On the Dirichlet problem for certain angular domain

1. In this paper we shall give the solution of Dirichlet problem for the domain

(1)
$$D_n = \left\{ (x, y) \colon 0 < x < \infty, 0 < y < x \operatorname{tg} \frac{\pi}{n} \right\}, \quad n = 2, 3, \dots$$

We shall construct a solution u(x, y) of the equation

$$\Delta u(x, y) = 0$$

of class $C^{(2)}$ in D_n , satisfying the boundary conditions

(3)
$$u(x,0) = F_1(x,0) = f_1(x),$$

(4)
$$u\left(x, x t g \frac{\pi}{n}\right) = F_2\left(x, x t g \frac{\pi}{n}\right) = f_2(x), \quad x > 0,$$

where F_1 , F_2 are given functions.

In order to solve the problem (2), (3), (4), we shall construct the convenient Green function using the method of symmetric images.

2. Let $X_1(x, y)$ denotes the arbitrary point of D_n . Let l_i denote the straigt lines

(5)
$$l_i: s\sin(i-1)\frac{\pi}{n} = t\cos(i-1)\frac{\pi}{n}, \quad i = 1, 2, ...$$

Let X_2 denote the symmetric point of X_1 with respect to l_2 , X_3 denote the symmetric point of X_2 with respect to l_3 , ..., X_n the symmetric point of X_{n-1} with respect to l_2 , ..., X_{2n} the symmetric point of X_{2n-1} with respect to l_n . Obviously X_1 is symmetric image of X_{2n} with respect to l_1 .

The coordinates of the points $X_i(x_i, y_i)$ i = 1, 2, ... are given by formulas:

$$x_i = x \cos i \frac{\pi}{n} \pm y \sin i \frac{\pi}{n}$$
 $i = 2, 4, ..., 2n$

$$y_i = x \sin i \frac{\pi}{n} \pm y \cos i \frac{\pi}{n}$$
 $i = 2, 4, ..., 2n$

(6)
$$x_i = x\cos(i-1)\frac{\pi}{n} - y\sin(i-1)\frac{\pi}{n} \quad i = 1, 3, ..., 2n-1$$

$$y_i = x\sin(i-1)\frac{\pi}{n} + y\cos(i-1)\frac{\pi}{n} \quad i = 1, 3, ..., 2n-1$$

Let Y(s, t) denotes the arbitrary point belonging to the set $D_n \cup l_1^* \cup l_2^*$, where l_i^* is defined by (5) for $s \ge 0$. Further let $r_i^2 = |X_i Y|^2 = (s - x_i)^2 + (t - y_i)^2 = r_i^2(x, y, s, t)$ i = 1, 2, ..., 2n.

3. Now we shall prove the following

THEOREM 1. The function

(7)
$$G(X_1, Y) = G(x, y, s, t) = \sum_{i=1}^{2n} (-1)^{i+1} \ln r_i$$

is the Green function for the problem (2), (3), (4) with a pole at the point X_1 .

Proof. The function $G(X_1, Y)$ is harmonic with respect to the point $Y(Y \neq X_l)$, because the functions $\ln r_l$ are harmonic. If $Y \in l_1$, then

$$r_1 = r_{2n}, r_2 = r_{2n-1}, ..., r_n = r_{n+1},$$

and $G(X_1, Y) = 0$. For $Y \in l_2$ we have $r_1 = r_2, r_{2n} = r_3, ..., r_{n+1} = r_{n+2}$, and $G(X_1, Y) = 0$.

4. Now we shall introduce any notations. Let $M = \sup_{s \ge 0} |f_i(s)|$, $\bar{f}_i(s) = f_i(s)$, for $s \ge 0$ and $\bar{f}_i(s) = 0$, for s < 0, (i = 1, 2). Let

$$a = tg\frac{\pi}{n}$$
 and $R_i^2 = (s - x_i)^2 + y_i^2$ $i = 1, 2, ..., 2n$
$$\varrho_i^2 = (s - x_i)^2 + (as - y_i)^2$$
 $i = 1, 2, ..., 2n$.

Let N denotes the invard normal to $\partial D_n = l_1^* \cup l_2^*$. We shall prove, that under certain assumptions concerning the functions $f_i(s)$ the function

(8)
$$u(X_1) = \frac{1}{\pi} \int_{0}^{\infty} f_1(s) D_t G(X_1, Y)|_{t=0} ds + \frac{1}{\pi} \int_{s \ge 0} F_2(s, as) D_N G(X_1, Y)|_{t=as} \sqrt{1 + a_2} ds$$

is the solution of the problem (2), (3), (4).

