* what proves the symmetry of *g.*

The transitivity of ρ is immediately seen from its definition (ρ is the transitive closure of ϱ_3).

Suppose now that $x, y, p \in K$, $x \circ y$, $(p, x) D_0$ and $(p, y) D_0$. There is — as above — $x \varrho_3 u_1, u_1 \varrho_3 u_2, ..., u_{n-1} \varrho_3 y$ for suitable $u_1, ..., u_{n-1}$ from *K*. Since $(p, x) \in D_0$, then using lemma 2, we obtain succesively

$$
(p, u1) \in Do, (p, u2) \in Do, ..., (p, un-1) \in Do.
$$

Applying lemma 3 we conclude that there is

$$
p\circ x\varrho_3p\circ u_1, p\circ u_1\varrho_3p\circ u_2, \ldots, p\circ u_{n-1}\varrho_3p\circ y.
$$

Then $p \circ x \varrho_3 p \circ y$ and $p \circ x \varrho_3 p \circ y$.

Remark 1. (a) It is immediately seen that if ϱ_0 itself is a left congruence in (K, \circ) then $\varrho_1 = \varrho_0, \varrho_2 \subset \varrho_0$, and $\varrho_3 \subset \varrho_0$, $\varrho \subset \varrho_0$. Further notice that if ϱ_0 is a left congruence in (K, \circ) and every equivalence class of ϱ_0 is contained in some ideal ϵK , $e \in K^0$, then $\varrho = \varrho_0$, and every left congruence in (K, \circ) possesing above mentioned property (every equivalence class is contained in K) can be constructed in the same manner as ρ in definition 4. (b) It follows from theorem 1 that the equivalence classes of ϱ form an 1-invariant partition of (K, \circ) . (c) Theorem 4 and lemma 1 allow to construct strong left congruences in K_e . (d) After simple modifications of the above considerations we can obtain r -congruences in (K, \circ) and strong r -congruences in _eK. (e) The following example shows that ρ need not contain ρ_0 . We take $K = \{a, b, c, d\}, \varrho_0 = \{(a, b), (b, c)\}$ and define the operation \circ as follows

Then

 $\varrho_1 = \{(a, b), (b, c), (b, a), (c, b), (a, a), (b, b), (c, c), (d, d)\}\,$ $\varrho_2 = \{(a, d), (d, a), (a, a), (b, b), (c, c), (d, d), (b, c), (c, b)\}\,$ $\varrho_3 = \varrho_2$, $\varrho = \varrho_3$ and $\varrho_0 \neq \varrho$.

3.3. In the sequel we suppose that $e \in K^0$ and $\varrho_0 \subset e^K \times e^K$. Our purpose is to prove in this case that the relation ρ , constructed as in definition 4, is an 1-congruence in (K, \circ) generated by ϱ_0 .

LEMMA 4. If $e \in K^0$ and $\varrho_0 \subset R \times R$ then $\varrho_0 \subset \varrho$.

Proof. Let $x\varrho_0 y$. Then $x, y \in {}_{e}K$ i.e. $x = e \circ x$, $y = e \circ y$. Since $\varrho_0 \subset \varrho_1$ then xq_1y . Thus xq_2y and consequently

$$
\varrho_0 \subset \varrho_1 \subset \varrho_2 \subset \varrho_3 \subset \varrho.
$$

LEMMA 5. If $e \in K^0$ and $\varrho_0 \subset_{e} K \times_{e} K$ then ϱ_3 is the least reflexive and symmetric relation in (K, \circ) containing ϱ_0 and sulfilling the condition (*) of lemma 3.

Proof. According to lemmas 4, 3 it suffices to show that if $y \subset K \times K$ is a reflexive, symmetric relation containing ϱ_0 and fulfilling the condition (*) then $\varrho_3 \subset \gamma$.

In fact if $\varrho_0 \subset \gamma$, where γ is a reflexive and symmetric relation in K then $\varrho_0^{-1} \subset \gamma^{-1} = \gamma$ and $i_k \subset \gamma$, so that $\varrho_1 \subset \gamma$.

Let now $x\varrho_3 y$ i.e. either $x = y$ or $x = p \circ a$, $y = p \circ b$, $a\varrho_1 b$ for some $a, b, p \in K$. When $x = y$ then xyy. In the other case by the above mentioned statement we obtain ayb and since y fulfils (*) then there is xyy. Thus we have proved that $\varrho_3 \subset \gamma$.

