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On commutative algebraic objects over the group cL (I, R)

1. Let A' be a non-empty set and let G be a group. A function F:XxG —X
satisfying the translation equation

F(F(x, a), P) = F(x, Pa) for  xe X, a,PeG
and the identity condition
F(x, 1) = x for xe X

is called an algebraic object or shortly an object (cf. [6], p. 68). Let F: Xx G—*X
be an algebraic object and let Gt be a subgroup of G. Then the restriction F\X xG |
of F to the set XxG | is also an algebraic object. It is called a subobject of the
object F.

Let Ft: X x G—*X and F2: Yx G—>Y be two objects over the same group G.
A function h: X—*Y is called a homomorphism of the object F, into F 2if the following
condition holds

h(Fy(x, a)) = F2(h(x),a) for xe X, aeG.

If, additionaly, h maps X onto Y, then is called an epimorphism and F2 is called
a concomitant of Fv If h is a bijection, then it is called an isomorphism and we say
that Fy and F2 are equivalent.

Let F: Xx G—X be an object and let q be an equivalence relation conformable
with the object F, i.e. let g satisfy the condition: If xQy then F(x, a)qF(y, a) for
every ae G. Then the function F/q: Xjg x G—=*Xlq defined as follows

@ Fig([x], a) = [F(x,a)] for xeX, aeG

is an object. It is called a factor-object of the object F.

All concomitants of a given object are determined uniquely up to the isomor-
phism by its factor-objects (cf. [6], p. 71). An object F: Xx G—>X is called commuta-
tive (cf. [2], p. 19) if

F(F(x,a), P) = F(F(x,P),a) for xeX, a,PeG.

S. Barcz, Z. Moszner and M. Siuda proved (cf. [1]) the following
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Lemma 1. An object F: X x G-+X is commutative if and only if the derivated
group [G, G] of the group G is contained in the kernel of ejfectivity ofF, i.e. if [G, G]
is contained in the set

(2) JF= {aeG: VF(x,a)zx}.
ieX
2. Let F: Xx G—>X be an algebraic object. In the class of all concomitants of

the object F there may be introduced a semiorder. We say that Fj > F2 if and only
if F2 is a concomitant of F1. This semi-order can be characterized as follows: Let FI
and F2 be concomitants of F and let Ft = F/~, F2 = Flg2, where at and g2 are
equivalence relations conformable to the object F. We have then (cf. [6], p. 76)

3) F1'~FZ if and only if qlczq2.

We prove the following

Theorem 1. For every algebraic object F over a group there exists “the greatest”
commutative concomitant, i.e. such one F* that every commutative concomitant of F
is a concomitant of F*.

Proof. Let F: Xx G—*X be an algebraic object over a group G. We define a rela-
tion g in X as follows: xgy if and only if there exists a e [G, G] such thaty = F(x, a).
It is clear that g is an equivalence relation. We prove that g is conformable to the
object F. Let F(x, a) = y with ae [G, G] and let Pe G. We have then

F(F(x,P),Parl = F(x, Pa) = F(F(x, a,/?) = F(y, P).

Obviously, PaP~I e [G, G]. Hence F(x, P)gF(y, p), which proves that g is confor-
mable to the object F. To prove that the object Fjg is commutative we consider any
elements a, P e G. We have for every x e X

F(F(x, ap), Pap-1a-1) = F(x, Pa).
since PaP~la- le [G, G] this equality implies the relation
(4) F(x, ap)gF(x, Pa) .
We obtain from (1) and (4)
Flg([x]leaP) = [F(x, aP)]0 = [F(x, pa)]Q= F\g{\x]Ja) .

Hence the object Fjg is commutative.

We have to prove yet that F/g is the greatest concomitant of F. Since every
concomitant is equivalent to some factor object, we may restrict our considerations
to the factor-objects only. Let gl be an equivalence relation conformable to the
object Fand let the object Fjgt be commutative. Let xgy, i. e. let there existale [G, G]
such that F(x, a0) —y. Applying Lemma 1 we obtain from the commutativity of F/gt
that

«0 6Jplei m
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By (1) and (2) we have now

M da= [~.a0)]e, = */ei(M*,«0) = Pk, ,
what means that XQyy. We have proved that e~-Qi what, in virtue of (3) completes
the proof.
As an immediate consequence of Lemma 1 we obtain the following
Theorem 2. Let F: Xx G—*X be an algebraic object such that JF = {1} and let
FA. XX Gi~"X be a subobject of F. The subobject Ft is commutative if and only if the
subgroup G, of G is abelian.

Proof. If FI is commutative then we get

[Gi.G, L,

what means that G, is obelian.

