On commutative algebraic objects over the group *GL* **(и,** *R)*

1. Let X be a non-empty set and let G be a group. A function $F: X \times G \rightarrow X$ satisfying the translation equation

$$
F(F(x, \alpha), \beta) = F(x, \beta\alpha) \quad \text{for} \quad x \in X, \ \alpha, \beta \in G
$$

and the identity condition

$$
F(x, 1) = x \quad \text{for} \quad x \in X
$$

is called an algebraic object or shortly an object (cf. [6], p. 68). Let $F: X \times G \rightarrow X$ be an algebraic object and let G_1 be a subgroup of G. Then the restriction $F \, \vert \, X \times G_1$ of *F* to the set $X \times G_1$ is also an algebraic object. It is called a subobject of the object *F.*

Let F_1 : $X \times G \rightarrow X$ and F_2 : $Y \times G \rightarrow Y$ be two objects over the same group G. A function $h: X \rightarrow Y$ is called a homomorphism of the object F_1 into F_2 if the following condition holds

$$
h(F_1(x,\alpha)) = F_2(h(x),\alpha) \quad \text{for} \quad x \in X, \ \alpha \in G.
$$

If, additionaly, *h* maps *X* onto *Y*, then is called an epimorphism and F_2 is called a concomitant of F_1 . If h is a bijection, then it is called an isomorphism and we say that F_1 and F_2 are equivalent.

Let $F: X \times G \rightarrow X$ be an object and let ϱ be an equivalence relation conformable with the object F, i.e. let ϱ satisfy the condition: If $x\varrho y$ then $F(x, \alpha)\varrho F(y, \alpha)$ for every $\alpha \in G$. Then the function F/g : $X/g \times G \rightarrow X/g$ defined as follows

(1)
$$
F/\varrho([x], \alpha) = [F(x, \alpha)] \quad \text{for} \quad x \in X, \alpha \in G
$$

is an object. It is called a factor-object of the object F.

All concomitants of a given object are determined uniquely up to the isomorphism by its factor-objects (cf. [6], p. 71). An object $F: X \times G \rightarrow X$ is called commutative (cf. [2], p. 19) if

$$
F(F(x, \alpha), \beta) = F(F(x, \beta), \alpha) \quad \text{for} \quad x \in X, \alpha, \beta \in G.
$$

S. Barcz, Z. Moszner and M. Siuda proved (cf. [1]) the following

LEMMA 1. An object $F: X \times G \rightarrow X$ is commutative if and only if the derivated *group* $[G, G]$ *of the group* G is contained in the kernel of effectivity of F, i.e. if $[G, G]$ *is contained in the set*

(2)
$$
J_F = \{ \alpha \in G : \bigvee_{x \in X} F(x, \alpha) = x \}.
$$

2. Let $F: X \times G \rightarrow X$ be an algebraic object. In the class of all concomitants of the object *F* there may be introduced a semiorder. We say that $F_1 \geq F_2$ if and only if F_2 is a concomitant of F_1 . This semi-order can be characterized as follows: Let F_1 and F_2 be concomitants of *F* and let $F_1 = F/q_1$, $F_2 = F/q_2$, where q_1 and q_2 are equivalence relations conformable to the object F . We have then (cf. [6], p. 76)

(3)
$$
F_1 \geq F_2 \text{ if and only if } \varrho_1 \subset \varrho_2.
$$

We prove the following

THEOREM 1. For every algebraic object F over a group there exists "the greatest" *commutative concomitant, i.e. such one* F^* that every commutative concomitant of F *is a concomitant of* F^* .

Proof. Let $F: X \times G \rightarrow X$ be an algebraic object over a group G. We define a relation *q* in *X* as follows: *xqy* if and only if there exists $\alpha \in [G, G]$ such that $y = F(x, \alpha)$. It is clear that ρ is an equivalence relation. We prove that ρ is conformable to the object *F.* Let $F(x, \alpha) = y$ with $\alpha \in [G, G]$ and let $\beta \in G$. We have then

$$
F(F(x, \beta), \beta \alpha \beta^{-1}) = F(x, \beta \alpha) = F(F(x, \alpha), \beta) = F(y, \beta).
$$

Obviously, $\beta \alpha \beta^{-1} \in [G, G]$. Hence $F(x, \beta) \rho F(y, \beta)$, which proves that ρ is conformable to the object *F*. To prove that the object F/ϱ is commutative we consider any elements α , $\beta \in G$. We have for every $x \in X$

$$
F(F(x,\alpha\beta),\beta\alpha\beta^{-1}\alpha^{-1})=F(x,\beta\alpha).
$$

Since $\beta \alpha \beta^{-1} \alpha^{-1} \in [G, G]$ this equality implies the relation

(4) $F(x, \alpha \beta) \rho F(x, \beta \alpha)$.