Now we can formulate the following

THEOREM 4. If $e \in K^0$ and $\varrho_0 \subset_{e} K \times_{e} K$ then ϱ constructed as in definition 4 is the *least 1-congruence in* (K, \circ) *containing* ϱ_0 (*generated by* ϱ_0).

This theorem is an immediate consequence of lemmas 4 and 5 and theorem 3.

CORROLARY 2. (a) From the above theorem we may conclude that for every subset *A* of _eK there exists an 1-congruence ρ in (K, \circ) such that *A* is contained in one equivalence class of *g.* (b) It is very easy to obtain the analogous results for r -congruences in (K, \circ) .

3.4. For the sequel suppose that $e \in K^0$, *H* is a subsemigroup with the unit *e* of the semigroup eK_e and $\varrho_0 = H \times H$. These assumptions we accept in the whole of this section. Let ϱ be the 1-congruence in (K, \circ) generated by ϱ_0 .

If $(K_i)_{i \in J}$ denotes the partition of K into the equivalence classes of ϱ we obtain by theorem 1 and lemma 1, that $(K_i \cap K_{e})_{i \in J^*}$, $J^* = \{i \in J: K_i \cap K_e \neq \emptyset\}$ is an 1-invariant partition of K_e in (K, \circ) and if σ is the strong 1-congruence in K_e determining the above partition then $\sigma = \rho \cap (K_e \times K_e)$.

THEOREM 5. The above defined relation $\sigma = \rho \cap (K_e \times K_e)$ is the minimal strong *l*-congruence in K_e , containing ϱ_0 .

Proof. It suffices to verify that if λ is a strong 1-congruence in K_e containing ϱ_0 then $\sigma \subset \lambda$.

To prove it first observe that if *xoy* then *xoy* and $x, y \in K_e$. Hence we can find $u_1, \ldots, u_{n-1} \in K$ such that $x \varrho_3 u_1, \ldots, u_{n-1} \varrho_3 y$. When $x = u_1$ then $x \lambda u_1$. Suppose now that $x \neq u_1$. We can find $a, b, c \in K$ such that $x = c \circ a$, $y = c \circ b$ and $a \varrho_1 b$. Since $x \in K_e$ then from $x = c \circ a$ we obtain that $a \in K_e$. From the assumption $\varrho_0 = H \times H$ it follows that $\varrho_1 = H \times H \cup i_K$. Thus, since $a \in K_e$ and $a\varrho_1 b$, we can conclude that $b \in K_e$ and finally $u_1 \in K_e$. Now observe that from $a \rho_1 b$ and $a, b \in K_e$ we may conclude that $a\varrho_0 b$ and consequently $a\lambda b$. Furthermore since λ is strong **l**-congruence in K_e then $c \circ akc \circ b$ i.e. $x \lambda u_1$.

The analogous considerations lead to the conclusion that $u_2, ..., u_{n-1} \in K_e$ and $u_1 \lambda u_2, ..., u_{n-1} \lambda y$. Hence *x* λy and consequently $\sigma \subset \lambda$.

To determine the family of the equivalence classes of σ in K_e we first recall after [2] (see p. 34) that $\bigcup b \circ H = K_e$ i.e. that the family $(b \circ H)_{b \in K_e}$ covers K_e . $b \in K_{\infty}$

LEMMA 6. For every $x, y \in K$ *the following equivalence holds*

$$
x \in K_e \wedge x \varrho_3 \mathcal{Y} \Longleftrightarrow \bigvee_{d \in K_e} x, y \in d \circ H.
$$

Proof. Of course we have $x \varrho_3 y \wedge x \in K_e \Leftrightarrow x \in K_e \wedge (x \varrho_2 y \vee x = y) \Leftrightarrow x \in K_e \wedge$ $\Lambda x = y \lor x \in K_{\epsilon} \land \bigvee_{a,b,c \in K} ((c, a) \in D_{o} \land (c, b) \in D_{o} \land x = c \circ a \land y =$

