ELŻBIETA GANCARCZYK, JAN GÓROWSKI

On the Fatou problem for the iterated Helmholz equation in the half-plane

1. In the paper [1] F.Barański solved the Lauricelli problem for the equation $(\Delta - c^2)^2 u = 0$ in the half-plane. In the present paper we solve the same problem on the half-plane, with more general boundary conditions, namely those stated in terms of signed measures. The similar problems for the biharmonic equation has been investigated in [2] and [3].

2. Notations:

$$X = (x,y), Y = (s,t), Z = (\xi,0), |X - Y|^2 = (x-s)^2 + (y-t)^2,$$

$$g^2 = (x-s)^2 + y^2,$$

$$g^2 = (x-s)^2 + y^2,$$

$$J(\xi,r) = \{x \in \mathbb{R}: |x - \xi| < r\},$$

$$S(Z,a) = \{(x,y) \in \mathbb{R}^{2}: |x - \xi| < ay, o < a = tg \pi\},$$

 $L(\xi)$ - denotes the collection of intervals J containing a point $\xi \in \mathbb{R}$.

Let μ be an extended signed measure defined on $\mathfrak{F}(R)$, assuming at most one of the values $+\infty$ and $-\infty$.

We shall denote

$$(\mathbf{E}) \qquad (\mathbf{D}\mu)(\xi) = \lim_{|\Omega| \to 0} \frac{\mu(\Omega)}{|\Omega|},$$

where |J| denotes one-dimensional Lebesgue measure of set J.

If the limit (m) exists under the condition that J is interval with center at $\mathbf F$ it will be called the symmetric derivative of μ at $\mathbf F$ and will be denoted by $(\mathbf D_{\mathbf F}\mu)(\mathbf F)$. We shall also denote

$$(D_s^2 \mu)(\xi) = \lim_{r \to 0} \frac{\mu(\Im(\xi, r))}{r^2}$$

and call it the second symmetric derivative of μ at ξ . We suppose through this paper that μ and η are two signed measures on $\mathbb{B}(\mathbb{R})$ and that

A) μ,η are σ-finite,

B) for aby
$$T > 0$$
 $|\mu|(\Im) = 0(e^{T})$, $|\eta|(\Im) = 0(e^{T})$. $(r \rightarrow \infty)$,

where J denotes the interval included in R (dist J=2r) and $|\mu|$ denotes the absolute variation of the measure μ , i.e.

$$|\mu|(E) = \sup \{ \mu(F) : F \in B(R), F \in E, \mu(F) \ge 0 \} + \sup \{ -\mu(F) : F \in B(R), F \in E, \mu(F) \le 0 \}.$$

The radial limit $R = \lim_{x \to Z} u(x)$ at the point $Z = (\xi, 0)$ of a function u defined on $R_2^+ = \{(x,y) \in R^2 : |x| < \infty, y > 0\}$ will be defined by the formula

$$R - \lim_{X \to Z} u(X) := \lim_{y \to 0^+} u(X).$$

$$x = \xi$$

If $\lim_{X\to Z} u(X)$ exists and is the same for every a>0, then $X\to Z$ $X\in S(Z,a)$ we denote it by Θ -lim u(X) and we call it non-tangential $X\to Z$ limit at the point Z.

In the paper [1] was proved

THEOREM 1. If the functions f_1 , f_2 , f_1' are Lebesgue integrable in the interval $(-\infty, \infty)$ and continuous at the point x_0 , then the function

$$u(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} f_1(s) y^3 c^2 g^{-2} K_2(cg) ds + \frac{1}{\pi} \int_{-\infty}^{\infty} f_2(s) cy^2 g^{-1} K_1(cg) ds$$

is a solution of the Lauricelli problem for the equation $(\Delta-c^2)^2\ u(x,y)=0 \quad \text{in the half-plane} \quad R_2^+; \text{ where } K_3(z)$ denote the Mac-Donald functions of the order \Im [4].

