JANUSZ BASTER, ZENON MOSZNER, JOZEF TABOR

On the stability of some class of functional equations

There are various definitions of the stability of
functional equations. In papers [7] and [8] the authors
consider the properties of these definitions and the pro-
blems of the stability of. some classes of equations. In
this paper we generalize those results to a possibly large

class of equations.

I. Consider the equation:
rm,Y "Cx)*(YM (b(x,y)) vi(l(xy))) =
= K(x,y,vi(x), " (y) A (k(xy)) A0(xy)))

where is an unknown function, k,I: E~AXE”~-"EN,
P,K: ENx E~X X X X -*e are given functions and
B, are arbitrary sets.
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The following definition of the stability of equation
(1) is patterned after that given by D.H. Hyers (cf. C63)»

DBPINITIOH 1. Let be a metric in V~. Equation CD
is said to be stable iff for every positive £ there

exists a positive & such that for all functions ¢ se™-» V/,

if
YAKx.y.hCx) M y).dkex.y) K(x,7,0(x) MDD A1(x,))))< S
for all x,y e E™,
then there exists a solution > of CD such that
91(~(3c)*d (x))<£E
for all Xx aE~"e

In this definition nothing is assumed about the metric
9V In the following example we can see that this fact may
bring about an unexpected situations

Example. Let there be a metric f(a,b) s |ea-e”j
in the set R of real numbers. Consider the equations:

12) fCx) + f(y) - f(xy) =0,

(3) f(x) + fCy) = f(xy),

where f: R R . The function fCx) = 0 is. the unique so-
lution of these equations.

Equation (3) is not stable in the sense of definition
1, because if we take an £ , 0 <£ <1 and a <>0, and
then choose an n such that 1~ - 1 £ and |75 - D]<

then the function

gu)
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satisfies condition C(g(x)+g(y) .g(xy))<5 » but
Cfe(0),0)> £

Equation (2), on the other hand, is stable in this
sense, since putting y = O in the inequality
C(gO0O0+g(y)-g(xy) »0)<S , we have C(g(x),0)<£ , the sta-
bility follows with <% = £

It follows from this example that the stability of
equation (1) cannot be reduced to the stability of an equa-
tion of the form:
(4) F(x,y»?(x) ,.L)(y) ~k(x,y} \Cl(x)y)) = a,
where a is an arbitrary element from V~. Even if we assume
that Wy is a group with the unit e and transform equation
(1) into the equivalent equation:

F(x»y»fCx’),vC(y3 ,-fk(x,y) .~ 1(x.y))
« [K(xy, A (x) vi(y) 2k(xy) vil(x,y))]

of type C4), then it may happen that one of equations (1)
and (5) is stable in the sense of definition 1 while the
other is not.

It is interesting to find what conditions on the me
tric y are sufficient for the situation from example 1
not to happen. The following lemma says about it:

LEMVA 1. If (V~™~,~) is a metric space, (V™,*) is
a group with the unit e~, and the following condition is

fulfilled:
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n Yy n rgl1l(x,y)<<5s
e>0 6>0 x.ybY~"*1

(6) A @y <] »

3B6Y1
then equation (1) is stable if and only if equation (5) is
stable.
Proof. Let (1) be stable. Given an £>0 we take

S1 according to the stability of (1) and to Sj we chooser S
according to condition (6). If
$,(2(*,*,0(x) >0(7) .pK(*.7) ,p1(x,7)) *[1(x,?,d(X) ,(7) »DK(x)y) ,h1(X,y))]
for all x,yeE,, then in view of C6)

NFCX.y,d(x) d(y) pK(xy) PLXY)) XOy.Hx) by) DKXxy) PLxy)) < 51
therefore there exists a solution ~ of (1) such that
N (x) vi(X)) <E£ for all xeE”. This proves the suffi-
ciency because Vf is also a solution of equation (5).

The proof in the other direction is analogous.

Il, The topological definition of stability proposed
in [7] does hot present those difficulties:

DEFINITION 2. Let be a topological space and Cv”™»*)
a group with the unit e”~. Equation (1) is said to be
stable iff for every neighbourhood A” of e” there exists
a neighbourhood of e such that for all functions
h: E1-> Vv if

2(%,31,DCx) (7)) ,hKOGY) D LOGAKIX, 7, (X)) ,d(y) dKy) dl(x,M)] “16 Q.

for all x,y 6 E®,

hr
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then there exists a solution of (1) such that
d(X)crcx)]"le 1 for all xeEN

It is obvious that in general definitions 1 and 2 can-
not be equivalent. In C73 it is shown that even if the to-
pological space V, is metrizable by a metric then defi-
nitions 1 and 2 are not necessarily equivalent. It is also
proved there that in the case of Cauchy type equation
upk(xy) = K™ (x),M(y)) these definitions are equivalent
if the metric satisfies condition (6). An analogous
argument shows that this result is valid also for equations
of type (1).