Using the formulas (7) and (8) we get

(9)
$$u(X_1) = \sum_{i=1}^{n} (-1)^i K_i(X_1) + \sum_{i=1}^{n} (-1)^i H_i(X_1)$$

where

$$K_{i}(X_{1}) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \bar{f}_{1}(s) \frac{y_{i}}{R_{i}^{2}} ds; \ H_{i}(X_{1}) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \bar{f}_{2}(s) \frac{y_{i} - ax_{i}}{\varrho_{i}^{2}} ds \quad i = 1, 2, ..., n$$

Let

(10)
$$W_1 = \{(x, y): |x| < A, 0 < c < y < C\}$$

$$W_2 = \{(x, y): |x| < B, -aB - \delta < y < ax - \delta\}$$

where A, B, c, C, are abitrary positive numbers. Let

$$K_i^{p,q}(X_1) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \vec{f}_1(s)(s) D^{p,q}\left(\frac{y_i}{R_i^2}\right) ds$$

$$H_i^{p,q}(X_1) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \vec{f}_2(s) D^{p,q} \left(\frac{y_i - ax_i}{\varrho_i^2} \right) ds$$

where p, q = 0, 1, 2; 0 .

5. Now we shall prove that the integrals $K^{p,q}(X_1)$, (i = 1, 2, ..., n) are uniformly convergent in every set W_1 and the integrals $H_i^{p,q}(X_1)$ are uniformly convergent in every set W_2 .

Let

$$K_i^{p,q}(R, X_1) = \frac{1}{\pi} \int_{|s| \ge R} \vec{f}_1(s) D^{p,q} \left(\frac{y_1}{R_i^2} \right) ds$$

and

$$H_i^{p,q}(R, X_1) = \frac{1}{\pi} \int_{|s| \geq R} \bar{f}_2(s) D^{p,q} \left(\frac{y_i - ax_i}{\varrho_i^2} \right) ds.$$

LEMMA 1. If the function $f_1(s)$, $(s \ge 0)$ is bounded and absolutely integrable, then the integrals $K_i^{p,q}(X_1)$, (i = 1, ..., n) are uniformly convergent in every set W_1 .

Proof. The integrals $K_1^{pq}(R, X_1)$ have common majorant

$$MC \int_{|z| \geqslant R} \frac{ds}{(s-x_i)^2 + y_i^2}.$$

Since

$$\frac{1}{4}s^2 \le (s-x_i)^2 + y_i^2 \le 4s^2$$
 for $s \ge R$

thus

$$\int_{|s| \geqslant R} \frac{ds}{(s-x_i)^2 + y_i^2} \leqslant 2 \int_{|s| \geqslant R} \frac{ds}{s^2} < \varepsilon$$

for arbitrary $\varepsilon > 0$ and $R \ge R(\varepsilon)$. This condition is sufficient for uniform convergence of integrals $K_1^{p,q}(X_1)$ in every set W_1 .

LEMMA 2. If the function $f_2(s)$, $s \ge 0$, is bounded and absolutely integrable, then the integrals $H^{p,q}(X_1)$ are uniformly convergent in every set W_2 .

Proof. The integrals $H_i^{p,q}(R, X_1)$ have common majorant

$$C \int_{|s| \ge R} \frac{ds}{(s-x_i)^2 + (as-y_i)^2}$$

Since

$$\frac{1}{4}s^2 \le (s-x_i)^2 + (as-y_i)^2$$
 for $s \ge R$

thus

$$\int_{|s| \ge R} \frac{ds}{(s-x_i)^2 + (as-y_i)^2} \le 2 \int_{|s| \ge R} \frac{ds}{s^2} \le \varepsilon$$

for every $\varepsilon > 0$ and $R > R(\varepsilon)$. From the above inequality follows the uniform convergence of integrals $H_i^{p,q}(X_1)$ in every set W_2 .

From lemmas 1, 2 follows

LEMMA 3. The integrals $K_i^{p,q}(X_1)$ and $H_i^{p,q}(X_1)$ are uniformly convergent in every set $W_3 = W_1 \cap W_2$.

