STANISŁAW SERAFIN

On commuting idempotent functions

This paper presents some fragment of dealing on subsemilattices in the semigroup $\mathcal{T}(\mathbf{M})$ of all mappings from M to itself.

1. Let M be a set and $f \in \mathcal{T}(M)$ an idempotent element in the semigroup $\mathcal{T}(M)$ i.e.

$$(1) ff = f.$$

The equality (1) is equivalent to the following condition: the components of the partition $\frac{M}{f}-1_f$ can be indexed using elements of the range I_f such that

(2)
$$\frac{M}{f^{-1}f} = \left\{M_{i}\right\}_{i \in \mathcal{C}_{f}}$$
 and for $i \in \mathcal{C}_{f}$ we have $i = f(i) \in M_{i}$,
$$f(M_{i}) = \{i\}.$$

We shall construct all the mappings $g \in \mathcal{T}(M)$ fulfilling the conditions:

$$gg = g,$$

$$gf = fg.$$

2. Suppose first that $g \in \mathcal{T}(M)$ fulfills (3), (4).

Then by (4)

$$f(g(M_i)) = g(f(M_i)) = g(\{i\}) = \{g(i)\}.$$

Hence g(M_i) is contained in a certain M_j.

Thus

(5)
$$\bigwedge_{i \in \mathbb{Q}_{f}} \bigvee_{j \in \mathbb{Q}_{f}} (g(M_{i}) \subset M_{j} \land g(i) = j), \text{ and}$$

$$\tilde{g} := g | \mathcal{Q}_f \in \mathcal{T}(\mathcal{Q}_f).$$

For the sequel introduce the sets

S: = g(
$$\mathbb{I}_{g}$$
) and for seS \mathbb{I}_{g} : = $\tilde{g}^{-1}(\{s\})$, \mathbb{U}_{g} : = $\bigcup_{i \in \mathbb{I}_{g}} \mathbb{M}_{i}$.
Evidently (\mathbb{I}_{g} = $\bigcup_{i \in \mathbb{I}_{g}} \mathbb{I}_{g}$ and \mathbb{M} = $\bigcup_{i \in \mathbb{I}_{g}} \mathbb{U}_{g}$.

Moreover sell since Scl and from (3) g(s)

Moreover $s \in I_s$, since $S \subset I_s$ and from (3) g(s) = s.

Thus the family $\{I_s\}_{s \in S}$ is a partition of I_s and $\{U_s\}_{s \in S}$ is a partition of I_s satisfying the relation:

 $g(U_g) \subset M_g \subset U_g$ for $s \in S$.

Let

$$g_s = g | v_s$$
.

It is obvious that $g_s \in \mathcal{T}(U_s)$ and according to (3) for every $x \in U_s$ there is

$$g_{g}(g_{g}(x)) = g_{g}(g(x)) = g(g(x)) = g(x) = g_{g}(x)$$

Thus

$$g_g g_g = g_g$$
 for seS

and

$$g = \bigcup_{s \in S} g_s$$

3. Conversely, we shall prove that every mapping
g ∈T (M) constructed by conditions found in 2. satisfies
(3) and (4).

Let $\emptyset \neq S \subset \mathbb{Q}_f$, $\{I_g\}_{g \in S}$ be a partition of \mathbb{Q}_f (if $g_1 \neq g_2$, then $I_{g_1} \cap I_{g_2} = \emptyset$) such that $g \in I_g$ for $g \in S$.

Next denote U_s : = $\bigcup_{i \in I_s} M_i$. $\{U_s\}_{s \in S}$ is a partition of M and $M_s \subset U_s$ (s $\in S$).

Moreover let $g_s \in T(U_s)$ be an arbitrary idempotent mapping from U_s to itself, satisfying the conditions: $g_s(I_s) = \{s\}, g_s(U_s) \subset M_s.$

If $g: = \bigcup_{s \in S} g_s$, then for $x \in M$ there exists some $s \in S$

such that $x \in U_g$ and $g_g(x) \in M_g$, and consequently

 $g(g(x)) = g(g_g(x)) = g_g(g_g(x)) = g_g(x) = g(x)$.

To verify the equality (4) for $x \in M$ we find the unique $i \in C_f$ with $x \in M_i$ and next the $s \in S$ such that $i \in I_S$ and

 $x \in M_1 \subset U_s$. Hence $f(g(x)) = f(g_g(x)) \in f(M_s) = \{s\}$ and

 $g(f(x)) = g(i) = g_g(i) = s.$

Thus we have proved our statement.