We obtain from (1) and (4)

$$
F/\varrho([x]_q \alpha \beta) = [F(x, \alpha \beta)]_q = [F(x, \beta \alpha)]_q = F/\varrho([x]_q, \beta \alpha).
$$

Hence the object F/ϱ is commutative.

We have to prove yet that F/ρ is the greatest concomitant of *F*. Since every concomitant is equivalent to some factor object, we may restrict our considerations to the factor-objects only. Let ϱ_1 be an equivalence relation conformable to the object F and let the object F/g_1 be commutative. Let xgy , i.e. let there exist $\alpha_0 \in [G, G]$ such that $F(x, \alpha_0) = y$. Applying Lemma 1 we obtain from the commutativity of F/ρ_1 that

$$
\alpha_0 \in J_{F/e_1} .
$$

By (1) and (2) we have now

$$
[y]_{\varrho_1} = [F(x, \alpha_0)]_{\varrho_1} = F/\varrho_1([x]_{\varrho_1} \alpha_0) = [x_0]_{\varrho_1},
$$

what means that xq_1y . We have proved that $q \in q_1$ what, in virtue of (3) completes the proof.

As an immediate consequence of Lemma 1 we obtain the following

THEOREM 2. Let F: $X \times G \rightarrow X$ be an algebraic object such that $J_F = \{1\}$ and let F_1 : $X \times G_1 \rightarrow X$ be a subobject of F. The subobject F_1 *is commutative if and only if the* $subgroup$ G_1 of G is abelian.

Proof. If F_1 is commutative then we get

$$
[G_1, G_1] \subset J_{F_1} \subset J_F = \{1\},\
$$

what means that G_i is obelian.

The converse implication is obvious.

3. Now we restrict our considerations to algebraic objects over subgroups of the group $GL(n, R)$ i. e. the group of nonsingular $n \times n$ matrices over a field R. The subgroup of $GL(n, R)$ consisting of all the matrices whose determinant is equal to 1 will be denoted by $SL(n, R)$. $O(n, R)$ and $D(n, R)$ will denote the subgroups of orthogonal and diagonal matrices respectively, subgroup consisting of matrices of the form sA where $s \in R$, $s \neq 0$ and $A \in O(n, R)$ will be denoted by $P(n, R)$. Let G be a subgroup of $GL(n, R)$ and let $F: X \times G \rightarrow X$ be an algebraic object. If $F(x, A)$ for $x \in X$ and $A \in G$ depends only det A and on x i.e. if there exists a function F^* such that

$$
F(x, A) = F^*(x, \det A) \quad \text{for} \quad x \in X, A \in G
$$

then we say that *F* is an J — object (cf. [3], p. 83). We are going to give the characterization of the commutative objects over the group $GL(n, R)$. Namely, we shall prove the following

THEOREM 3. Let G be a subgroup of $GL(n, R)$ such that

$$
(5) \qquad [GL(n, R), GL(n, R)] \cap G \subset [G, G].
$$

An algebraic object F over G is commutative if and only if it is an J-object.

Proof. If *F*: $X \times G \rightarrow X$ is an *J*-object then we have for $x \in X$, $A, B \in G$:

$$
F(x, BA) = F^*(x, \det BA) = F^*(x, \det AB) = F(x, AB),
$$

which proves the commutativity of *F.*

Suppose now that an object $F: X \times G \rightarrow X$ is commutative. We shall prove that if $A, B \in G$ and $\det A = \det B$ then $F(x, A) = F(x, B)$ for $x \in X$. For then let det $A^{-1}B = 1$ and hence

(6) $A^{-1}B \in SL(n, R)$.

But (cf. [4], p. 36)

(7) $[GL(n, R), GL(n, R)] = SL(n, R)$.