From lemmas 1, 2, 3 follows

LEMMA 4. If the functions $f_1(s)$, $f_2(s)$, $s \ge 0$ are bounded and absolutely integrable, then exist in W_3 the functions $D^{p,q}K_i(X_1)$, $D^{p,q}H_i(X_1)$, i = 1, 2, ..., n; p, q = 0, 1, 2; $0 \le p + q \le 2$

and

$$D^{p, q}K_{i}(X_{1}) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \vec{f}_{1}(s) D^{p, q}\left(\frac{y_{i}}{R_{i}^{2}}\right) ds$$

and

$$D^{p, q}H_{i}(X_{1}) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \bar{f}_{2}(s) D^{p, q} \left(\frac{y_{i} - ax_{i}}{\varrho_{i}^{2}} \right) ds.$$

LEMMA 5. If the functions $f_1(s)$, $f_2(s)$, $s \ge 0$, are bounded and absolutely integrable, then the function $u(X_1)$ defined by formulas (8) or (9) is of class $C^{(2)}$ in every set $W_3 \subset D_n$ and is harmonic in W_3 .

Proof. Since the transformation (6) is orthogonal in view of lemma 4, we have

$$\Delta u(X_1) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f_1(s) D_t (\Delta_{x_1}(G(X, Y)))|_{t=0} ds + \frac{1}{\pi} \int_{|s| \ge 0} f_2(s) D_N (\Delta_{x_1}(G(X, Y)))|_{t=as} \sqrt{1+a^2} ds = 0 \text{ for } X_1 \in W_3$$

6. Now we shall verify the boundary conditions (3) and (4).

LEMMA 6. [2]. If the function $f_1(s)$ is continuous, bounded and absolutely integrable for $s \ge 0$,

then

$$\lim K_1(X_1) = \lim_{t \to \infty} \frac{1}{\pi} \int_{-\infty}^{+\infty} f_1(s) \frac{y \, ds}{(s - x_i)^2 + y_2} = f_1(x_0)$$

as $X_1 \rightarrow (x_0, 0), x_0 > 0$.

LEMMA 7. If the function $f_2(s)$ is continuous, bounded and absolutely integrable for $s \le 0$, then

$$\lim_{s \to \infty} H_1(X_1) = \lim_{s \to \infty} \int_{-\infty}^{+\infty} \bar{f}_2(s) \frac{ax - y}{(s - x)^2 + (as - y)^2} ds = f_2(x_0)$$

$$X_1 \to (x_0, ax_0), x_0 > 0.$$

as

Proof. Let us consider the integral

$$I = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{ax - y}{(s - x)^2 + (as - y)^2} \, ds$$

Introducing in integral I the substitution: $s-x = (ax-y)_t t$ we have

$$as - y = (ax - y)at + (ax - y) = (ax - y)(at + 1)$$

and

$$I = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{dt}{t^2 + (at+1)^2} = 1.$$

We can rewrite $H_1(X_1)$ in the form:

$$H_1(X_1) = \frac{1}{\pi} \int_{-\pi}^{+\infty} [\bar{f}_2(s) - f_2(x_0)] \frac{as - y}{(s - x)^2 + (as - y)^2} ds + f_2(x_0)$$

If $|s-x_0| < \delta(\varepsilon)$ and $|\bar{f}_2(s) - f_2(x_0)| < \varepsilon$ then

$$\frac{1}{\pi} \int_{|s-x_0| < \delta} |f_2(s) - f_2(x_0)| \frac{ax - y}{(s-x)^2 + (as - y)^2} ds \le \varepsilon$$

and

$$\frac{1}{\pi} \int_{|s-x_0|>\delta} |\bar{f}_2(s) - f_2(x_0)| \frac{as-y}{(s-x)^2 + (as-y)^2} ds = \frac{M}{\pi} \int_{-\infty}^{\frac{1}{ax-y}} \frac{dt}{t^2 + (at-1)^2} + \frac{M}{\pi} \int_{\frac{\delta}{ax-y}}^{+\infty} \frac{dt}{t^2 + (at+1)^2} \to 0, \ as \ (ax-y) \to (ax_0 - ax_0) = 0^+$$

LEMMA 8. If the functions $f_1(s)$, $f_2(s)$ are bounded and absolutely integrable for $s \ge 0$, then the integrals

$$P_{i}(X_{1}) = \int_{-\infty}^{+\infty} \bar{f}_{1}(s) \frac{\ln r_{i}}{t} \bigg|_{t=0} ds, \ Q_{i}(X_{1}) = \int_{-\infty}^{+\infty} \bar{f}_{2}(s) \frac{\ln r_{i}}{N} \bigg|_{t=as} ds,$$

for i = 2, 3, ..., 2n are uniformly convergent in every set

$$W_4 = \{(x, y): 0 < c < x < A, 0 < y < ax - ac\},$$

where A, a, c denote arbitrary positive numbers.