 $= c \cdot b \wedge (a, b \in H \vee a = b).$

Observe that $a = b$ implies $x = y$ and from $x = y \wedge x \in K_e$ we have $x = y =$ $x \circ e \in x \circ H$. In the other case we have $x \in K_e$, $x = c \circ a$, $y = c \circ b$, where $a, b \in H$ and $c \in K$. From $H \subset_{e} K_{e}$ and $(c, a) \in D_{\infty}$, $a \in H$ we first obtain that $c \in K_{e}$ and then $x, y \in c \circ H$. Conversely, if $d \in K_e$ and $x, y \in d \circ H$ then $x = d \circ h_1$, $y = d \circ h_2$, where h_1 , h_2 are some dements of *H*. Hence $h_1 \rho_0 h_2$ and in consequence $x \rho_3 y$. This implies $x \varrho_3 y$. Moreover, since $H \subset_{\varepsilon} K_{\varepsilon}$ then $d \circ H \subset K_{\varepsilon}$ and therefore $x, y \in K_{\varepsilon}$. Thus our lemma is proved.

LEMMA 7. For every $x, y \in K_e$ we have

$$
x\sigma y \Leftrightarrow \bigvee_{d_1,\ldots,d_m\in K_{\sigma}} (d_i\circ H\cap d_{i+1}\circ H\neq \emptyset, i=1,\ldots,m-1 \wedge x, y\in \bigcup_{i=1}^m d_i\circ H).
$$

Proof. First observe that *xoy* implies that *x*, $y \in K_e$ and there exist $u_1, ..., u_{m-1}$ such that $x \rho_3 u_1, \dots, u_{m-1} \rho_3 y$. Hence by the preceding lemma we may choose $d_1, ..., d_m \in K_e$ such that $x, u_1 \in d_1 \circ H$, $u_1, u_2 \in d_2 \circ H$, $..., u_{m-2}$, $y \in d_m \circ H$. These $d_1, ..., d_m$ have all the properties stated in the lemma.

Conversely, if we have $d_1, ..., d_m$ fulfilling all the conditions of our lemma then m $x, y \in \bigcup_{i=1}^d d_i \circ H$, so that they belong to K_e and there are some *r*, *s* such that $x \in d_r \circ H$, $y \in d_s \circ H$. If $r = s$ then by the preceding lemma we obtain $x \circ g_3 y$ and *xgy*, i.e. *xay* because $x, y \in K_e$.

Otherwise suppose that *r < s .* From our assumption it follows that we can find $u_r, u_{r+1}, \ldots, u_{s-1}$ satisfying the conditions

$$
u_r \in d_r \circ H \cap d_{r+1} \circ H,
$$

\n
$$
u_{r+1} \in d_{r+1} \circ H \cap d_{r+2} \circ H,
$$

\n
$$
u_{s-1} \in d_{s-1} \circ H \cap d_s \circ H.
$$

Hence $x, u_r \in d_r \circ H$, $u_r, u_{r+1} \in d_{r+1} \circ H$, $u_s, u_{s-1}, y \in d_s \circ H$ and by the preceding lemma $x \varrho_3 u_r, ..., u_{s-1} \varrho_3 y$. Thus we obtain $x \varrho_3^{-r} y$ and $x \varrho y$, i.e. $x \sigma y$. Our lemma is completely proved.

The next theorem states that K_e/σ is the maximal partition of K_e generated by the covering $(d \circ H)_{d \in K_n}$ in the sense of definition 10 from [2].

THEOREM 6.

If

(I) $A \in K_e/\delta$

then

(II) *there exists a G,* $\varnothing \neq G \subset K_e$ *possesing the properties*

(1) if
$$
G' \subset G
$$
 and $G' \neq \emptyset \neq G - G'$ then $\emptyset \neq \bigcup_{d \in G} d \circ H \cap \bigcup_{d \in G - G'} d \circ H$

$$
(2) A = \bigcup_{d \in G} d \circ H
$$

and every set A fulfilling the condition (II) *is contained in an equivalence class of* σ *in* K_{ϵ} .

Proof. First we shall prove that (I) implies (II). Let $A \in K_e/\sigma$ and $A = [a]_\sigma$. For given $x \in [a]_q$ using lemma 7 we choose $d_1, ..., d_n \in K_q$ such that $x, a \in \bigcup d_i \circ H$ i $=$ i and $d_i \circ H \cap d_{i+1} \circ H \neq \emptyset$ for $i = 1, 2, ..., n-1$.

