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On commutative algebraic objects over the group GL  (и, R)

1. Let A' be a non-empty set and let G be a group. A  function F : X x G —>X 
satisfying the translation equation

F (F (x , a), P) =  F (x , Pa) for x e X , a , P e G

and the identity condition

F (x ,  1) =  x for x  e X

is called an algebraic object or shortly an object (cf. [6], p. 68). Let F  : X x  G—*X  
be an algebraic object and let G t be a subgroup of G. Then the restriction F \ X x G l 
of F  to the set X x G l is also an algebraic object. It is called a subobject of the 
object F.

Let F t : X  x G—*X  and F 2 : Y x  G—> Y  be two objects over the same group G. 
A  function h : X—* Y  is called a homomorphism of the object F , into F 2 if the following 
condition holds

h (F y(x , a)) =  F 2(h(x), a) for x e X , a e G .

If, additionaly, h maps X  onto Y, then is called an epimorphism and F 2 is called 
a concomitant of F v  If  h is a bijection, then it is called an isomorphism and we say 
that Fy and F 2 are equivalent.

Let F : X x  G—*X  be an object and let q be an equivalence relation conformable 
with the object F , i.e. let q satisfy the condition: If  xQy then F (x , a )q F (y ,  a) for 
every a e G. Then the function F /q : Xjq x G—*XIq defined as follows

(1) F/g([x], a) =  [F (x ,a )] for x e X , a e G

is an object. It is called a factor-object of the object F.
All concomitants of a given object are determined uniquely up to the isomor

phism by its factor-objects (cf. [6], p. 71). An object F: X x  G—>X is called commuta
tive (cf. [2], p. 19) if

F (F (x , a), P) =  F (F (x , P), a) for x  e X, a , P e G .

S. Barcz, Z . Moszner and M. Siuda proved (cf. [1]) the following
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L em m a  1. An object F : X  x G -+ X  is commutative i f  and only i f  the derivated 
group [G , G ] o f  the group G is contained in the kernel o f ejfectivity o f F , i.e. i f  [G , G] 
is contained in the set

(2) J F =  {a e G : V F (x ,  a) =  x} .
i e X

2. Let F : X x  G—>X be an algebraic object. In the class of all concomitants of 
the object F  there may be introduced a semiorder. We say that F j >  F 2 if and only 
if F 2 is a concomitant of F 1. This semi-order can be characterized as follows: Let F l 
and F 2 be concomitants of F  and let F t =  F / ^ ,  F 2 =  FIq2, where дt and q2 are 
equivalence relations conformable to the object F. We have then (cf. [6], p. 76)

(3) F 1'^ F Z if and only if q1czq2 .

We prove the following

T h e o r e m  1. For every algebraic object F  over a group there exists “ the greatest” 
commutative concomitant, i.e. such one F* that every commutative concomitant o f F  
is a concomitant o f  F * .

P ro o f .  Let F : X x  G—*X  be an algebraic object over a group G. We define a rela
tion q in X  as follows: xgy if and only if there exists a e [G , G] such that y  =  F (x , a). 
It is clear that д is an equivalence relation. We prove that д is conformable to the 
object F. Let F (x , a) =  у  with a e  [G , G] and let P e G. We have then

F (F (x , P), P a r 1) =  F (x , Pa) =  F (F (x , a) , /?)  =  F ( y ,  P ) .

Obviously, PaP~l e [G , G]. Hence F (x , P )g F (y , p), which proves that g is confor
mable to the object F. To prove that the object Fjg  is commutative we consider any 
elements a, P e G. We have for every x e X

F (F (x , ap), P a p -1 a - 1) =  F (x , P a ) .

Since PaP~1 a - 1 e [G , G] this equality implies the relation

(4) F (x , ap )gF(x , Pa) .

We obtain from (1) and (4)

Flg([x]e aP) =  [F (x , aP)]0 =  [F (x , pa)]Q =  F \g { \x ] J a )  .

Hence the object Fjg  is commutative.
We have to prove yet that F/g  is the greatest concomitant of F. Since every 

concomitant is equivalent to some factor object, we may restrict our considerations 
to the factor-objects only. Let g l be an equivalence relation conformable to the 
object Fand let the object F jg t be commutative. Let xgy, i. e. let there exist a0 e [G , G] 
such that F (x , a0) — y. Applying Lemma 1 we obtain from the commutativity of F/g t 
that

«о 6 Jp/ei ■
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M ei = [^.ao)]e, = */ei(M*,«o) = [*<>]«, ,

what means that XQyy. We have proved that e^-Qi what, in virtue of (3) completes 
the proof.

As an immediate consequence of Lemma 1 we obtain the following 

T h e o r e m  2. Let F : X x  G—*X  be an algebraic object such that J F =  {1} and let 
F^. X x  G i~ ^ X  be a subobject o f F. The subobject F t is commutative i f  and only i f  the 
subgroup G , o f G is abelian.

P ro o f. If  F l is commutative then we get

[ G i . G ,  {1} ,

what means that G , is obelian.
The converse implication is obvious.