Our aim is to solve the equation $(\Delta - c^2)^2 u(x,y) = 0$ in the half-plane R_2^+ with the boundary condition

a)
$$\theta = \lim_{X \to X} u(X) = (D\mu)(\xi)$$
,

b)
$$\theta = \lim_{X \to Z} \frac{\partial}{\partial y} u(X) = (D\eta)(\xi)$$
.

The obtained solution will be of the form

$$\begin{split} u(X) &= P(\mu, \eta, R)(X) = \frac{1}{\pi} \int_{R} y^{3}c^{2} y^{-2} K_{2}(cy) d\mu(s) + \\ &+ \frac{1}{\pi} \int_{R} cy^{2} y^{-1} K_{1}(cy) d\eta(s). \end{split}$$
 Let
$$P(\mu, \eta, A)(X) = \frac{1}{\pi} \int_{R} y^{3}c^{2} y^{-2} K_{2}(cy) d\mu(s) + \frac{1}{\pi} \int_{R} cy^{2} y^{-1} K_{1}(cy) d\eta(s),$$

$$\begin{split} & P_{1}(\mu, A)(X) = \frac{1}{X} \int_{A} y^{3}c^{2}y^{-2}K_{2}(cy)d\mu(s), \\ & P_{2}(\eta, A)(X) = \frac{1}{X} \int_{A} y^{2}cy^{-1}K_{1}(cy)d\eta(s), \\ & P_{3}(\mu, A)(X) = \frac{3}{X} \int_{A} y^{2}c^{2}y^{-2}K_{2}(cy)d\mu(s), \\ & P_{4}(\mu, A)(X) = -\frac{1}{X} \int_{A} y^{4}c^{3}y^{-3}K_{3}(cy)d\mu(s), \\ & P_{5}(\eta, A)(X) = \frac{2}{X} \int_{A} ycy^{-1}K_{1}(cy)d\eta(s), \\ & P_{6}(\eta, A)(X) = -\frac{1}{X} \int_{A} y^{3}c^{2}y^{-2}K_{2}(cy)d\eta(s). \end{split}$$

Now we shall give

LEMMA 1. Let μ and η be signed measures defined on B(R), satisfying the conditions A and B such that

$$(D_s\mu)(\xi) = (D_s\eta)(\xi) = 0,$$

then

$$R-\lim_{X\to Z} P_1(\mu,R)(X) = 0$$
, $R-\lim_{X\to Z} P_1(\eta,R)(X) = 0$ for i=2,5,6.

Proof. We shall show that

$$R-\lim_{X\to Z} P_1(\mu,R)(X) = 0.$$

Let \mathcal{E} be an arbitrary positive number. From the assumption $(D_s\mu)(\xi)=0$ it follows that there exists a positive number $\mathbf{r}_0=\mathbf{r}_0(\xi)$, such that

(1)
$$\frac{\mu(\Im(\xi,r))}{2r} \leqslant \xi \quad \text{for } 0 \leqslant r \leqslant r_0.$$

Let us denote

$$F(\mathbf{r}) = \int d\mu(\mathbf{s}) = \mu(\Im(\xi,\mathbf{r})).$$

$$\Im(\xi,\mathbf{r})$$

Let

$$P_1(\mu,R)(X) = P_1(\mu,J(\xi,r_0)(X) + P_1(\mu,CJ(\xi,r_0))(X),$$
 where

$$CJ(\xi,r_0) = R - J(\xi,r_0).$$

We have $(2) P_{1}(\mu, \Im(\xi, \mathbf{r}_{0}))(X) = \frac{1}{\pi} \int_{0}^{\pi} y^{3} c^{2} (y^{2} + \mathbf{r}^{2})^{-1} K_{2}(c(y^{2} + \mathbf{r}^{2})^{1/2}) d F(\mathbf{r}) = \frac{1}{\pi} y^{3} c^{2} (y^{2} + \mathbf{r}^{2})^{-1} F(\mathbf{r}) K_{2}(c(y^{2} + \mathbf{r}^{2})^{1/2})^{\frac{1}{2}} + \frac{1}{\pi} \int_{0}^{\pi} y^{3} c^{3} \mathbf{r} F(\mathbf{r}) y^{2} + \mathbf{r}^{2})^{-3/2} K_{3}(c(y^{2} + \mathbf{r}^{2})^{1/2}) d\mathbf{r}.$