In connection with condition (6), we shall prove the
following lemma. (The method of the proof follows the pat-
tern in [1], pp.299-301).

LEMMA 2. If a topological group (G,*) is metrizable
by the metric C, then there exists a metric ¢ equivalent
to the metric ¢ and such that ¢(x,y) = ¢(x»z,y*z) for
all x,y,zeG, and thus fulfilling (6) with 6 =£.

Proof. If Gis metrizable, then it has a countable
basis of neighbourhoods of the unit e such that its inter-
section is the set {e} (for example, we may take the fa-
mily the balls [xeGi C(x,e) < j]). Take a set B c G.

Let B“l ={x1G* x"€ b} and let B* = B n B~1. Note
that if xeB*, then x“16 B* and that if ~ =E£Bg: nen]
is a neighbourhood basis of the unit, then £*= [B*: Bnfe/N
is a neighbourhood basis of the unit, too. Thus we can
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assume that in G there exists a countable basis TI'Bns neN}
of neighbourhoods of the unit such that for each set B
from this basis, if xeB then Xx 6B and, moreover,
putting BO = G, we may assume that the condition

(7) @ «® *® @®rF Mor n = 1%2t3%eee

is fulfilled. Hence we have also BQc BQ ~. Now put

f 2~n for xfeB n\ B, n=1,2,3,...,
f(x) =]

V0 for X = e,
and
p(x) = infACx™) +...+ f(XQ 1T X*»...**" = x, nan}, xaG.
We shall prove that the function

9(xy) = p(xy~1)
is the metric which we are looking for.
First, we shall prove by induction the inequality*
f(x1l«...*xQ) 4 2(f(x1)+...+f<xn> .

It is evident if n = 1. Assume it valid for an n 1.
Since for all xa G f(x) 4 we need consider only the
case, where- s = f(x1>+ ... + fCx”") < If f(x>) £ §,
then there exists a k, 14 k4 n, such that

f(x,)+...+f (xk)< fCx,,) + ...+ f(x k+1)> |,
f(xk+2) +...+f(Xn+1)4 f.
Hence f(x”™.,..*xKk)4 2(f(xM)+.. +f(xXj"))4 2 » | = s,

f(xk+1™ 3» and f (xk+2*****xn+1r  2/°f Nak+2/+ [ **+ fA3a+1N
42 o o= 3* Take msuch that 2“md 3<2”m+l. Then

f(x1....*k), f(xk+1), f(xk+2*. ..*xn+l) < 2-m+1, Whence by
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the definition of f we get xl«...a”,a”+1,xk2 »...*xn+1€ Bmf

In view of (7) V ...’xn+tl£Bm2 and hence
f(X™»...*xnVj) 4 2“m¥ 2s. If, on the other hand,
f(x1)> |, then f(x2)+...+f(xn+1)4 | and
f(x2*...»xn+1) < 2(f(x2)+...+f(xn+1)) 4 2 « 1 = s. Since,
of course, also f(x?) 4 s, by a similar argument we get
again fCx,,»...**~) 4 2s.
In virtue of the inequality Just proved we have
p(x) 4 f(x) 4 2 p(x).

Prom this inequality it results that p(x) = 0 iff
f(x) B 0. Thus we have C(x,y) = 0<=& pCx.y”"") = 0<=&
<=~f(x»y ) = 0-37™ x»y = e-®~x =vy. Prom the proper-
ties of the elements of the basis we get f(x) = f(x ),
therefore p(x) = p(x4), and hence

$>(xyy) = P(x*y"l) = p((x.y-1)"1) = p(yx_1) =¢(y.x).
Since, moreover, p(x»y) 4 p(x) + p(y), we have

Cxy) = p(xjy_1) = p((xz~1)(zy~1)) 4 p(xz"1) +
+ P(zy“1l) B C(x,2) + 9(z.y).

In this way we have proved that the function 9 is really
a metric. In virtue of the inequalities p(x) 4 f(x)4 2p(x)
we have moreover

Bn ={x, £EW <~ )c(n {*' CCe.zKjbT]

={x! 2PCxU~"}c[x: «xU~"r} =V I,

which proves that this metric induces the original topolo-
gy in G.
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Ve have also

¢(x*z,yz) =p(n *(y O"1) = P(x*y"l) = ¢(x,y),
which completes the proof.

It arises from the lemma proved that if is a me-
trizable topological group it can be metrized in such a
way that the stability of an equation of type (1) in the
sense of definition 2 is equivalent to the stability of
this equation in the sense of definition 1 with respect to
this metric.

