ELZBIETA GANCARCZYK, JAN GOROWSKI

On the Fatou problem for the iterated Helmholz equation
in the half-plane

1 In the paper [1] F.Baranski solved the Lauricelli
problem for the equation (4 - c2)2u =0 in the half-
plane. In the present paper we solve the same problem on
the half-plane, with more general boundary conditions, na-
mely those stated in terms of signed measures. The similar

problems for the biharmonic equation has been investigated

in [2] and [3].

2. Notations:
X = (x,y), T =(s,t), Z=($ ,0), IX - Y|2=(x-5)2 + (y-t)2,
$2 = (x-s)2 + *2,
b(B) - denotes the class of Borel subset of B,

#r) = (xeE: |x-|] < r],
s(z,a) e {(x.V) €B2: |x 4 ay, 0 <a =tgcx},

- denotes the collection of intervals 3 containing

a point ~ frB.
Let JL be an extended signed measure defined on 2>(b),

assuming at most one of the values + ooand —oo.

45



We shall denote

» Cr )CS) . " #

131»0
where P I denotes one-dlmenslonal Lebesgue measure of
set O .

If the limit (*) exists under the condition that 3 is in-
terval with center at S it will be called the symmetric
derivative of ji. at and will be denoted by (pg

We shall also denote

im £& (]
(Ds rl_l/\na (J
and call it the second symmetric derivative of ~ at ~
We suppose through this paper that and [ are two

signed measures on 3>CR) and that
A) are O -finite,
B) for aby 0 M O) = o(enln), Igj(n) - O0(efr).

(r -» co),
where 3 denotes the interval included in R (dist 3= 2r)
and \jt\ denotes the absolute variation of the measure u ,
i.e.
I1J-1(E) = sup( |I(F)T Fe$(R), fce, "Cf)> o} +

+ sup£- LU-CF): F6$CR), FCE, ~I(F) 4 0J.

The radial Iimit R - lim u(X) at the point Z =(~ ,0) of
a function u defined on R™ =£(x»y)*"P* |x]<oo , y >0j

w ill be defined by the formula
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R - lim u(X)*s lim, u(x).

X-*Z ye0+
x =5
If lim u(x) exists and is the same for every a >0, then
X-nzZ
Xfe S(Z,a) n . i
we dénote it by Y-lim u(X) and we call it non-tangential
-k

limit at the point 2Z»

In the paper CI3 «as proved

THEOREM 1. If the functions f~, f2> flJ are Lebesgue
integrable in the interval (- o0, 00) and continuous at the

point xQ, then the function
(0] a

=~ f 1(s)ybc2¢“2K2Ccg)ds +~ j* 2(s)cy2<flr ¢ Yds
—80 —@
is a solution of the Lauricelli problem for the equation

(A - ¢c2)2 u(x,y) = 0 in the half-plane R”"j where
denote the Mac-Donald functions of the order ~ CfQ.

Our aim is to solve the equation (A - ¢c2)2 u(x,y)= 0
in the half-plane R~ with the boundary condition

a) 6 -lirn~"Cx) =

4 e - i i uWwW = (Pr~rCf).
The obtained solution will be of the form

u<X) = P (jit, A, HXX) =7 J y3c25'2X2Cc8)d|Us) +
R

+x f c72f IKiCc§)d flCsr*
Let R

P(ji.,r\fA)(.X) =~ y3c23'2K2Cc$)dI*(s) + | jcy2S (c$)d t](s) ,
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= A\] 73c25% 2K2 (c¢5)dlJiCs),
A

J I'"recfrCecS)NN),
A

11 y2c25"2K2 (cC)d"ts) ,

*2 (\» AX *)

P5 Clo.,A)U)

PA("A*A00 =""5 74°3s5“3k3Ccs) 4" .

P50r\*AX X3

| i 7Ccf1K1l(c3)drIC s\
A

Pg~r.AXT) -5 f ynrc28272 §)di|Cs) .

Now we shall give
LEMMA 1. Let jj. and be signed measures defined on
*I>CH)t satisfying the conditions A and B such that
O%p)($) -<P.4x3%$) =0.
then

R-lim P,(n,H)CX) = 0, R-lim P.(n ,R)U) =0 for i=2,5,6.
X"~z 'r X-»Z 1
Pr oof. We shall show that
R-lim P,,(u-
x-*z 11
Let £ be an arbitrary positive number. Prom the assumption

y,H)n) = 0.

(p3|nX~) =0 it follows that there exists a positive

number rQ = rQ(£} , such that
ch | /J42~b s)L] <£ for O<r4dro.

Let us denote

F(r) =j~djUs) = JX.C3C|»r)) .

* 1)
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Let

pr Cp.S)W = J1C5 J0(X) +p™U. o
where

03~ ,0 =H-3(5 ,r0).
We have >

() PAX MoK *) =f [73c2(y2+r2)"1K2(cCy2+r2)1/2)d F(r)

= y3c2(y2 + 12)-1 F(r)K2(c(y2 + r2) 1/72 |™ +

+

NJ y3e3 r F(r)fy2 + r2)"3/2k3(c(y2 + r2jV 2dr.