Observe that

(3)
$$R = \lim_{X \to Z} \frac{1}{x} y^3 c^2 (y^2 + r^2)^{-1} F(r) K_2 (c(y^2 + r^2)^{1/2}) \Big|_{0}^{r_0} = 0.$$

By (1) and by the formulas ([8] p.276), ([4] p.146,117)

$$\int_{0}^{\infty} \frac{K_{3}(x (x^{2}+z^{2})^{1/2})}{(x^{2}+z^{2})^{3/2}} x^{2q+1} dx = \frac{2^{q} \Gamma(q+1)}{x^{q+1} z^{3-q-1}} K_{3-q-1}(x z)$$

$$(\alpha > 0, q > -1); K_{3}(x) \approx 2^{3-1} \Gamma(3) x^{-3}; K_{-3}(x) = K_{3}(x),$$

$$x \to 0, x > 0, 3 > 0$$

we obtain the following estimate

$$\left| \frac{1}{\pi} \int_{0}^{3} y^{3} e^{3} \mathbf{r} F(\mathbf{r}) (y^{2} + \mathbf{r}^{2})^{-3/2} K_{3} (c(y^{2} + \mathbf{r}^{2})^{1/2}) d\mathbf{r} \right| \leq \frac{1}{\pi} e^{3} y^{3} 2 \mathcal{E} \int_{0}^{\infty} \mathbf{r}^{2} (y^{2} + \mathbf{r}^{2})^{-3/2} K_{3} (c(y^{2} + \mathbf{r}^{2})^{1/2}) d\mathbf{r} = \frac{1}{\pi} e^{3/2} \mathcal{E} \sqrt{8} \Gamma(\frac{3}{2}) y^{3/2} K_{3/2} (cy) \leq M \mathcal{E},$$

where M is a positive constant.

By (2) and (3) we get

(4)
$$R-\lim_{X\to Z} P_1(\mu, \Im(\xi, r_0))(X) = 0.$$

Now we shall prove that

$$R-\lim_{X\to Z} P_1(\mu,C\Im(\xi,r_0))(X) = 0.$$

 $9 \rightarrow 9^{-2} K_2(cq)$ is decreasing in $(0, \infty)$ The function and

$$K_3(x) \approx \left(\frac{\pi}{2x}\right)^{1/2} e^{-x} \quad (x \to \infty) \quad ([4] \text{ p.146}),$$

whence

whence
$$\left| \frac{1}{\pi} \int_{C_3(\xi, r_0)} y^3 c^2 y^{-2} K_2(cy) d\mu(s) \right| =$$

$$= \frac{1}{\pi} \int_{r_0}^{\infty} y^3 c^2 (y^2 + r^2)^{-1} K_2(c(y^2 + r^2)^{1/2}) dF(r)$$

$$\leq \frac{1}{\pi} \int_{r_0}^{\infty} y^2 c^2 r^{-2} K_2(cr) d|F(r)| = \frac{1}{\pi} y^3 c^2 |F(r)| r^{-2} K_2(cr) \Big|_{r_0}^{\infty} +$$

$$+ \frac{1}{\pi} \int_{r_0}^{\infty} y^3 c^3 |F(r)| r^{-2} K_3(cr) dr \leq$$

$$\leq \frac{1}{\pi} y^3 c^2 |F(r)| r^{-2} K_2(cr) \Big|_{r_0}^{\infty} + \frac{1}{\pi} M_2 \int_{r_0}^{\infty} y^3 c^2 e^{6r} e^{-cr} r^{-5/2} dr \leq$$

$$\leq M_3 y^3,$$

where M, M3 are positive constants and 0 < % &c. This implies

(5)
$$R-\lim_{X\to Z} P_1(\mu,CJ(\xi,r_0))(X) = 0.$$

From (4) and (5) it follows that

$$R-\lim_{X\to Z} P_1(\mu,R)(X) = 0.$$

Similarly it can be proved that

R-lim
$$Y_i(\eta,R)(X) = 0$$
 for $i = 2,5,6$,

which concludes the proof of Lemma 1.

