STANISŁAW SERAFIN

Solution of the translation equation on extensions of semigroup with zero-multiplication

1. Let (S, \cdot) be a semigroup with zero-multiplication $(S \cdot S = \{0\}),$

(G, •) a semigroup with identity element 1, such that

 $S \cap G = \emptyset$ and card(S) > 1.

We introduce

and for x,y e∑

 $\mathbf{x} \cdot \mathbf{y} := \begin{cases} \mathbf{x} \cdot \mathbf{y}, & \text{when } \mathbf{x}, \mathbf{y} \in \mathbb{S} & \text{or } \mathbf{x}, \mathbf{y} \in \mathbb{G}, \\ 0, & \text{when } \mathbf{x} \in \mathbb{G}, \mathbf{y} \in \mathbb{S} & \text{or } \mathbf{x} \in \mathbb{S}, \mathbf{y} \in \mathbb{G}. \end{cases}$

Under above assumptions (\sum , °) is the ideal extension of the semigroup S by G^0 (G with adjoined zero element) obtained using the homomorphism $\psi: G \longrightarrow S$ such, that $\psi(x) = 0$ for $x \in G$ (see [1], p.167).

Remark 1. The zero-homomorphism is the unique homomorphism from (G, \cdot) to (S, \cdot) , Indeed for $x \in G$ and a homomorphism h: $G \longrightarrow B$ we have

 $h(x) = h(1 \cdot x) = h(1) \cdot h(x) = 0.$ Consequently if (G, •) is a group, then (\sum , •) is isomorphic to every ideal extension of (S, •) by (G^O, •) constructed using homomorphisms from G to S.

2. Let Γ be an arbitrary nonempty set and

F: Γ×Σ: → Γ

be a solution of the translation equation

(1) $F(F(\alpha,x),y) = F(\alpha,x \cdot y)$ for $\alpha \in \Gamma$, $x,y \in \Sigma$. Introduce $F_1 := F \mid \Gamma x G$, $F_2 := F \mid \Gamma x S$.

Evidently F_1 , F_2 are solutions of the translation equation with the fibre Γ on (G, \cdot) and (S, \cdot) respectively.

Moreover there is

- (2) $F_1(F_2(\alpha,x),y) = F_2(\alpha,0)$, for $\alpha \in \Gamma$, $x \in S$, $y \in G$,
- (3) $F_2(F_1(\alpha, x), y) = F_2(\alpha, 0)$, for $\alpha \in \Gamma$, $x \in G$, $y \in S$. It is easily seen:

THEOREM 1. A mapping $F: \Gamma \times \Sigma \to \Gamma$ is a solution of the translation equation on the semigroup (Σ, \bullet) with the fibre Γ iff there exist solutions F_1 , F_2 of the translation equation with the fibre Γ on G and S respectively, satisfying (3), (4) and $F_1 = F \mid \Gamma \times G$, $F_2 = F \mid \Gamma \times S$.

3. We know the general solution of the translation equation on a semigroup with zero-multiplication (see [2])

and now we shall investigate if every solution F_1 of the translation equation on G can be extended to the solution of this equation on Σ and the analogous problem for solutions of the translation equation on S.

THEOREM 2. For every solution F_2 of the translation equation on S with the fibre Γ there exists an extension F which is a solution of the translation equation on Σ , with the same fibre Γ ; under additional condition $F(\Gamma \times \Sigma) = F_2(\Gamma \times S)$ this extension is uniquely determined.

Proof. Let $F_2: \Gamma \times S \to \Gamma$ be a solution of the translation equation. Then (see [2]) there are determined

i ≠ j and moreover ·

$$F_2(M_i \times S) = P_i, F_2(\alpha, x) = \alpha_i$$

for $\alpha \in P_i$, xes or $\alpha \in M_i$, x = 0.

First we shall prove the following:

Suppose that $F: \Gamma \times \Sigma \to \Gamma$ satisfies the translation equation on Σ and $F_2 = F \mid \Gamma \times S$.

For iel and $\alpha \in P_i$ we find $\beta \in M_i$ and $x_0 \in S$ such that $F(\beta,x_0) = F_2(\beta,x_0) = \alpha$.

If for some $y \in G$ there is $F(\alpha, y) \neq \alpha_1$, then

 $F(F(\beta,x_0),y) = F(\alpha,y) \neq \alpha_1$ and on the other hand $F(F(\beta,x_0),y) = F(\beta,x_0,y) = F(\beta,0) = F_2(\beta,0) = \alpha_1$. This contradiction proves, that

$$F(P_i \times G) = \{c_{i,j}\} \text{ for } i \in I.$$

Let now $i \in I$ and $\alpha \in M_i$. If for some $x \in G$ we have $F(\alpha, x) \in M_i$ and $i \neq j$, then

 $F(F(\alpha,x),0) = F_2(F(\alpha,x),0) \in F_2(M_j \times S) = P_j$ and

$$F(F(\alpha,x),0) = F_2(\alpha,0) = \alpha_i \notin P_i$$

Whence $F(M_i \times G) \subset M_i$ for iel.