Observe that

(5 R-Ww A y3c2(y2 + r2)“1F(r)K2(c ("2 + w2)n/2)~r° = 0.
X*Z

By (1) and by the formulas ( L8l p.276), ([41 p.146,117)

00
(x?**2)1/r) 2<,+1 a m S/~ATCqg+l) w , N
f (TTTp 72 * «9+1 s'"9-1 '-9-1

(«>0, g>-1); Kb5cx)b 2, 1 T(5)x"\ K (x)=K~x),
X -t*0, x> 0O, 3> O

we obtain the following estimate
<0
I £ y3c3 r FCr)Cy2+r2)”5/2 K3(cCy2+r2)1/2)dr |4
4 1C3y32£j r2(y2+r2)~3/2 K3(c(y2+r2)1/2)dr =
0
=£ c3/2£#T (| ) WB/2 K5/ 2CcT~r~ ME »

where M is a positive constant.

By (2~ and (3) we get
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1
o

(/0 R-Ilm. Pl(u , W, ,r0))(x)
X-"z /

Now we shall prove that
A(nrn-.cDCArrixx) = 0.

The function y g’2 IUCcg) is decreasing in (0, 00)

and
K"r"x)« (8j)l/2 e"x (x-*>00) ([4] p.146),
whence
Uf y3c2s’2 =
n Lo* 0)
= \ J y3c2(y2+r2)“1K2 (cCy2+r2) 1/2)dFCr)
£ (o]
4y ) Y2c2r®2 K2 (cr)dIF(r)] =1 yV]F(r)] r-2
00 b
+i G3c5|FCrM r"2 Kij(cr)dr 4
y5c2IF(r)] r“2 I~Ccr)! + ~ MJ yb5c2e5re“crr“5/,2dr »
M3 y§,
where 17, are positive constants and 0 <f ~c«

This implies

C5) M 1.4 P1(ji,C ,r0)) (X) = 0.
From (4) and (5) it follows that
R-lim P .(u.,rX x) = 0.
X-*Z 11
Similarly it can be proved that
= 2,5,6,

R-lim P.(n ,R)(x) =0 for i
x-*z 1 1

which concludes the proof of Xjemma 1*
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Similarly we can prove

LEMMA 2. Let jj, be a signed measure defined on 5>(K)
satisfying assumptions A and B and ( E = °»
then

R-lim Pi(u ,R)(x) =0 for i = 3,4.
X z '

Next we shall prove
LEMMA 3* Let and be one-sign measures defined
on 3>CR) satisfying assumptions A and B and let
cbsP)c~r =(EslIx§) =0.
Under these assumptions we obtain

lI° G -lim P.(u.,RXx) =0, 9 -lim P,(n,R)(x) = 0,
1 L

X-~Z 1 X%
for i =2,5,6.
Moreover, if we also suppose that (Dg = 0, then
2° G -lim Pi uL,RXx) = 0 for i = 3,4.
X~*~b |

Pr oof. We shall carry out the proof on the example

of integral P™ (ju,R)(X).
Let measure jX be non-negative. Let us denote the axis of
the cone s(Zia') by p and let w denote projection of the
point X on the line p. We have

w - Xl

4 a for XfcsCZz,a).

w - Z
Hence
w - Y] 4w- X] + |X- Y]4dalw- Z] + |[X- YH4(a+tDhU - y],
where Y = (s5,0).

Therefore, for every Xfc S(Z,a} and Y = (B,0), we have
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3 =iw- Yl 4 (@ + 1)5
Because, (cM)"K”™(c§) are decreasing functions for

Oi> 0, then

(6) (0S)-\Vt o SH (ri-7 CS) X G rH «cs')-

Hence by Lemma 1 we have

046 -Bi(igc_ZP.l(y,RXX) 4

4 ® ~i~zZtlrs3cd™ 5-br?)'2«2(° rbrs)d” «
e E - iil’T't5t| N«eYYy+T $)"%(* = »e
*_$ R 1
For non-positive measure the proof is similar.

Similarly, by inequality (6) and by Lemmas 1, 2, we can
prove that

e-lim P.Cu.rXx) =0, (i=3,4),e-lim P,(n .®X*)= 0(i=2,5,6),
X-*Z x ' i x-~z 1

which ends the proof of Lemma 3,

We say that measure jj. defined on $ (R) satisfies™the
condition D on a point | 6R if and only if there exists
a function f defined on R such that
1 f is differentiable on R and its derivative is

continuous at the point ~ G R,
2° fCs) = O(enrs) for every ¥E>0, s 00,

3° the measure
X (B)i= jji(B) - Jf(s)ds , BE€ri>(R), IMB)]<o0
satisfies the condition (d] I*XI)c~) = 0,
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We shall .need
LEMMA 4, Wk assume that

1°  the measure jil satisfies the condition D, at the point

2° there exists the bounded symmetric derivative

0>aHXg§) =b,

3° the measures jx. and satisfy assumption A and B,
4° (DglsSIX~) =0, where bBb(B):= T|B) - bj" ds,
iNn(B)|< » . ' B