3. Now we restrict our considerations to algebraic objects over subgroups of 
the group GL{n, i?)i. e. the group of nonsingular n x n matrices over a field R. The 
subgroup of G L(n, R) consisting of all the matrices whose determinant is equal to 1 
will be denoted by SL (n , R). 0 (n, R) and D {n, R) will denote the subgroups of 
orthogonal and diagonal matrices respectively, subgroup consisting o f matrices of 
the form sA where s e R , s ф 0 and A e 0(n , R) will be denoted by P (n , R). Let G be 
a subgroup of G L(n, R) and let F : X x  G—*X  be an algebraic object. If  F {x, A) for 
x  e X  and A e G depends only det A and on x  i. e. if there exists a function F*  
such that

F {x , A) =  F * (x , det/1) for x  e  X , A e  G

then we say that F  is an J  —  object (cf. [3], p. 83). We are going to give the charac
terization of the commutative objects over the group G L {n ,R ). Namely, we shall 
prove the following

T h e o r e m  3. Let G be a subgroup o f GL{n, R ) such that

(5) [GL(n, R ) , GL(n, R)] n  G c [ G ,  G ] .

An algebraic object F  over G is commutative i f  and only i f  it is an J-object.

P ro o f .  If F : X x G - + X  is an У-object then we have for x e X ,  A , B e G :

F (x , BA) =  F *{x , det BA) =  F * (x , detAB) =  F {x , A B ) , 

which proves the commutativity of F.
Suppose now that an object F : X x  G -* X  is commutative. We shall prove that 

if A , B e  G  and det A =  detfi then F (x , A) =  F ( x ,B )  for x  e X . For then let 
det A _1B  =  1 and hence

(6) A ~ l B  e SL (n , R ) .

But (cf. [4], p. 36)

(7) [GL{n, R ) , GL{n, 7?)] =  SL{n, R ) .

By (1) and (2) we have now
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F (x , A ~ l B) =  x

and further

F ( x ,A ) =  F [F (x , A ~ l B ), A] =  F ( x ,A A ~ l B) =  F ( x ,B ) ,  

which completes the proof.

R em a rk . The inclusion converse to inclusion (5) is obvious. Hence in (5) the 
inclusion may be replaced by the equality. Condition (5) is satisfied e.g. if G is any 
of the groups S L (n , R ), 0 (2 , R), P ( 2 , R) in the group of matrices A such that 
\detA\ =  1, but it is not satisfied e.g. for G  =  D (n , R ). It would be interesting to 
find other convenient conditions equivalent to condition (5).

It follows immediately from Theorem 3 that W —  density * and G —  density 
are commutative objects and for я >2  covariant vector, contravariant vector, definor, 
Pentsov object are non-commutative objects.

Non-commutative objects, of course may, have commutative subobjects. It 
is easy to check that for n >2  the kernel of effectivity of covariant vector, contra
variant vector, Pentsov object is the trivial group. Hence in virtue of theorem 4 
only their subobjects over obelian subgroups are commutative.

E x a m p l e s . We are going to determine all commutative objects over the group 
0 (2 , R ). Let F : X x 0 ( 2 ,  R )—* X  be both transitive and commutative object. In 
virtue of theorem 3 F  can be written in the form

F (x , A) =  F * (x ,  det>4),

where F *  is also an algebraic object (obviously transitive). But detT =  + 1 .  Hence 
we have two possibilities X  =  1 or X  =  2. Thus F  is a scalar or a biscalar. Every 
algebraic object over a group is a disjoint union of transitive objects (cf. [5]). Hence 
every commutative object over 0 (2 , R) is a disjoint union of scalars and biscalars. 
On the other hand every object of this form is obviously commutative. Let us consider 
now an object of the form

F (x , A) — A x  for x e R", A e P (n , R ) .

The derivated group [P(n , R ), P (n , i?)] consists o f orthogonal matrices A  such that 
det A »  1. It is easy to check that in the case under consideration the relation q 
(which defines the geatest commutative concomitant) has the form xQy if and only 
if |x| =  \y \, where |x| denotes the lenght of x. Every matrix from P (n , R ) may be 
written in the form sA, where s is a positive real number and A e 0 (n , R).
We have

Fje([x]„, sA) =  [F (x , j ^ )]c =  [sAx]„ =

=  {У : Ы  =  M x | , Л е О ( и , Р ) }  =  {у:  \y\ =  *|x|} .

In consequence of (5), (6) and (7) A l Be[G,  G]. In virtue of lemma 1 we have now

* All objects occuring in our paper are defined in [3].
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By identification of [x]c and |x| the object Fjg may be written in the form Fjg =  Ft 
where

F i(x , sA) =  sx for x  6 < 0 , oo), л e (0 , oo) .

We prove now that condition (5) is essential in theorem 3. Let G  =  D (n , R). Con
dition (5) is not satisfied.
We put

F (x ,A )  =  Ax  for x e Rn, A e D (n , R) .

This object is commutative. But from the equality detA =  detB with A , B e  D (n , R  
the equality Ax  =  Bx does not follow. Hence this object is not a У-object.
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