The proof is analoguous to those of lemmas 1, 2.

LEMMA 9. If the functions $f_1(s)$, $f_2(s)$, $s \ge 0$ are bounded, continuous and absolutely integrable, then the function

a)
$$u(X_1) \rightarrow f_1(x_0)$$
, as $(X_1) \rightarrow (x_0, 0^+)$, $x_0 > 0$.

b)
$$u(X_1) \rightarrow f_2(x_0)$$
, as $(X_1) \rightarrow (x_0, ax_0)$.

Proof. Ad a). Using the formula (6) we get: $\lim D_i(\ln r_{2n-i} + \ln r_{i+2}) = 0$ as $y \rightarrow 0^+$, (i = 1, ..., n), $\lim D_N(\ln r_{2n-i} + \ln r_{i+2}) = 0$ as $y \rightarrow 0^+$, (i = 1, ..., n) By lemmas 6 and 8 we obtain

$$\lim u(X_1) = f_1(x_0) + \lim \int_{-\infty}^{+\infty} \vec{f}_1(s) \sum_{i=1}^{n} (-1)^i \left(D_i (\ln r_{2n-i} + \ln r_{i+2}) \right) |_{t=0} ds +$$

$$+ \lim \int_{-\infty}^{+\infty} \vec{f}_2(s) \sum_{i=1}^{n} D_N (\ln r_{2n-i} + \ln r_{i+2}) |_{t=as} ds = f_1(x_0)$$

as $y \rightarrow 0^+$.

Ad b). By formula (7) we have:

$$\lim D_{i}(\ln r_{2n-i} + \ln r_{i}) = 0$$
 as $(X_{1}) \rightarrow (x_{0}, ax_{0}), (i = 1, ..., n)$

and

$$\lim D_N(\ln r_{2n-i} + \ln r_{i+2}) = 0$$
, as $(X_1) \rightarrow (x_0, ax_0)$, $(i = 1, 3, ..., 2n-1)$

and

$$\lim D_N(\ln r_{2n-i} + \ln r_{i+4}) = 0$$
 as $(X_1) \rightarrow (x_0, ax_0), (i = 2, 4, ..., 2n)$

From lemmas 7 and 8 we get:

$$\lim u(X_{1}) = \bar{f}_{2}(x_{0}) + \lim \int_{-\infty}^{+\infty} f_{1}(s) \sum_{i} (-1)^{i} D_{i} (\ln r_{2n-i} + \ln r_{i})|_{i=0} ds +$$

$$+ \lim \int_{-\infty}^{+\infty} \bar{f}_{2}(s) \sum_{i}^{(1)} D_{N} (\ln r_{2n-i} + \ln r_{i+2})|_{i=as} ds +$$

$$+ \lim \int_{-\infty}^{+\infty} f_{2}(s) \sum_{i}^{(2)} D_{N} (\ln r_{2n-i} + \ln r_{i+4})|_{i=as} ds =$$

$$= f_{2}(x_{0}), \quad \text{as} \quad (X_{1}) \rightarrow (x_{0}, ax_{0}),$$

where $\sum^{(1)}$ denotes the convenient sum for odd i and $\sum^{(2)}$ for even i. From lemma 9 follows

THEOREM 2. If the functions $f_1(s)$, $f_2(s)$, $s \ge 0$ are continuous, bounded and absolutely integrable, then the function u(x, y), defined by formulas (8) or (9) is the solution of the problem (2), (3), (4) in every set (1).

References

- [1] F. Barański: The solution of the Riquier problem for the biharmonic equation in a semipaces. Comm. Math. Warszawa 1964, VIII/2.
- [2] M. Krzyżański: Partial differential equations of second order. Warszawa 1970. PWN.
- [3] A. Wachułka: The solution of Dirichlet problem for angular domain. Ann. Sc. a. Did. WSP Kraków. 41 (1970).