 $11 - \text{Rocz. Nauk. Dyd. Pr. Mat. IX}$ 161

In consequence of (5), (6) and (7) $A^{-1}B \in [G, G]$. In virtue of lemma 1 we have now

$$
F(x, A^{-1}B) = x
$$

and further

$$
F(x, A) = F[F(x, A^{-1}B), A] = F(x, AA^{-1}B) = F(x, B),
$$

which completes the proof.

Remark. The inclusion converse to inclusion (5) is obvious. Hence in (5) the inclusion may be replaced by the equality. Condition (5) is satisfied e.g. if G is any of the groups $SL(n, R)$, $O(2, R)$, $P(2, R)$ in the group of matrices A such that $\det A$ = 1, but it is not satisfied e.g. for $G = D(n, R)$. It would be interesting to find other convenient conditions equivalent to condition (5).

It follows immediately from Theorem 3 that W — density $*$ and G — density are commutative objects and for $n \geq 2$ covariant vector, contravariant vector, definor, Pentsov object are non-commutative objects.

Non-commutative objects, of course may, have commutative subobjects. It is easy to check that for $n \geq 2$ the kernel of effectivity of covariant vector, contravariant vector, Pentsov object is the trivial group. Hence in virtue of theorem 4 only their subobjects over obelian subgroups are commutative.

EXAMPLES. We are going to determine all commutative objects over the group 0(2, *R*). Let *F*: $X \times 0(2, R) \rightarrow X$ be both transitive and commutative object. In virtue of theorem 3 *F* can be written in the form

$$
F(x, A) = F^*(x, \det A),
$$

where F^* is also an algebraic object (obviously transitive). But $\det A = \pm 1$. Hence we have two possibilities $\overline{X} = 1$ or $\overline{X} = 2$. Thus *F* is a scalar or a biscalar. Every algebraic object over a group is a disjoint union of transitive objects (cf. [5]). Hence every commutative object over $O(2, R)$ is a disjoint union of scalars and biscalars. On the other hand every object of this form is obviously commutative. Let us consider now an object of the form

$$
F(x, A) = Ax \quad \text{for} \quad x \in R^n, \ A \in P(n, R).
$$

The derivated group $[P(n, R), P(n, R)]$ consists of orthogonal matrices *A* such that $\det A = 1$. It is easy to check that in the case under consideration the relation *q* (which defines the geatest commutative concomitant) has the form *xQy* if and only if $|x| = |y|$, where $|x|$ denotes the lenght of x. Every matrix from $P(n, R)$ may be written in the form *sA*, where *s* is a positive real number and $A \in O(n, R)$. We have

$$
F|_{\mathcal{Q}}([x]_{\mathbf{e}}, sA) = [F(x, sA)]_{\mathbf{e}} = [sAx]_{\mathbf{e}} =
$$

= {y: |y| = |sAx|, A \in 0(n, R)} = {y: |y| = s|x|}.

* All objects occuring in our paper are defined in [3].

By identification of $[x]_q$ and $|x|$ the object F/q may be written in the form $F/q = F_1$ where

$$
F_1(x, sA) = sx \quad \text{for} \quad x \in <0, \infty), \ s \in (0, \infty).
$$

We prove now that condition (5) is essential in theorem 3. Let $G = D(n, R)$. Condition (5) is not satisfied.

We put

$$
F(x, A) = Ax \quad \text{for} \quad x \in \mathbb{R}^n, A \in D(n, R).
$$

This object is commutative. But from the equality $\det A = \det B$ with $A, B \in D(n, R)$ the equality $Ax = Bx$ does not follow. Hence this object is not a *J*-object.

References

- [1] S. Barcz, Z. Moszner, M. Siuda: *Sur les automates commutatifs.* Zesz. Nauk. UJ. Prace Mat (to appear).
- [2] J. Gancarzewicz: *On commutative algebraic objects over a grupoid.* Zesz. Nauk. UJ, Prace Mat. 12 (1968), p. 19-25.
- [3] S. Gołąb: *Tensor calculus.* Warszawa 1974.
- [4] M. Kucharzewski, M. Kuczma: *Basic concepts of the theory of geometric objects*, Rozprawy Mat. 43, 1964.
- [5] M. I. Kargapołow, J. I. Mieralakow: *Podstawy teorii grup.* Warszawa 1976.
- [6] A. Zajtz: *Algebraic objects.* Zesz. Nauk. UJ, Prace Mat. 12 (1968), p. 67-79.