Denoting $G_x = \bigcup_{i=1}^{n_x} \{d_i\}$ we see that $G_x \subset K_e$ and $x \in [a]_a$ iff $x, a \in \bigcup d \circ H$. Let $i = 1$ $d \in G$, $G = \bigcup_{x \in A} G_x$, then $A = \bigcup_{d \in G} d \circ H$. Suppose that $G' \subset G$ and $G' \neq \emptyset \neq G - G'$.

To prove the thesis of (1) consider first the case where $a \in \bigcup_{A \in G} d \circ H$. From our *d e G '* assumptions it follows immediately that $\bigcup d \circ H \neq \emptyset$. Let z be an element of this set. Put $\overline{G}_z = (\overline{d}_1, \ldots, \overline{d}_s) \subset G_z$, where $\overline{d}_i \circ H \cap \overline{d}_{i+1} \circ H \neq \emptyset$ for $i = 1, \ldots, s-1$ and $z \in d_1 \circ H$, $a \in d_s \circ H$. If $G' \cap G_z = \emptyset$ then $G_z \subset G - G'$ and $\bigcup d \circ H \subset \bigcup d \circ H$. *d* eG_z area of \overline{a}

Thus $a \in \bigcup_{d \in G - G'} d \circ H$ too and (1) holds.

If $(G - G') \cap \overline{G}_z = \emptyset$ then using analogous considerations we come to conclusion that $z \in \bigcup_{d \in G'} d \circ H \cap \bigcup_{d \in G - G'} d \circ H$.

At last if $G' \cap \overline{G}_z \neq \emptyset \neq (G - G') \cap \overline{G}_z$ then we choose *k*, *l* belonging to $\{1, ..., s\}$ such that $\overline{d}_k \in G'$ and $\overline{d}_l \in G - G'$. Obviously $k \neq l$ and let us assume that *k < l.*

There exists an $r \in \{k, k+1, ..., l\}$ for which $\overline{d}_r \in G'$ and $\overline{d}_{r+1} \in G - G'$. Since $\overline{d}_r \circ H \cap \overline{d}_{r+1} \circ H \neq \emptyset$ then from above we obtain the thesis of (1). The proof in the case where *a* belongs to the second factor of the product in (1) is analogous.

Now we are coming to prove that if a set *A* satisfies (II) then there exists an equivalence class B of relation σ containing A. For, let $x, y \in A$. Then we can find *a* $d_x \in G$ for which $x \in d_x \circ H$. We define by recurence the sets:

$$
D_0 = \{d_x\}, D_{k+1} = \{d \in G: d \circ H \cap \bigcup_{p \in D_k} p \circ H \neq \emptyset\}, k = 0, 1, 2, ...
$$

Observe that for $d \in D_k$ holds $d \circ H \cap \bigcup_{k \in D_k} p \circ H = d \circ H \neq \emptyset$ i.e. $d \in D_{k+1}$. Thus $D_k \subset D_{k+1}$ for $k = 0, 1, 2, ...$ 00

Let $D = \bigcup_{k=0}^{n} D_k$. *D* is evidently contained in *G* and we shall prove that $D = G$. Observe that if $p \in G$ and $p \circ H \cap \bigcup_{d \in D} d \circ H \neq \emptyset$ then we can find a $d \in D$ such that $p \circ H \cap \bar{d} \circ H \neq \emptyset$. This \bar{d} belongs to a D_i , $i \geq 0$ and $p \circ H \cap \bigcup d \circ H \neq \emptyset$, $d \in D_i$ so that $p \in D_{i+1} \subset D$. Hence the inequality $G - D \neq \emptyset$ implies

$$
\bigcup_{d \in G-D} d \circ H \cap \bigcup_{d \in D} d \circ H = \varnothing,
$$

what contradicts the hypothesis (II). Thus we have $D = G$.

Since $y \in A$ by the condition (II) (2) there exist an integer *s* and a $d_s \in D_s$ such that $y \in d_s \circ H$. Using the definition of the sequence $D_0, D_1, ...$ we can choose $d_{s-1} \in D_{s-1}$, $d_{s-2} \in D_{s-2}$, $d_0 \in D_0$ satisfying the conditions $d_i \circ H \cap d_{i+1} \circ H \neq \emptyset$ for $i = 0, 1, ...$ Since $x \in d_0 \circ H = d_x \circ H$ and $y \in d_s \circ H$ from the above statement by lemma 7 we obtain that *xoy.* Thus *x, у* are the elements of the same equivalence class of σ in K_e and our theorem is completely proved.

