Sur une définition de remplissage de l'équation de translation

Cette note est un complément du travail [1] consacré de la discussion des liens parmi les 8 differentes définitions de remplissage par une function δ de l'équation de translation

(1)
$$\delta(\delta(a, x), y) = \delta(a, x \cdot y).$$

Nous allons profiter les suivantes:

DÉFINITION 1. La fonction δ de l'ensemble $[A \times X \rightarrow A]$ remplit (1) \Leftrightarrow

$$\Leftrightarrow \bigwedge_{a \in A} \bigwedge_{x,y \in X} \left\{ \left\{ \left[(a,x) \in D_{\delta} \land \left(\delta(a,x), y \right) \in D_{\delta} \right] \Leftrightarrow \right. \\ \left. \Leftrightarrow \left[(x,y) \in D. \land (a,x \cdot y) \in D_{\delta} \right] \right\} \Rightarrow (1) \right\} *).$$

DÉFINITION 6. La fonction δ de l'ensemble $[A \times X \rightarrow A]$ remplit (1) \Leftrightarrow

$$\Leftrightarrow \bigwedge_{a\in A} \bigwedge_{x,y\in X} \left\{ [(x,y)\in D. \land \bigvee_{\overline{a},\overline{b},\overline{c}\in A} \left((\overline{a},x)\in D_{\delta}\land (\overline{b},y)\in D_{\delta}\land (\overline{c},x\cdot y)\in D_{\delta})\right] \Rightarrow C_{\delta} \land (\overline{c},x\cdot y)\in D_{\delta} \land (\overline{c}$$

$$\Rightarrow \left| \left((a, x) \in D_{\delta} \land (\delta(a, x), y) \in D_{\delta} \right) \Leftrightarrow (a, x \cdot y) \in D_{\delta} \right) \land (1) \right| \right\}.$$

DÉFINITION 7. La fonction δ de l'ensemble $[A \times X \Rightarrow A]$ remplit (1) \Leftrightarrow

$$\Leftrightarrow \bigwedge_{a \in A} \bigwedge_{x, y \in X} \{ [(x, y) \in D. \land (a, x) \in D_{\delta} \land (\delta(a, x), y) \in D_{\delta} \land (a, x \cdot y) \in D_{\delta}] \Rightarrow (1) \}.$$

DÉFINITION 8. La fonction δ de l'ensemble $[A \times X \rightarrow A]$ remplit (1) \Leftrightarrow

$$\Leftrightarrow \bigwedge_{a \in A} \bigwedge_{x, y \in X} \{ [(x, y) \in D. \land (a, x) \in D_{\delta} \land (\delta(a, x), y) \in D_{\delta}] \Rightarrow [(a, x \cdot y) \in D_{\delta} \land (1)] \}.$$

Dans [1] (p. 106) Z. Moszner a suggéré la définition suivante:

Définition 9. La fonction $\delta \in [A \times X \oplus A]$ remplit l'équation (1) si la condition suivante est satisfait:

^{*)} D_{δ} — la domaine de la fonction.

D. — la domaine de l'operation "" définie dans X.

(9) pour chaque a de l'ensemble A et pour tous les x, y de l'ensemble X, si la paire (x, y) est un élément de l'ensemble D, alors les paires (a, x), $(\delta(a, x), y)$ appartiennent à l'ensemble D_{δ} si et seulement si la paire $(a, x \cdot y)$ appar tient à D_{δ} et dans ce cas l'égalité (1) a lieu.

Notons par Ω_9 la famille des fonctions remplissant l'équation (1) d'après la définition 9 et pour les ensembles A et X arbitrairement établis.

Démontrons

Théorème 1. $\Omega_1 \not\subseteq \Omega_9 \not\subseteq \Omega_6$ et $\Omega_9 \not\subseteq \Omega_8$ et $\Omega_9 \not\subseteq \Omega_7$.*)

Démonstration. Les inclusions $\Omega_1 \subset \Omega_9 \subset \Omega_6$, $\Omega_9 \subset \Omega_8$, $\Omega_9 \subset \Omega_7$ sont des conclusions logiques correspondantes aux conditions qui les définissent.