Similarly we can prove

LEMMA 2. Let μ be a signed measure defined on $\mathbb{B}(\mathbb{R})$ satisfying assumptions A and B and $(\mathbb{F}_s^2 \mu)(\xi) = 0$, then

R-lim
$$P_{i}(\mu,R)(X) = 0$$
 for $i = 3,4$.

Next we shall prove

LEMMA 3. Let μ and η be one-sign measures defined on B(R) satisfying assumptions A and B and let

$$(D_s\mu)(\xi) = (D_s\eta)(\xi) = 0.$$

Under these assumptions we obtain

1°
$$\theta$$
 -lim $P_1(\mu,R)(X) = 0$, θ -lim $P_1(\eta,R)(X) = 0$, for $i = 2,5,6$.

Moreover, if we also suppose that $(D_s^2|\mu|)(\xi) = 0$, then $2^0 \theta = \lim_{X \to Z} P_1(\mu, R)(X) = 0$ for i = 3,4.

Proof. We shall carry out the proof on the example of integral $P_1(\mu,R)(X)$.

Let measure μ be non-negative. Let us denote the axis of the cone S(Z,a) by p and let w denote projection of the point X on the line p. We have

$$\frac{|\mathbf{w} - \mathbf{X}|}{|\mathbf{w} - \mathbf{Z}|} \leq \mathbf{a}$$
 for $\mathbf{X} \in S(\mathbf{Z}, \mathbf{a})$.

Hence

 $|w - Y| \le |w - X| + |X - Y| \le a|w - Z| + |X - Y| \le (a+1)|X - Y|$, where Y = (s,0).

Therefore, for every $X \in S(Z,a)$ and Y = (s,0), we have

$$9 = |w - Y| \le (a + 1)9$$
.

Because, $(c g)^{-\alpha} K_{\alpha}(c g)$ are decreasing functions for $\alpha > 0$, then

(e)
$$(c\beta)_{-\alpha} \mathbb{K}^{\alpha} (c\beta) \leqslant \left(\frac{a+1}{1} c\beta\right)_{-\alpha} \mathbb{K}^{\alpha} \left(\frac{a+1}{1} c\beta\right).$$

Hence by Lemma 1 we have

$$0 \leqslant \theta - \lim_{X \to Z} P_1(\mu, R)(X) \leqslant$$

$$\leqslant \theta - \lim_{X \to Z} \frac{1}{\pi} \int_{R} y^3 c^4 \left(c \frac{1}{a+1} \frac{1}{3} \right)^{-2} K_2 \left(c \frac{1}{a+1} \frac{1}{3} \right) d\mu(s) =$$

$$= R - \lim_{X \to \xi} \frac{1}{\pi} \int_{R} y^3 c^4 \left(c \frac{1}{a+1} \frac{1}{3} \right)^{-2} K_2 \left(c \frac{1}{a+1} \frac{1}{3} \right) d\mu(s) = 0.$$

For non-positive measure μ the proof is similar.

Similarly, by inequality (6) and by Lemmas 1, 2, we can prove that

$$\theta$$
 -lim $P_{i}(\mu,R)(X) = 0$, (i=3,4), θ -lim $P_{i}(\eta,R)(X) = 0$ (i=2,5,6), which ends the proof of Lemma 3.