The converse implication is obvious.

3. Now we restrict our considerations to algebraic objects over subgroups of
the group GL{n, i?)i. e. the group of nonsingular n x n matrices over a field R. The
subgroup of GL(n, R) consisting of all the matrices whose determinant is equal to 1
will be denoted by SL(n, R). 0(n, R) and D{n, R) will denote the subgroups of
orthogonal and diagonal matrices respectively, subgroup consisting of matrices of
the form sA wherese R, s ¢ 0 and A e 0(n, R) will be denoted by P(n, R). Let G be
a subgroup of GL(n, R) and let F: Xx G—*X be an algebraic object. If F{x, A) for
x e X and A e G depends only det A and on x i.e. if there exists a function F*
such that

F{x, A) = F*(x, det/1) for xe X, AeG

then we say that F is anJ — object (cf. [3], p. 83). We are going to give the charac-
terization of the commutative objects over the group GL{n,R). Namely, we shall
prove the following

Theorem 3. Let G be a subgroup of GL{n, R) such that
(5) [GL(n, R), GL(n,R)] n Gc[G, G].
An algebraic object F over G is commutative if and only if it is an J-object.
Proof. If F: XxG-+X is an Y-object then we have for xeX, A ,BeG:
F(x, BA) = F*{x, detBA) = F*(x, detAB) = F{x, AB),

which proves the commutativity of F.

Suppose now that an object F: X x G-*X is commutative. We shall prove that
if A,Be G and detA = detfi then F(x, A) = F(x,B) for xe X. For then let
det A_1B = 1 and hence

(6 A~I1BeSL(n, R).
But (cf. [4], p. 36)
@) [GL{n, R), GL{n, 7] = SL{n, R).
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In consequence of (5), (6) and (7) A 1Be[G, G]. Invirtue of lemma 1we have now

F(x, A~IB) = x

and further
F(x,A) = F[F(x, A~IB),A] = F(x,AA~IB) = F(x,B),

which completes the proof.

Remark. The inclusion converse to inclusion (5) is obvious. Hence in (5) the
inclusion may be replaced by the equality. Condition (5) is satisfied e.g. if G is any
of the groups SL(n, R), 0(2, R), P(2, R) in the group of matrices A such that
\detA\ = 1, but it is not satisfied e.g. for G = D(n, R). It would be interesting to
find other convenient conditions equivalent to condition (5).

It follows immediately from Theorem 3 that W — density * and G — density
are commutative objects and for s >2 covariant vector, contravariant vector, definor,
Pentsov object are non-commutative objects.

Non-commutative objects, of course may, have commutative subobjects. It
is easy to check that for n>2 the kernel of effectivity of covariant vector, contra-
variant vector, Pentsov object is the trivial group. Hence in virtue of theorem 4
only their subobjects over obelian subgroups are commutative.

Examples. We are going to determine all commutative objects over the group
0(2,R). Let F: Xx0(2, R)—=X be both transitive and commutative object. In
virtue of theorem 3 F can be written in the form

F(x, A) = F*(x, det>4),

where F* is also an algebraic object (obviously transitive). But detT = +1. Hence
we have two possibilities X = 1 or X = 2. Thus F is a scalar or a biscalar. Every
algebraic object over a group is a disjoint union of transitive objects (cf. [5]). Hence
every commutative object over 0(2, R) is a disjoint union of scalars and biscalars.
On the other hand every object of this form is obviously commutative. Let us consider
now an object of the form

F(x, A) — Ax for xeR", AeP(n,R).

The derivated group [P(n, R), P(n, i?)] consists of orthogonal matrices A such that
detA » 1. It is easy to check that in the case under consideration the relation q
(which defines the geatest commutative concomitant) has the form xQy if and only
if x] = \y\, where |x] denotes the lenght of x. Every matrix from P(n, R) may be
written in the form sA, where s is a positive real number and A e0(n, R).

We have

Fie([x]... sA)

[F(x,i™)]e = [sAx], =

{¥Y: bl = Mx],N1eO(n,P)} = {y: W\ = *Ix]}.

* All objects occuring in our paper are defined in [3].
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By identification of [x]c and |x] the object Fjg may be written in the form Fjg = R
where

Fi(x,sA) = sx for x6<0, 00), ne (0, oo).

We prove now that condition (5) is essential in theorem 3. Let G = D(n, R). Con-
dition (5) is not satisfied.
We put

F(x,A) = AX forr xe Rn AeD(n, R).

This object is commutative. But from the equality detA = detB with A, Be D(n, R
the equality Ax = Bx does not follow. Hence this object is not a Y-object.
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