ERWIN TURDZA

On an asymptotic property of solutions of an invariant curves equation

1. It was proved in [2] a theorem ([2], Th. 3) on an asymptotic property of continuous solutions of a fractional iterates equation. It is the aim of this paper to prove an analogous theorem on continuous solutions of the invariant curves equation

(1)
$$\varphi^2(\mathbf{x}) = G(\mathbf{x}, \, \varphi(\mathbf{x})) .$$

We shall accept the assumptions which are usually assumed in the theory of continuous solutions of equation (1) (see [1], ch XIV).

(H) The continuous function G is defined on the set

$$\Re := \{(\mathbf{x},\mathbf{y}): \mathbf{x} \in [0,b], \, \beta(\mathbf{x}) \leqslant \mathbf{y} \leqslant \mathbf{x}\},\,$$

where $\beta : [0,b] \rightarrow [0,b]$ is a continuous and strictly increasing function in [0,b] such that

$$G(x,\beta(x)) = \beta(x)$$
 for $x \in [0,b]$

and

G(x,y) < y for $x \in (0,b)$, $\beta(x) < y < x$.

Moreover G is strictly increasing with respect to both

variables and

$$G(0,0) = 0$$
, $G(b,b) = b$, $G(x,x) < x$ for $x \in (0,b)$.

2. DEFINITION 1. We say that a continuous function

f: [0,b] → R belongs to the class U^r(r > 0) of functions

if and only if there exists a continuous function

h: [0,b] → R, such that

 $f(x) = h(x) x^{T}$ for $x \in [0,b]$, h(0) > 0.

DEFINITION 2. Let a $\Omega \subset \mathbb{R}^2$ be a domain, such that $(0,0)\in \Omega$ is a cluster point of the set Ω , We say that a continuous function $G\colon \Omega \to \mathbb{R}$ belongs to the class $U^{V,W}$ (v,w>0) of functions if and only if there exists a continuous function $A\colon \Omega \to \mathbb{R}$, such that

(2)
$$G(x,y) = A(x,y) x^{\nabla}y^{W}$$
 for $(x,y) \in \Omega$, $A(0,0) > 0$.

3. The following lemma (see [2], Lemma 4) will be useful in the sequel

LEMMA 1. Let Jn.k be a double sequence. If

 $\lim_{n\to\infty}|y_{n\cdot k}|=y_k\quad\text{and}\quad\lim_{k\to\infty}|y_k|=y_0,$ then there exist sequences $i_n\to\infty$, $j_n\to\infty$ of positive integers, such that

THEOREM. Let a function $G \in U^{V,W}$ (v,w > 0) fulfills hypothesis (H) and let continuous function ϕ be a solution of equation (1) in [0,b]. If there exists a function $f \in U^{r}$ (r > 0), such that

(3)
$$\varphi(\mathbf{x}) \geqslant f(\mathbf{x}) \text{ for } \mathbf{x} \in [0, b],$$

where

$$r^2 = \mathbf{w} \, \mathbf{r} + \mathbf{v}$$

and

$$(5) \qquad \forall > 1 + w_{\bullet}$$

then QeUr. Moreover, putting

(6)
$$\varphi(\mathbf{x}) = h(\mathbf{x}) \mathbf{x}^{\mathbf{r}} \text{ for } \mathbf{x} \in [0,b],$$

we have

(7)
$$[b(0)]^{1+r-w} = d := A(0,0)$$

(here A(x,y) is given by (2)).

Proof. First let us notice that (4) is a necessary condition for the continuous solution φ to belong to U^r . For if $\varphi \in U^r$ and (6) holds, then we have

$$\varphi^{2}(x) = h(\varphi(x)) [\varphi(x)]^{r} = h(\varphi(x)) [h(x)]^{r} x^{r^{2}}.$$

On the other hand

$$\varphi^{2}(\mathbf{x}) = G(\mathbf{x}, \varphi(\mathbf{x})) = A(\mathbf{x}, \varphi(\mathbf{x})) \mathbf{x}^{\nabla} [\varphi(\mathbf{x})]^{\mathbf{W}} =$$

$$= A(\mathbf{x}, \varphi(\mathbf{x})) [h(\mathbf{x})]^{\mathbf{W}} \mathbf{x}^{\nabla} \mathbf{x}^{\mathbf{PW}}.$$

Hence r must satisfy (4) as functions h and A have positive limits in points $0 \in \mathbb{R}$ and $(0,0) \in \mathbb{R}^2$, respectively.

Now let the assumptions of theorem be fulfilled and let us put

(8)
$$f(x) = q(x) x^{2} (q(0) > 0).$$

Then (3) and (6) imply

(9)
$$\lim_{\mathbf{x}\to 0^+}\inf h(\mathbf{x}) > 0.$$

Let a sequence $x_n \to 0^+$ as $n \to \infty$. We shall prove (an indirect proof) that the sequence $h(x_n)$ is bounded. If it is not true, then there exists an index sequence k_n , such that $h(x_k) \to \infty$ as $n \to \infty$. Let a function h be such that condition (6) holds. The conditions (6) and (4) imply $\phi^2(x_k) = h(\phi(x_k)) [\phi(x_k)]^T = h(\phi(x_k)) [h(x_k)]^T x_k^T = h(\phi$

