CZESŁAW KUŚ, JULIAN DUDEK,* ZYGMUNT WRÓBEL*

Wpływ domieszek La₂O₃ na własności elektryczne niobianu sodu NaNbO₃

WSTEP

Badania strukturalne, dielektryczne i optyczne wykazały, że w niobianie sodu NaNbO₃ występuje kilka przejść fazowych [1-8]. W zakresie temperatur niższych niż minus 200°C niobian sodu wykazuje własności ferroelektryczne, w zakresie temperatur od minus 200° do +360°C antyferroelektryczne, a w temperaturach wyższych od 360°C - paraelektryczne. W obszarze paraelektrycznym posiada ponadto przejścia fazowe w następujących temperaturach: 430°C, 470-480°C, 520°C, 570-580°C, 640-650°C [3,6,7,8].

Dla dokładniejszego poznania własności elektrycznych niobianu sodu autorzy zbadali zmiany temperaturowe przewodnictwa elektrycznego i stałej dielektrycznej. Zbadano również wpływ domieszki La₂0₃ na własności elektryczne NaNbO₃. Celem tych badań było sprawdzenie, czy ta domieszka spowoduje wzrost przewodnictwa i zmiany innych parametrów elektrycznych, podobnie do wywołanych w BaTiO₃ [9].

TECHNIKA EKSPERYMENTU

a) Technologia próbek

Polikrystaliczne próbki NaNbO₃ otrzymano drogą syntezy czystych do analizy składników Na₂CO₃ i Nb₂O₅. Ilości wagowe dobrano w stosunku stechiometrycznym. Po wymieszaniu tych składników i uformowaniu próbek pod ciśnieniem 5 T/cm² spiekano je wstępnie w temperaturze 850° C przez 3 godziny. Następnie dwukrotnie je rozdrabniano, prasowano i spiekano

^{*} Uniwersytet Sląski

w temperaturze 1100° C przez 3 godziny a następnie w 1250° C przez 4 godziny. Dla uzyskania próbek z domieszką lantanu dodano do trzeciego spieku odpowiednią ilość La₂O₃. Uzyskane próbki ceramiczne w formie krążków o średnicy 1,5 cm wyszlifowano do grubości 0,2 cm i naniesiono na nie elektrody platynowe metodą naparowywania w próżni.

b) Technika pomiaru

Układ pomiarowy przedstawiono na rys. 1. Próbki umieszczono w termo-

Rys. 1. Termostat A - przewody platynowe, B - blaszki platynowe, C - gniazda do termopary, D - próbka, E - srebrne elektrody

stacie między dwoma platynowymi elektrodami, które ogrzewano przy pomocy dwu oddzielnych grzałek. Grzałki te umożliwiały uzyskanie założonego (lub zerowego) gradientu temperatury. Temperaturę układu mierzono przy pomocy dwóch termopar Pt - PtRh. Dwa przewody platynowe zakończone blaszkami platynowymi zapewniały kontakt elektryczny z elektrodami próbki. Pomiary pojemności wykonano za pomocą mostka przy częstotliwości pola pomiarowego 1 Mhz i obliczono war-

tości przenikalności elektrycznej E . Korzystając z pomiarów I = I(U) wyznaczono przewodnictwo w funkcji temperatury dla obszaru stosowalności prawa Ohma.

WYNIKI DOŚWIADCZALNE

Celem znalezienia punktu przejścia fazowego ze stanu antyferroelektrycznego do paraelektrycznego oraz wpływu domieszek La₂0₃ na wartość E jak i temperatury w której występuje maksimum dokonano pomiarów pojemności próbki w procesie grzania i chłodzenia. Wyniki przedstawiono na rysunku 2 i 3 w formie zależności $\mathcal{E} = \mathcal{E}(T)$. Z wykresu widzimy, że w proce-

Rys. 2. Zależność temperaturowa przenikalności elektrycznej w procesie grzania i chłodzenia

sie grzania maksimum E dla NaNbO₃ występuje w temperaturze 390°C, natomiast przy chłodzeniu w temperaturze 345°C. Największe wartości E uzyskują próbki zawierające 0,1% domieszki La₂O₃ (rys. 3 i 4) najmniejsze natomiast próbki NaNbO₃ bez domieszki.

Rys. 3. Wpływ domieszek na temperaturowe zależności E

Domieszki La₂0₃ powódują obniżenie temperatury, w której występuje maksimum zarówno w grzaniu jak przy chłodzeniu. Najniższa wartość temperatury, w której występuje maksimum wykazują próbki NaNbO₃ z domieszką -0,2% mol La₂0₃. Próbki te wykazują także najmniejszą wartość histerezy temperaturowej (rys. 4).

a chłodzenie b-grzanie

Rys. 4. Zależność Émax i T_c próbek od ilości domieszki: - krzywa a - w procesie ochładzania, - krzywa b - w procesie ogrzewania Korzystając z wymiarów geometrycznych próbki i z pomiarów I = I(U) w obszarze stosowalności prawa Ohma wyznaczono przewodnictwo elektryczne w funkcji temperatury. Zależność tę w postaci $\ln \sigma = \sigma(\frac{1}{T})$, dla zakresu temperatur od 200° do 700° C przedstawia rysunek 5. Odcinki prostych na tym rysunku wskazują na to, że przewodnictwo elektryczne zmienia się z temperaturą wg wzoru:

$$d = d_{\dot{c}} e^{-\frac{\varphi}{kT}}$$

gdzie:

 ♂ - wartość przewodnictwa w danej T_{śr.}
♂ - wartość przewodnictwa przy T_{śr.} → ∞
♥ - energia aktywacji
k - stała Boltzmanna,

Wyznaczone wartości energii aktywacji dla czystego NaNbO₃ i domieszkowanego tlenkiem lantanu wynoszą odpowiednio