It should be observed that in general it is impossible
to replace the equivalence of metrics <9 and in lemma 2
by the uniformly equivalence of these metrics (see [53

p.321) i.e. by the following two conditions

A A [Hy< (oo

S1>0 x.,y

A -V A C;(xy < g Ol(x,yX E_I

£>0 02> 0 x.ytv,,

It is known (cf. [73) that if the metric in definition 1
is changed into a uniformly equivalent one, then stabili-
ties of functional equation (1) in the sense of this deff
nition with respect to both these metrics are equivalent.
(In [73 it is proved, for equation of the type ~(k(x,y))
= KLU (x) ,vf(y)) , but the proof is exactly the same for
equation of type (1)). If in G we would construct a
metric 9 uniformly equivalent to ¢ and fulfilling the

condition C(x,y) = ¢>(x»z,y.z) for x,y,zeG then the

20



stability of equation (1) in the sense of definition 1
with respect to the metric $ would be equivalent to the
stability of this equation in the sense of definition 1
with respect to the metric p , and hence also, to the
stability in the sense of definition 2 (with respect to
the topology generated by either of these metrics) . On the
ground of lemma 1 the stability of equation (1) in the
sense of definition 1 with respect to the metric p is
equivalent to the stability of this equation in the sense
of definition 2 with the topology induced by p . Thus the
stability of equation (1) in the sense of definition 1
with respect to the metric p would be equivalent to the
stability of this equation in the sense of definition 2
with respect to the topology induced by the metric p » In
general this cannot be achived because the metric p is

arbitrary, and thus definitions 1 and 2 are not equivalent,

as we know also from paper C7D.

Ill. Consider now another equation of type (1):
G(a,b,y(a).b(b) vj>g(ab) tph(ab)) =
) = L(a,b,4>(a) .0 (b) .,yg(.a,b) ,u»b(a,b)),
where ¢ : Eg -» V2 is an unknown function; g,h: E2’
G,L: E2xE2x V2x V2x V2 -» V2 are given functions,
and E2, Vg are arbitrary sets.

Before we formulate the main theorems of this paper

we prove the following:
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LEMMA 3. Let OCs —» Eg be a bisection, let

-» Y2 be a function, and let the following condi-

tions be fulfilled:

(9) cek(x,y) = g(oc(x) ,of(y)) ,
(10) <*1(x,y) = h(OC(X) t°c(y)) .
(11) ~NF(x,y,z,u,w,v) =

= G”oc(x),a(y),fl(z~»,~1Cu),f1(w),jS1l(v»
(12) |>>jK(x,y,Z,UW,v) =

= L(oc(x) ,oc(y) ,I>1Cz),].1(u),1.1(w)"1(v)) ,
for all and z"NjW .veV ™,
If a function f satisfies equation (1), then the function
iy = satisfies equation (8).

Proof, Put oc(x) = a and cC(y) = b. We have

G(a,b,f>1~cClC a), M« ”1(b) *fy fArgU .b) »~f?a~1lbU.»b» =

MEOGY M () M) Ak(xy) M H(xGY )
W KOGy, ~(x) Wviy) fk(x,y) vfICXx.y))

L(a,b,~orl(a) Cb)tf~ft~sU .b) . ~a~hCa.b))
This proves the lemma.

THEOREM 1. Let (V~, ) and (V2»C2) “e Tebr*c
spaces. Let, moreover, C<: E~ —» Eg be a bisection and
let p~ v2, £21\V2 V1l ~e continuous

functions. Assume that the conditions (9) - (12) and:

(13) >2G (a,b,c,d,e,f) =
= F(K"lca),a“l(b)'AZ(C),/\2(d),/\2(e),f»2(f)) ’
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(14) 92 (B *c»die,f) B
= N ”1(a),C3 1(b),ji2Cc),~2Cd),jb2(e),p>2(f)) ,
for all a,b€rE2 and c,d,e,f ev2,
(15) = id Vv2*
are fulfilled.
If equation CD is stable in the sense of definition 1,
then equation C8) is stable in the 6ense of the same defi-
nition, too.

Proof. Fix £>0. Choose, step by steps £~ to £
by the uniform continuity of to by the stabi-
lity of equation (1), 5 to 57 by the uniform continuity
of pr.

Assume that

C2(G(a,b,HKa) ,®(b) ,vig(.a,b) ,pb(a,b)) ,
L (a,b,(a) ,d(b) ,BCa,b) ,pb(a,b))) <5

for all a,b£E2.

By the uniform continuity of £2 we have
Cl(~2G(a,b,4»Ca) ,®(b) ,~g(a,b) ,®Ma,b)) ,
£2b(a,b,p(a) ,b(b) *g(a,b) ,pb(a,b))) < <5°

Putting cx(x) = a, OC(y) = b, applying (9), (10), (13),

(14) and OC 10C= idel we get

91(E (x,y,>2o<(x) P.2p0OK(X,y) ,E~f0H (X,y)) ,
K (x,y ,2dcc(x) ,£200C(y) F>2ybk(x,y) p2poa(x,y))) < 61.