Soit A=R et $(X,\bullet)=(M(R),\bullet)$, où M(R) est un ensemble des matrices carrés d'un degré quelconque avec l'opération de multiplication. La fonction $\delta\colon R\times M(R)\to R$ définie par $\delta(a,x)=a\det x$ est l'élément de l'ensemble Ω_9 , car aussitôt que $(x,y)\in D$, alors les expressions $\delta(\delta(a,x),y)$ et $\delta(a,x\cdot y)$ ont un sens et en plus l'égalité (1) a lieu. La fonction δ n'est pas un élément de l'ensemble Ω_1 , car le fait $(a,x)\in D_\delta$ et $(\delta(a,x),y)\in D_\delta$ n'implique pas la possibilité de multiplication des matrices x et y. On a démontré que $\Omega_1\neq\Omega_9$.

Posons: A — l'ensemble des nombres entiers; $X = A \times A$. Nous définissons l'opération dans l'ensemble X de la manière suivante: $(x, y) \cdot (z, t)$ a un sens si et seulement si y = z et alors $(x, y) \cdot (z, t) = (x, t)$.

Définissons la fonction δ comme suit: $\delta(a, (x, y)) = y$ si et seulement si a = x et $y \neq 0$. **) La fonction δ définie de telle manière est un élément de l'ensemble Ω_6 ([1], p. 102–103) et elle n'appartient pas à l'ensemble Ω_9 , car la paire (7, 0), $(0, 3) \in D$. et $\delta(7, (7, 0) \cdot (0, 3))$ a un sens, mais la paire (7, (7, 0)) n'est pas un élément de l'ensemble D_δ . Donc $\Omega_9 \neq \Omega_6$.

Considérons, pour une paire arbitraire de nombres naturels (a, x), la fonction: $\delta(a, x) = a \cdot x$ définie seulement si a ou x est un nombre pair. ***)

La fonction δ , définie de telle manière, appartenant à l'ensemble Ω_8 ([1], p. 107) ne remplit toutefois pas de la condition (9). On peut multiplier les éléments 5 et 4 et la paire $(3, 5\cdot 4) \in D_{\delta}$, mais $\delta(3, 5)$ n'a pas de sens, alors $\Omega_9 \neq \Omega_8$.

Car $\Omega_8 \not\equiv \Omega_7$ ([1], p. 107) et $\Omega_9 \not\equiv \Omega_8$ donc $\Omega_9 \neq \Omega_7$.

Théoreme 2. Les inclusions présentées au théoreme 1 épuisent toutes les possibilitées des inclusions parmi les ensembles Ω_9 et Ω_i (i = 1, 2, 3, ..., 8).

Démonstration. $\Omega_9 \neq \Omega_4$, car en vertu de théoremè 4 ([1]) $\Omega_1 \neq \Omega_4$ et $\Omega_1 \subset \Omega_9$. Car $\Omega_2 \subset \Omega_4$ ([1], th. 2), donc $\Omega_9 \neq \Omega_2$. $\Omega_2 \neq \Omega_9$ parce que $\Omega_2 \neq \Omega_6$ ([1], th. 4) et $\Omega_9 \subset \Omega_6$.

^{*)} Les ensembles Ω pour i = 1, 2, ..., 8 sont définis dans [1].

^{**) [1];} exemple 5, p. 102.

^{***) [1],} exemple 2, p. 98.

Analogiquement $\Omega_4 \neq \Omega_9$. $\Omega_9 \neq \Omega_5$ parce que $\Omega_1 \neq \Omega_5([1], \text{ th.4})$ et $\Omega_1 \subset \Omega_9$. Aussitôt que $\Omega_3 \subset \Omega_5$ ([1], th. 3), donc $\Omega_9 \neq \Omega_3$. $\Omega_3 \neq \Omega_9$, car $\Omega_3 \neq \Omega_6([1], \text{ th.4})$ et $\Omega_9 \subset \Omega_6$. Donc $\Omega_5 \neq \Omega_9$.

Travaux cité

[1] Z. Moszner, M. Zurek: Sur les differentes définitions des solutions de l'équation de translation, Rocz. Nauk.-Dydak. WSP w Krakowie. Prace Mat. VII, 51 (1974), p. 95-108.