We say that measure μ defined on $\Im(R)$ satisfies the condition D on a point $\xi \in R$ if and only if there exists a function f defined on R such that

10 f is differentiable on R and its derivative is continuous at the point & E R,

2°
$$f(s) = O(e^{\delta s})$$
 for every $\gamma > 0$, $s \to \infty$,

30 the measure

$$\lambda(B) := \mu(B) - \int_{B} f(s)ds$$
, $B \in \mathcal{B}(R)$, $|\mu(B)| < \infty$ satisfies the condition $(D_{s}^{2}|\lambda|)(\xi) = 0$.

We shall need

LEMMA 4. We assume that

- the measure μ satisfies the condition D, at the point $\xi \in \mathbb{R}$,
- 20 there exists the bounded symmetric derivative

$$(D_s \eta)(\xi) = b,$$

 3° the measures μ and η satisfy assumption A and B,

$$4^{\circ}$$
 $(D_{s}|\delta|)(\xi) = 0$, where $\delta(B) := \eta(B) - b \int_{B} ds$, $|\eta(B)| < \infty$.

Under these assumptions we obtain

$$\Theta = \lim_{X \to Z} \frac{\partial}{\partial y} P(\mu \cdot \eta \cdot R)(X) = b.$$

Proof. Observe that

$$P(\mu, \eta, R)(X) = P_3(\mu, R)(X) + P_4(\mu, R)(X) + P_5(\eta, R)(X) + P_6(\eta, R)(X).$$

Let f be function given by the condition D. Let us denote

$$I:=\theta -\lim_{X\to Z} \frac{\partial}{\partial y} P(\mu, \eta, R)(X) - b,$$

We shall prove that. I = 0.

Similarly as in [1] we can prove that

$$b = \lim_{X \to Z} \frac{0}{\sqrt[3]{y}} P(f,b,R)(X),$$

where

$$P(f,b,R)(X) = \frac{1}{\pi} \int_{R} f(s) y^{3} c^{2} y^{-2} K_{2}(cy) ds + \frac{1}{\pi} \int_{R} bcy^{2} y^{-1} K_{1}(cy) ds.$$
Hence

$$I = \Theta - \lim_{X \to Z} \frac{\partial}{\partial y} P(\mu, \eta, R)(X) - \Theta - \lim_{X \to Z} \frac{\partial}{\partial y} P(f, b, R)(X).$$

Let

$$I = \sum_{i=3}^{6} I_i,$$

where

$$\begin{split} &\mathbf{I}_{3} = \mathbf{0} - \lim_{\mathbf{X} \to \mathbf{Z}} \left(\mathbf{P}_{3} (\mu, \mathbf{R})(\mathbf{X}) - \frac{2}{\pi} \int_{\mathbf{R}} \mathbf{f}(\mathbf{s}) \mathbf{y}^{2} \mathbf{c}^{2} \mathbf{g}^{-2} \ \mathbf{K}_{2}(\mathbf{c}\mathbf{g}) \mathbf{d}\mathbf{s} \right), \\ &\mathbf{I}_{4} = -\mathbf{0} - \lim_{\mathbf{X} \to \mathbf{Z}} \left(\mathbf{P}_{4} \mu, \mathbf{R} \right) \left(\mathbf{X} \right) - \frac{1}{\pi} \int_{\mathbf{R}} \mathbf{f}(\mathbf{s}) \mathbf{y}^{4} \mathbf{c}^{3} \mathbf{g}^{-3} \ \mathbf{K}_{3}(\mathbf{c}\mathbf{g}) \mathbf{d}\mathbf{s} \right), \\ &\mathbf{I}_{5} = \mathbf{0} - \lim_{\mathbf{X} \to \mathbf{Z}} \left(\mathbf{P}_{5} (\gamma, \mathbf{R}) (\mathbf{X}) - \frac{2}{\pi} \int_{\mathbf{R}} \mathbf{b} \mathbf{c} \mathbf{y} \mathbf{g}^{-1} \ \mathbf{K}_{1}(\mathbf{c}\mathbf{g}) \ \mathbf{d}\mathbf{s} \right), \\ &\mathbf{I}_{6} = -\mathbf{0} - \lim_{\mathbf{X} \to \mathbf{Z}} \left(\mathbf{P}_{6} (\gamma, \mathbf{R}) (\mathbf{X}) - \frac{1}{\pi} \int_{\mathbf{R}} \mathbf{b} \mathbf{c}^{2} \mathbf{y}^{3} \mathbf{g}^{-2} \ \mathbf{K}_{2}(\mathbf{c}\mathbf{g}) \ \mathbf{d}\mathbf{s} \right). \end{split}$$
Let \mathbf{r}_{0} denote a positive number and let