Assuming additionally $F(\Gamma \times \Sigma) = F_2(\Gamma \times S)$ we obtain $F(M_i \times G) \subset M_i \cap F_2(\Gamma \times S) = P_i$. In this case for every $\alpha \in M_i$, $x \in G$ there is

 $F(\alpha,x) = F(F(\alpha,1),x) \in F(P_i \times G) = \{\alpha_i\}$ and consequently

(4) $F(M_i \times G) = \{\alpha_i\}$ for $i \in I$. If we denote $F_i := F \mid \Gamma \times G$, under condition

 $F_2(\Gamma \times S) = F(\Gamma \times \Sigma)$ we have thus for iell

(5)
$$F_1(M_i \times G) = \{o_{i}\}.$$

The mapping F_1 is by (5) uniquely determined and it is a solution of the translation equation on G.

In fact if F_1 is defined by (5), $i \in I$, $\alpha \in M_1$, $x,y \in G$, then $F_1(F_1(\alpha,x),y) = F_1(\alpha_1,y) = \alpha_1 = F_1(\alpha,x \cdot y)$.

We shall examine that F_1 defined by (5) satisfies (2) and (3). If $i \in I$, $x \in M_1$, $x \in S$, $y \in G$ we have for such F_1

$$\mathbb{F}_1(\mathbb{F}_2(\alpha, \mathbf{x}), \mathbf{y}) \in \mathbb{F}_1(\mathbb{P}_1 \times \mathbb{G}) = \{\alpha_i\},$$

so that

$$F_1(F_2(\alpha,x),y) = \alpha_1 = F_2(\alpha,0).$$

Similarly if iel, oem, xeG, yeS we obtain

$$\mathbb{F}_2(\mathbb{F}_1(\infty,x),y)=\mathbb{F}_2(\infty_1,y)=\alpha_1=\mathbb{F}_2(\infty,0).$$

In result the mapping F_1 determined by (5) is a solution of the translation equation on G extending F_2 to the solution F of this equation on Σ ; when $F_2(\Gamma \times S) = F(\Gamma \times \Sigma)$ it is the unique mapping with these properties.

Remark 2. The mapping F_1 : $\Gamma \times G \to \Gamma$ given by (5) is a trivial solution of the translation equation on G in the sense that $F_1(\alpha, x) = F_1(\alpha, 1) = f(\alpha)$ when $\alpha \in \Gamma$, $x \in G$ and

$$f(f(\alpha)) = f(\alpha)$$
 for every $\alpha \in \Gamma$.

COROLLARY. A solution F_1 of the translation equation on G can be extended to solution of this equation on Σ with the same fibre Γ and property $F(\Gamma \times \Sigma) = F(\Gamma \times S)$ iff F_1 is trivial.

Proof. (a). If F_1 is not trivial and $F_1 = F \mid \Gamma \times G$, $F(\Gamma \times \Sigma) = F(\Gamma \times S)$ then $F_2 := F \mid \Gamma \times S$ is a solution of translation equation on S which is extended to F by F_1 . This is in contradiction to Theorem 2; (b). Let $f : \Gamma \rightarrow \Gamma$, ff = f, $F_1(\alpha, x) = f(\alpha)$ for every $\alpha \in \Gamma$, $x \in G$. Assume that $F_1(\Gamma \times G) = \{\alpha_i\}_{i \in I}$, where $\alpha_i \neq \alpha_j$ for $i \neq j$.

Next denote M_i : = $f^{-1}(\{\alpha_i\})$ and choice $P_i \subset M_i$ such that $\alpha_i \in P_i$. Let further f_i be a surjective mapping f_i : $M_i \times S \longrightarrow P_i$ with condition $f_i (\alpha, x) = \alpha_i$ when $\alpha \in P_i$, $x \in S$ or $\alpha \in M_i$, x = 0. The mapping F_2 : $\Gamma \times S \rightarrow \Gamma$ given by formula

$$\mathbb{F}_2$$
: = $\bigcup_{i \in I} f_i$

is a solution of the translation equation on S and (2), (3) are obviously fulfilled.

So

$$F(\alpha,x):=\begin{cases} F_1(\alpha,x) & \text{when} & \alpha \in \Gamma, x \in G \\ F_2(\alpha,x) & \text{when} & \alpha \in \Gamma, x \in S \end{cases}$$

is an extension of P_4 on \sum .

It is evident, that this extension must not be unique in general.

References

- [1] Clifford A.H., Extensions of semigroups, Trans. Amer. Math. Soc., 68, p.165-173.
- [2] Piechowicz L., Serafin S., Solution of the translation equation on some structures, Zeszyty Nauk.UJ, Prace Mat. 21, Kraków 1979, p.109-114.