On the other hand (1), (2) and (6) imply

$$\phi^{2}(\mathbf{x}_{k_{n}}) = G(\mathbf{x}_{k_{n}}, \phi(\mathbf{x}_{k_{n}})) = A(\mathbf{x}_{k_{n}}, \phi(\mathbf{x}_{k_{n}})) \mathbf{x}_{k_{n}}^{\mathbf{V}} [\phi(\mathbf{x}_{k_{n}})]^{\mathbf{W}} = \\
= A(\mathbf{x}_{k_{n}}, \phi(\mathbf{x}_{k_{n}})) \mathbf{x}_{k_{n}}^{\mathbf{V}} [h(\mathbf{x}_{k_{n}})]^{\mathbf{W}} \mathbf{x}_{k_{n}}^{\mathbf{V}+\mathbf{W}r} = \\
= A(\mathbf{x}_{k_{n}}, \phi(\mathbf{x}_{k_{n}})) [h(\mathbf{x}_{k_{n}})]^{\mathbf{W}} \mathbf{x}_{k_{n}}^{\mathbf{V}+\mathbf{W}r}.$$

Hence

$$h(\phi(\mathbf{x}_k)) [h(\mathbf{x}_k)]^{T-W} = A(\mathbf{x}_k, \phi(\mathbf{x}_k))$$

and as ever continuous solution of equation (1) has limit zero at zero (see [1], ch. XIV, § 3) and by virtue of (5) r - w > 1, we have

$$\lim_{n\to\infty} h(\varphi(\mathbf{x}_k)) = 0,$$

which contradicts (9).

Now we shall prove that there exists $\liminf_{x\to 0^+} \lim_{h\to 0^+} h(x) =: h(0)$ and (7) holds. Let x_n be a sequence chosen from arbitrary sequence $x_n\to 0^+$. It follows from (9) that there exists a subsequence $x_n:=z_n$ chosen from the sequence x_n , such that

(10)
$$\lim_{n \to \infty} h(\mathbf{z}_n) =: s > 0,$$

and it is possible that the number s depends on the sequence x_n . From (6), (1), (4) and (2) we obtain

$$h(\varphi(x)) = \varphi^{2}(x) [\varphi(x)]^{-r} = G(x, \varphi(x)) [h(x)]^{-r} x^{-r^{2}} =$$

$$= A(x, \varphi(x)) x^{V} [h(x)]^{W} x^{PW} [h(x)]^{-r} x^{-r^{2}} =$$

$$= A(x, \varphi(x)) [h(x)]^{W-r},$$

whence

(11)
$$\lim_{n\to\infty} h(\varphi(z_n)) = \lim_{n\to\infty} A(z_n, \varphi(z_n)) [h(z_n)]^{w-r} = d s^{w-r}.$$
Let us put $\delta := w - r$, $w_{n,k} := \varphi^k(z_n).$
We shall prove, by induction, that

(12)
$$\lim_{k \to \infty} h(w_{n,k}) = d^{\frac{1-\delta^k}{1-\delta}} s^k, k = 1,2,...$$

It follows from (11) that (12) holds for k = 1. Suppose that (12) is fulfilled for a k > 1 and consider

$$h(w_{n,k+1}) = h(\phi(w_{n,k})).$$

 $\phi^{k}(0) = 0$ for $k = 1, 2, ..., then <math>\lim_{n \to \infty} w_{n,k} = 0$ and, similarly as (11), we obtain from (6), (1) and (2)

$$\lim_{n\to\infty} h(w_{n,k+1}) = \lim_{n\to\infty} h(\phi(w_{n,k})) =$$

$$= \lim_{n\to\infty} A(w_{n,k}, \phi(w_{n,k})) [h(w_{n,k})]^{W-\Gamma} =$$

which ends the proof of (12).

Now let us put

(13)
$$s = p d^{1-\delta}$$

where a number p, chosen to s, may depend on x.

Then, by virtue of (12), we have

(14)
$$\lim_{n \to \infty} h(w_{n,k}) = d^{\frac{1}{1-\delta}} p^{\delta k} = d^{\frac{1}{1+r-w}} p^{(w-r)^k}.$$

We shall prove that p = 1. If p > 1, then taking k odd, k = 2m + 1 and denoting

$$y_{n,k} := h(w_{n,k})$$

we have, by virtue of (14)

$$y_k := \lim_{n \to \infty} y_{n,k} = d^{\frac{1}{1+r-w}} p^{(-1)^k (r-w)^k},$$

hence

$$\lim_{m\to\infty}y_k=\lim_{m\to\infty}y_{2m+1}=0.$$

Now Lemma 1 implies that there exist index sequences $i_n \rightarrow \infty$, $j_n \rightarrow \infty$, for which

$$\lim_{n\to\infty}y_{n}=\lim_{n\to\infty}h(\varphi^{i_n}(z_j))=0,$$

a contradiction with respect to (9).

If $p \in (0,1)$, then taking k even, k = 2m we obtain in a similar way

$$\lim_{k\to\infty} y_k = \lim_{k\to\infty} \frac{1}{1+r-w} p^{(r-w)k} = 0$$

what also implies a contradiction with respect to (9).

In this way we have proved, that for an arbitrary sequence $\mathbf{x}_n \to 0^+$ and an arbitrary subsequence $h(\mathbf{x}_k)$ of the sequence $h(\mathbf{x}_n)$ it is possible to choose a subsequence $h(\mathbf{x}_n) = h(\mathbf{x}_k)$ of the sequence $h(\mathbf{x}_k)$ which converges

to the limit s (number s does not depend in fact on the sequence x_n). It implies that the limit $\lim_{n\to\infty} h(x_n)$ exists and it is equal to s, which is equivalent to the relation

$$\lim_{x \to 0^+} h(x) = s$$

which, by virtue of (13), implies (7) and the proof is ended.

References

- [1] Kuczma M., Functional equations in a single variable, Polish Scientific Publishers, Warszawa 1968.
- [2] Turdza E., Comparison theorems for a functional inequality, General Inequalities, Birkhauser Verlag Basel, 1978, vol 1, p.199-211.