$$I_{1} = \theta - \lim_{X \to Z} \frac{\theta}{\partial y} P(\lambda, \delta, \Im(\xi, \mathbf{r}_{0}))(X),$$

$$I_{2} = \theta - \lim_{X \to Z} \frac{\theta}{\partial y} P(\mu, \eta, C\Im(\xi, \mathbf{r}_{0}))(X) - \frac{\theta}{\partial y} P(f, b, C\Im(\xi, \mathbf{r}_{0}))(X).$$

Observe that

$$I_1 + I_2 = I_1$$

Because the measures $|\lambda|$ and $|\delta|$ satisfy the assumption Lemma 3.

The proof of the fact, that I = 0 is similar to the proof of Lemma 1.

We need the following

LEMMA 5. ([2], [7] Theorem 1, Chapter VII).

f is integrable with respect to the Lebesgue measure on R, then

a)
$$\theta = \lim_{X \to Z} \frac{y}{x} \int_{R} \frac{f(s)}{(x-s)^2 + y^2} ds = f(\xi)$$
 (a.e.)*,

b)
$$G = \lim_{X \to Z} \frac{2}{x} y^3 \int_{R} \frac{f(s)}{((x-s)^2 + y^2)^2} ds = f(\xi)$$
 (a.e.).

We can write ([4] p.117)

$$c^2 g^{-2} K_1(cg) = g^{-2} + O(1),$$

 $c^2 g^{-2} K_2(cg) = 2 e^{-4} + O(1).$

Hence we obtain the following

LEMMA 6. If f is integrable with respect to the Lebesgue measure on R, then

a)
$$0 = \lim_{X \to Z} \frac{1}{X} \int_{\mathbb{R}} f(s) cy g^{-1} K_1(cg) ds = f(\xi)$$
 a.e.,

b)
$$\theta = \lim_{X \to Z} \frac{1}{x} \int_{\mathbb{R}} f(s) c^2 y^3 e^{-2} \mathbb{E}_2(cg) ds = f(\xi)$$
 s.e.

We shall state our result in

THEOREM 2. Let μ and η be signed measures defined on B(R) and satisfying assumptions A and B. Let the measure μ satisfy the condition D, then

a)
$$\theta = \lim_{X \to Z} P(\mu, \eta, R)(X) = (D\mu)(\xi)$$
 (a.e.),

b)
$$\theta = \lim_{X \to Z} \frac{\partial}{\partial y} P(\mu, \eta, R)(X) = (D\eta)(\xi)$$
 (a.e.).

Proof. From Lebesgue theorem on decomposition (see [5] p.215-217) we have one

 $\mu = \mu_a + \mu_s$, $\eta = \eta_a + \eta_s$, into absolutely continuous post and the singular post.

Further on instead of "a.e. with respect to the Lebesgue measure on R" we shall write shortly (a.e.).

We obtain

$$P(\mu, \eta, R)(X) = P_1(\mu_a, R)(X) + P_1(\mu_s, R)(X) + P_2(\eta_s, R)(X) + P_2(\eta_s, R)(X).$$

It is a well-known fact (see [6] p.155), that

$$(D\mu_s)(\xi) = (D\eta_s)(\xi) = 0$$
 (a.e.).