NaNb0₃ dla T > 480°C -- $\varphi = 1,24 \text{ eV}$ = T < 480°C -- $\varphi = 0,84 \text{ eV}$

NaNb0₃ + 0,2% mol
$$La_2^{0}_{3}$$

dla T > 480 - $\Psi = 1,08 \text{ eV}$
T < 480 - $\Psi = 0,97 \text{ eV}.$

Rys. 5. Zależność przewodnictwa elektrycznego od temperatury

Dla podwyższenia wartości przewodnictwa elektrycznego wprowadzono małe ilości domieszek La₂O₃ sądząc, że podobnie jak to ma miejsce w BaTiO₃ [9] nastąpi duży wzrost przewodnictwa elektrycznego tych próbek. Przeprowadzone pomiary przewodnictwa nie potwierdziły przypuszczenia. Przykładową zależność przewodnictwa elektrycznego od procentowej zawartości domieszki La₂O₃ dla stałej temperatury próbki (600°C) przedstawia krzywa 1 na rysunku 6. Największy wzrost przewodnictwa elektrycznego powoduje O,2% mol La₂O₃. Na rysunku tym przedstawiono także zależność współczynnika Seebecka od zawartości domieszek.

...

Rys. 6. Zależność przewodnictwa elektrycznego i współczynnika Seebecka od ilości domieszki (zmierzone dla temperatury 600°C)

OMÓWIENIE WYNIKÓW

Na podstawie uzyskanych wyników doświadczalnych możemy stwierdzić, że znaczny wpływ na maksymalną wartość E jak i temperaturę, w której to maksimum występuje, mają domieszki La₂O₃. Największe wartości E uzyskują w punkcie Curie próbki NaNbO₃ + 0,1% mol La₂O₃ i NaNbO₃ + 0,3% mol La₂O₃. Próbki te wykazują również największą wartość histerezy temperaturowej, której miarą są ΔE i ΔT_c . Wartości te wynoszą odpowiednio: dla NaNbO₃ + + 0,1% mol La₂O₃ $\Delta E_{max} = 450$ i $\Delta T_c = 40^{\circ}$ C, natomiast dla NaNbO₃ + + 0,3% La₂O₃, $\Delta E_{max} = 480$ i $\Delta T_c = 48^{\circ}$ C. Najmniejszą wartość E posiadają próbki NaNbO₃ bez domieszek, ΔE_{max} dla jednej z badanych próbek wynosi 268 a $\Delta T_c = 45^{\circ}$ C. Dla wszystkich badanych próbek nie stwierdzono wyraźnych anomalii E w pozostałych przemianach fazowych. Na podstawie przeprowadzonych badań można stwierdzić, że właściwości dielektryczne NaNbO₃ możemy znacznie zmieniać przez wprowadzanie odpowiednich ilości domieszek La_2O_3 . Uzyskane wyniki doświadczalne pozwalają także stwierdzić, że przewodnictwo ma charakter aktywacyjny (lnG zależy liniowo od $\frac{1}{1}$). Domieszki La_2O_3 powodują wzrost przewodnictwa elektrycznego w całym badanym zakresie temperatur. Największą wartość przewodnictwa elektrycznego posiadają próbki NaNbO₃ + 0,2% mol La_2O_3 (rys. 6 krzywa 1). Wartość przewodnictwa można zmieniać podobnie jak i ε przez wprowadzenie różnych ilości domieszek La_2O_3 .

Przeprowadzony pomiar współczynnika Seebecka wykazał również zależność wartości tego współczynnika od zawartości domieszki La_2O_3 (rys. 6 - krzywa 2). Największe wartości " \propto " uzyskują próbki NaNbO₃ + O,2% mol La_2O_3 . Całokształt uzyskanych wyników potwierdza przypuszczenie, że na przedstawione wielkości elektryczne znaczny wpływ wywierają małe ilości domieszki La_2O_3 wprowadzone do ceramiki przy trzecim jej formowaniu. Optymalne zmiany uzyskuje się przy wprowadzeniu 0,1 + O,2 mol La_2O_3 .

LITERATURA

```
Ahtee M., Glazer A.M., Megaw H.D., Acta Cryst., B 29, 10, 2171 (1973).
Glazer A.M., Megaw H.D., Phil.Mag., 26, N<sup>0</sup>4, 995 (1972).
Ishida K., Honjo G., J.Phys.Soc.Japan, 30, 899 (1971).
Lefkowitz J., Łukaszewicz K., Megaw H.D., Acta Cryst., 20, 670 (1966).
Glazer A.M., Megaw H.D., Acta Cryst., A 29, 489 (1973).
Ishida K., Honjo G., J.Phys.Soc.Japan, 34, 1279 (1973).
Glazer A.M., Ishida K., Ferroelectries, 6, 219-224 (1974).
Ishida K., Honjo G., J.Phys.Soc.Japan, 34, N<sup>0</sup>5, (1973).
Saburi O.J., "Phys.Soc.Japan", 14, 1154 (1959).
```

SUMMARY

The temperature changes of electric conductivity and of electric permittivity were investigated for the $NaNbO_3$ and $NaNbO_3 + /0, 1\%, 0, 2\%$, 0,25%, 0,3%, 0,4%, 0,5% and 1% mol $La_2O_3/$ ceramics. Obtained data were used to determine amount of La_2O_3 giving optimal value of conductivity.

PESKME

Исследованы температурные изменения электропроводимости и диэлектрической проницаемости для поликристаллического ниобата натрия NaNbO3 и NaNbO3 легированного лантаном (La₂O₃). Исследованы образцы с добавкой 0,1%, 0,2%, 0,25%, 0,3%, 0,4%, 0,5% и 1% моль La₂O₃.