Under these assumptions we obtain
Q-limz P(F. 4 R)(X) =b.
Proof. Observe that

P(jjL,r"tHXx~ = P3Cjg,RXx) + PA(|]A,RtoO +
+ F5(r\,R)QO + P6Cr~,R)CI).
Let f be function given by the condition D. Let us denote

l:=e -lim P(u#uyu#H)(X) - b,

We; shall prove that. 1 = 0,

Similarly as in [1] we can prove that
b = lim P(f,bfB)CO,
x-*z 07
where
P(f,b,R)Cx) = ~ ~f C3)y5c2~”2K2(c~1s + jfb cy 25" 1K1 Cc§)ds,
Hence R R

l=e- uj® pC~~.eXz) - O - liM jfe P(f.b,EXI>.
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Let

where

=G - line (Pj CIXHKX) - | \ f(s)72c2f 2 K2(c8)ds),

14 = -G - lia (PAU.,n) (i) - £ [ f(s)7V 55 K5Cc8)ds),
X-* Z Ir

b =€-y?z (fS5foH) ) “S Rocyfl ds)»

Te =-6 - £Ti(P6NTH )(*) - i be°2yV 2 KR Cc8) ds).
Let rQ denote a positive number and let
L, = Q- lia 7~ P(\,s ,3U ,r0))cx)
i2=G- Iim 77y Ptyi VC3C%$,rO)Cx) -
- % ~"Cc.b.oaCj.ioDCx)
Cosene that
1L +12 =1.
Because the measures ~X\ and \S|] satisfy the assumption
T.eTla
in = 0.
The proof of the fact, that 12 = 0 is similar to the
proof of Lemma 1.
We need the following
LEMMA 5» (U2], C7] Theorem 1, Chapter V11),
If f is integrable with respect to the Lebesgue

measure on R, then
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a) 6-i-z *[ -~ 7 7 &S mfc?) Ca,a;)MI

b> d° gf(j) Ca-a,)

We can write ( [4] p«117)
0 §w_|3: K1l(cg)
c2e®2 KgCc”)

8§72 + 0(1,
2 + 0(D.

Hence we obtain the following
LEMMA 6. If f is integrable with respect to the

Lebesgue measure on R, then
a) O-limj~fEosiM (@) ds=FE ae,
b) G- lin " f®c ¢2 (c8)ds =1CP) a.e.

We shall state our result in
THEOREM 2. Let L. and be signed measures defined on
3>(R3 and satisfying assumptions A and B. Let the

measure jjl satisfy the condition D, then
a) 0 - lim~ P(la, ,R)(X) = O~(*) (a.e.),
by G-lijz~ = (PIX§) Cae).

Proof. From Lebesgue theorem on decomposition (see

[51 p.215-217) we have one

a+ /V " + Is*
into absolutely continuous post and theisingular post.

* Further on instead of "a.e. with respect to the
Lebesgue measure on R" we shall write shortly (a.e.).
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We obtain
=PL@a,R)C2) +P /" .rXx) +
+ P2(r~",RXx) + P2 (ns»RXx).
It is a well-known fact (see C6] p.155)» that
CD”g)C8) =CP1SX8) =0 Ca.eO,
Hence (Ds |xsX ~ = CDhg 4SX ~ =0 (a.e.), so from
Lemma 3 it follows that

(7) 6 - lim P(us, ng,R)(x) =0 (a.e.) .
X-*-7 !

From Radon-Nikodym theorem ((3] p.209) there follows the
existence of the functions f and g defined and

integrable on R such that for every Bfe2>(R) we have

~aCB) =j f(s) ds, »a(B) =f g(s) ds.
B B
It is well-kknown that
(DraX*P = (a.e.).

Hence from Lemma 6 we have

® 6-lin PCfL.n R =6- lin PEF.IR =

X-*>Z

= (a.e.) .
BY (7) and C8) we get the first part of Theorem 2.
Now we shall prove the second part.
Since
=(Di;xf) «»

and from Lpmma 4-, we have

G- lim P5(4g,R)(x) = G- lim PRIl ;R)X) =
X-*-Z X -**z

=Q - lim P6 (n+,R)(x) =0 - lim P'(a ;,R)(x) a 0 (a.e.).
X-»z X*nZ j
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Let ~ be a point such that (D].a)C§) = B(8) (it bolds
true almost everywhere),

from Lemma 6 we get

0- 1Im F‘SCT.g.»Xx) +0O- )I(i_gjz FE@Lg,B)(X) =

=z P
= 9 - cyy"l ~ (c$) g(s) ds -
-G oirzs ACcS)gCB)ds = 2g(§) - gC|) =
= g(8) » CD”aX]) (a.e.)

Let us define the measure S by the formula

S(B) = kiCB) - gq) J ds for B&3>ClO.
B
From the Lehesgue theorem (see C63 p.158) we have

DIS|(]) =0 (a.e.).
Hence by Lemma 4 we obtain

G- linrz »h Xx) = gC*p (a.e.).

This ends the proof of the second part of Theorem 2.
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