STANISŁAW WOŁODŹKO

A modification of a construction of Z. Moszner

Let (S, \bullet) denote an arbitrary group and let X be an arbitrary non-empty set. We are going to look for a function $f: X \times S \longrightarrow X$ fulfilling the condition

(1)
$$f(x,\alpha\beta) = f(f(x,\alpha),\beta)$$

for $x \in X$, α , $\beta \in S$. Equation (1) is called the equation of translation. Equation (1) has been solved by Z.Moszner [1]. In the present paper we shall give a modification of that construction describing the set of all solutions of equation (1).

A. Construction of Z. Moszner. Every solution f of equation (1), and only solutions of (1), can be obtained in the following way:

1° Let us take an arbitrary function $g: X \rightarrow X$ such that $g \circ g = g \circ$

 2^0 In the set g(X) let us choose an arbitrary family of subsets $\{X_k\}_{k\in K}$ having the following properties:

a)
$$\mathbb{Z}_{k} \neq \emptyset$$
 for $k \in \mathbb{K}$;

b)
$$X_{k_1} \cap X_{k_2} = \emptyset$$
 for $k_1 \neq k_2$;

c)
$$g(X) = \bigcup_{k \in K} X_k$$

and

d) for every k ε K there exists a subgroup $\boldsymbol{\varsigma}_k$ of the group $\boldsymbol{\varsigma}$ such that

(2)
$$\operatorname{card} X_k = \operatorname{card} (9/9_k),$$

where

$$S/S|_{k} = \{S_{k} \alpha : \alpha \in S\}$$
.

 3° Let us take an arbitrary one-to-one map g_k of the set X_k onto the set $\frac{9}{9}(k \in X)$.

We define the function f by the following formula (3) $f(x,\alpha) := g_k^{-1} [g_k(g(x))\alpha]$

for $x \in X$, $\alpha \in S$, where $k \in K$ is such that $g(x) \in X_k$.

B. The modification of the construction of Z. Moszner Let $\{S_s\}$ denote an arbitrary family of subgroups of S. We do not assume that the map $S \ni s \longmapsto S_s$ is one-to-one, thus the map $S \ni s \longmapsto S/S_s$ is also not necessarily one-to-one. We shall introduce the so called indexed quotient structure $(S/S_s,s) := \{(S_s \alpha,s) : \alpha \in S\}$ for $s \in S$. In this way we shall obtain a one-to-one map $S \ni s \longmapsto (S/S_s,s)$.

Further on we introduce a function λ_s ascribing to an arbitrary right-hand coset the same coset provided with the index s. Here is the definition of λ_s :

 $G/G_S \ni G_S \alpha \mapsto \lambda_S(G_S \alpha) := (G_S \alpha, s) \in (G/G_S, s) \quad (\alpha \in G, s \in S).$ The multiplication of indexed cosets by elements of the group G is defined in the natural way:

$$(4) \qquad (S_s \alpha, s) \beta := \lambda_s (S_s \alpha \beta)$$

for

THEOREM. The following construction is equivalent to the construction of Z.Moszner.

We choose

1) an arbitrary family $\{S_s\}_{s \in S}$ of subgroups of S such that

card
$$U(9/9_s, s) \leq card X$$
;

- 2) an arbitrary one-to-one map $\varphi: \bigcup_{s \in S} (\S/\S_{s}, s) \rightarrow X$ and
- 3) an arbitrary function g: X → X such that g g = g and

$$\varphi(\bigcup_{s \in S} (S/S_s)) = g(X).$$

We define the function f by the formula

for xeX, ae9.

Proof.1.Leta solution f of equation (1) be obtained by the construction of Z.Moszner. Then there exists: a function g: $X \rightarrow X$, a decomposition $\{X_k\}_{k \in K}$ of the set g(X), a family $\{G_k\}_{k \in K}$ of subgroups of the group G and

a family {g_k} of bijections fulfilling conditions 1°, 2° and 3° of that construction, whereas the function f is defined by formula (3). We are going to prove that the function f can be obtained from the construction presented in the theorem that we are proving now.

To this end let us put S = K and let us take the same function g and the same family of subgroups {9 s s s in the construction of Z.Moszner. We define the function $\varphi: \bigcup_{s \in S} (S/S_s, s) \to X$ by the formula $\varphi = \bigcup_{s \in S} (g_s^{-1} \circ \lambda_s^{-1}).$ Hence and from the definitions of the maps $\lambda_{_{\mathbf{S}}}$ and $\mathbf{g}_{_{\mathbf{S}}}$ it follows that the map ϕ is an injection and $\varphi[\bigcup_{s \in S} (9 / 9_s, s)] = g(X) \subset X$. Therefore card $\bigcup_{s \in S} (9 / 9_s, s) \leqslant$ prove (5) let us choose an arbitrary x \in X and an arbitrary $\alpha \in S$. It follows from 10 and 20 that there exists exactly one $s \in S$ such that $g(x) \in X_s$. Hence and from the definition of the functions g_s we obtain the existence of $\beta \in G$ such that $g_s(g(x)) = G_s \beta$, thus $[g_s(g(x))] \alpha = G_s \beta \alpha$, whence $g_s(f(x,\alpha)) = g_s \beta \alpha$ by virtue of (3). It follows from the last equality, the definition of the functions $\lambda_{\mathbf{s}}$ and (4) that

 $(\lambda_{s} \circ g_{s}) (f(x,\alpha)) = \lambda_{s} (g_{s} \beta \alpha) = [\lambda_{s} (g_{s} \beta)] \alpha = [(\lambda_{s} \circ g_{s}) (g(x))] \alpha ,$ therefore

$$f(\mathbf{x},\alpha) = (\mathbf{g}_{s}^{-1} \circ \lambda_{s}^{-1}) \left(\left[(\lambda_{s} \circ \mathbf{g}_{s}) (\mathbf{g}(\mathbf{x})) \alpha \right] \right)$$

whence we obtain (5) by virtue of definition of ϕ .

2. Let us assume that f is defined by formula (5). We are going to prove that the function f can be obtained from the construction of Z.Moszner. To this end let us assume that K = S and let us choose the same function g and the same family of subgroups $\{G_k\}_{k \in K}$ as in the construction occurring in the theorem that we are proving now. Putting $X_k = \varphi((G/G_k,k))$ and $g_k = \lambda_k^{-1} \cdot (\varphi/G/G_k,k))^{-1}$ for ke K we can easily check that conditions 1° , 2° and 3° of the construction of Z.Moszner and formula (3) are fulfilled.

References

[1] Moszner Z., Structure de l'automate plein, réduit et inversible, Aequationes Math., 9 (1973), p.46-59.