Hence $(D_s \mu_s)(\xi) = (D_s \eta_s)(\xi) = 0$ (a.e.), so from Lemma 3 it follows that

(7)
$$\theta = \lim_{X \to Z} P(\mu_s, \eta_s, R)(X) = 0 \quad (a.e.).$$

From Radon-Nikodym theorem ([5] p.209) there follows the existence of the functions f and g defined and integrable on R such that for every $B \in B(R)$ we have

$$\mu_a(B) = \int_B f(s) ds$$
, $\eta_a(B) = \int_B g(s) ds$.

It is well-known that

$$(D\mu_a)(\xi) = f(\xi)$$
 (a.e.).

Hence from Lemma 6 we have

(8)
$$\mathbb{Q} = \lim_{X \to Z} P(\mu_a, \eta_a, R)(X) = \mathbb{Q} = \lim_{X \to Z} P(f, g, R)(X) = f(\xi)$$
 (a.e.)

By (7) and (8) we get the first part of Theorem 2. Now we shall prove the second part.

Since

$$(D\eta_s^+)(\xi) = (D\eta_s^-)(\xi) = 0$$
 a.e.

and from Lemma 4, we have

$$0 - \lim_{X \to Z} P_5(\eta_s^+, R)(X) = 0 - \lim_{X \to Z} P_5(\eta_s^-, R)(X) = 0 - \lim_{X \to Z} P_6(\eta_s^+, R)(X) = 0 - \lim_{X \to Z} P_6(\eta_s^-, R)(X) = 0$$
 (a.e.)

Let ξ be a point such that $(D\eta_a)(\xi) = g(\xi)$ (it holds true almost everywhere).

From Lemma 6 we get

$$\begin{aligned}
\theta &= \lim_{X \to Z} P_5(\eta_{a}, R)(X) + \theta = \lim_{X \to Z} P_6(\eta_{a}, R)(X) = \\
&= \theta - \lim_{X \to Z} \frac{2}{\pi} \int_{R} cy y^{-1} K_1(cy) g(s) ds = \\
&= \theta - \lim_{X \to Z} \frac{1}{\pi} \int_{R} c^2 y^3 y^{-2} K_2(cy) g(s) ds = 2g(\xi) - g(\xi) = \\
&= g(\xi) = (D\eta_a)(\xi) \quad (a.e.).
\end{aligned}$$

Let us define the measure δ by the formula

$$\delta(B) = \eta(B) - g(\xi) \int_{B} ds \text{ for } B \in \mathcal{J}(R).$$

From the Lebesgue theorem (see [6] p.158) we have

$$DI\delta I(\xi) = 0 \quad (a.e.).$$

Hence by Lemma 4 we obtain

$$\theta = \lim_{X \to Z} \frac{\partial}{\partial y} P(\mu, \eta, R)(X) = g(\xi)$$
 (a.e.).

This ends the proof of the second part of Theorem 2.

References

- [1] Barański F., On the Lauricelli problem for the equation $(\Delta c^2)^2 u(x,y) = 0$ in the half-plane, Rocznik Nauko-wo-Dydaktyczny WSP, Kraków 1974, p.7-16.
- [2] Burys S., Gancarczyk E., On the theorem of Fatou for the biharmonic problem in the half-space, in the press in Zeszyty Naukowe UJ.
- [3] Keller E., Über das Rondverhalten biharmonischer Funktionen in der Hyperkugel, Universität Rostock, Wissenschaftliche Zeitschrift Mathematisch-Naturwissenschaft-

- liche Reihe, Rostock 1977, p.33-46.
- [4] Lebiediew N.N., Funkcje specjalne i ich zastosowania, PWN, Warszawa 1957.
- [5] Muckhreja A., Pothoven K., Real and Functional Analysis, Plenum Press New York and London 1978.
- [6] Rudin W., Real and Complex Analysis, Mladinska Knjiga Ljubliana 1970, McGraw-Hill.
- [7] Stein E.M., Singular Integrals and Differentiability Properties of Function, Princeton University Press, Princeton New Jersey 1970.
- [8] Ryżyk I.M., Gradsztejn I.S., Tablice całek sum szeregów i iloczynów. PWN. Warszawa 1964.