Remark 2. (a) The analogous theorem for strong r-congruences in *eK* can be proved too. (b) From theorem 5 of the paper [2] we conclude that every 1-invariant partition of K_e in (K, \circ) is its decomposition into unions of equivalence classes of a strong 1-congruence in K_e generated in it by $\varrho_0 = H \times H$, where H is a subsemigroup of *eKe* with the unit *e.*

4. Congruences in semigroups

4.1. Since every semigroup (S, \cdot) having the unit *e* is a category in which $e^s = S_e = e^s$ then we can apply directly the above obtained results to find congruences and invariant partitions of such (S, \cdot) (see also [2] p. 44-46).

4.2. Suppose now that (S, \cdot) is a semigroup without unit. If an $e \notin S$ then we put $S^1 = S \cup \{e\}$ and define the operation \circ in S^1 as follows: $x \circ y = x \cdot y$ when $x, y \in S$ and $x \circ e = e \circ x$ when $x \in S^1$. Of course (S^1, \circ) is a semigroup with the unit *e.*

THEOREM 7. Let $(S_i)_{i \in J}$ be an *l*-invariant partition of (S^1, \circ) and $e \in S_k$, $k \in J$. *Then* $(S_i)_{i \in J - \{k\}}$ *in the case where* $S_k = \{e\}$ *and* $(\overline{S}_i)_{i \in J}$, $\overline{S}_i = S_i$ *for* $i \neq k$, $\overline{S}_k = S_k - \{e\}$ *in the case where* $S_k \neq \{e\}$ *are l-invariant partitions of* (S, \cdot) *.*

Proof. Consider first the case $S_k = \{e\}$. If $i \in J - \{k\}$ then $S_i \subset S$ and $(S_i)_{i \in J - \{k\}}$ is a partition of *S*. Since $x \circ y = x \cdot y \neq e$ for $x, y \in S$ then it is also an 1-invariant partition of (S, \cdot) . Let now $S_k \neq \{e\}$ and x be an arbitrary element of S. From the supposition it follows that $x \circ S_k \subset S_l$ for a suitable $l \in J$. Hence $x \cdot (S_k - \{e\})$ $x = x \circ (S_k - \{e\}) \subset S_l$. If $l \neq k$ then $S_l \subset S$ and S_l is a component of the mentioned partition $(\bar{S}_i)_{i \in J}$ of (S, \cdot) . If $l = k$ then $x \cdot (S_k - \{e\}) \subset (S_k - \{e\})$ because $x \cdot y \neq e$ for $y \in S$. Thus, in the case where $S_k \neq \{e\}$, we obtained that $x \cdot (S_k - \{e\})$ is contained in a component of the partition $(\bar{S}_i)_{i\in J}$ from the thesis.

Consider now the product $x \cdot S_j$, $j \in J$, $j \neq k$. It is evident that either $x \cdot S_j = x \circ S_j \subset S_k$ or $x \cdot S_j = x \circ S_j \subset S_i$ where $i \neq k$. The second possibility can be rewritten as follows $x \cdot \overline{S_i} \subset \overline{S_i}$. The first of them since, $S_i \subset S$ leads to $x \cdot S_i \subset S_k - \{e\}$ i.e. $x \cdot \overline{S}_i \subset \overline{S}_k$. Thus the theorem is proved.

Remark 3. The considerations from remark 2 may be applied for semigroups.

References

- [1] А . К . К л и ф ф о р д , Г . П р е с т о н : *Алгебраическая теория полугрупп.* I, Издательство МИР, Москва 1972.
- [2] A .K r u p iń s k a : *Równanie translacji na kategorii.* Rocznik Nauk.-Dydak. WSP w Rzeszowie, 2/18, Rzeszów 1972, p. 13-106.
- [3] J. Tabor: *Struktura ogólnego rozwiązania równania translacji na grupoidzie Ehresmanna oraz rozkłady niezm iennicze tego grupoidu.* Rocznik Nauk.-Dydak. WSP w Krakowie, Prace Mat. VI, 41 (1970), p. 107-153.
- [4] S. M idu ra, Z. M oszner: *Quelques remarques au sujet de la notion de l'objet et de l'objet géom étrique.* Ann. Polon. Math., 18 (1966). p. 322-338.