Put now ¢ = In view of the stability of equation(l)

there exists a function vfs EN —» satisfying equation(2)
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and such that
h(xN'< £1  for all xaE1l.

By the uniform continuity of we have

92(M <*> * M A <f

i«B«
92(~"oll(a),"dolrl(a)) < i
and finally in view oi oca”” = idg
92(>1f5T1Q),vpCa))< L
By lemma 3 the function satisfies equation CB)

which completes the proof.
B e ma'r k. In the above proof the assumption that
Ot is a bisection was essential only when transforming
the first two variables of the functions G and £. Besides
it is sufficient to know that (XoC™ = id Therefore in
the case where the functions F and K do not depend on the
first two variables (then the functions G and- L satisfying
(11) - (14) do not depend on the first two variables,
either)it is-sufficient to assume that there exist func-
tions —m Eg and CC2s Eg —» By such that
(16) Oy = idH,
conditions (9) - (14) are fulfilled with the function (X*
instead of CX and function G instead of (x f and
<29Cab) = k(oc2 (a),<Xg(b)) ,
a2h(a,b) = I(0~Ca),c"Cb)> .

In the. case of the Cauchy equation the functions F and E
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do not depend on the first two variables, so in paper [83,

where a theorem analogous to theorem 1 is proved for the

Cauchy equation, only condition 16 is assumed, not the

bidactivity of a

For convenience, me shall use the following short notation:
(XY, <?2(X),.)  « X(XyLif(x) #vi(y) vik(xy) M H(XY))

(and analogically for functions K, G, L).

An analogue of theorem 1 for the topological definition of

the stability can be formulated as follows:

THEOREM 2. Let and V2 be topological spaces and
CVMNe)* (V2, ©) groups with units e and e2, respectively.
Moreover, let continuous homomorphisme £2 and a bi-
section oc satisfy conditions (9) - (15)»

If equation (1) is stable in the sense of definition 2,
then equation (8) is stable in the sense of the same defi-
nition, too.

Proof. Let &2 be a neighbourhood of e2* As in
the preceding theorem, choose: a neighbourhood A7 of e®
such that ~(4~"3 ¢ A2 by the continuity of £1t Q1 to
O~ by the stability of equation 03, S 2 such that
?22(Q2)c Q1 by the continuity of £2 at e2. Let

&(a,b,p(a),.. .3 ® [b(a,b,di(a),.«)] ~* ®2*
£2 is a homomorphism, so
£2G(a,b,If>(a3 ,».*3 **2b(a,b,p (a3, =03 N @i

In virtue of (153 and (143, putting a =0C(x3, b =oc(y3»
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we have
Y(F»Y»nh2®°rc) ,...)*[K(x,y,p2¢oc(X),...)]“ 1« Q1.
From the stability of (1), putting like in the proof of
theorem | b= "PpCk, we get
*[M(x)]*1 & ALf
whence by the choice of
AP Cx) c Az.
Since X :cc_i(a), we obtain
>1gxX'1Ca) ® [agclinm )]"1 & 42

and this, together with lemma 3» completes the proof.

AV Throughout the rest of this paper we assume that
(Vi ,») and (V2,¢2) are metric spaces.

The following definition of the stability is also
considered (cf. [6], C83):

DEFINITION 3.jEquation (.1) is 3aid to be stable iff
there exists a positive such that for every positive £
and for all functions ¢ : -w VA, if
NPCX.y.pCx),...), K(X, ¥y, (x),...))<£ for all x,yfcE1l
then there exists a solution ~ s -*m VA of (1) such
that

Cl(vf(x) t<K*)) < for all xfcgE~n
The following theorem refers with this definition!

THEOBEM 3. Let cC: EM E2 be a bisection and let
functions vV, —» V2, ~2s V2 — satisfy a Lipschitz
condition. Let, moreover, conditions C8)-<15) be fulfilled.
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If equation (1) is stable then equation (8) is stable, too.
Proof, Let equation (1) be, stable. Assume that
CgO®Cefb, ®(a), »**) ,L (a,b,dp(@),...))< £ -
Since "2 satisfies a Lipschitz condition there exists an
N2 such that
$1($26 (a»b»”Ce) »e o) Ce,b,d(@) , «0)) N
4 Ce®»btg(a) ,...) ,L(a,b,d@),...)) <
< ti2 £.
Applying conditions (9)» (10), (13), (14-) and putting
h=~2"oc end OCx) = a, Oi(y) = b we get analogously as
in theorem 1
81 (*(x,Y,pCx),...)A0c,y,p(x)]...) < *
It follows from the stability of (1) that there exists a
ip such that
21(p (x) N (X)) < for all XG6B1.
From Lipscbitz condition (with a constant ~ ) for
we get
92(bPCx),M (x)) < 4i§i(~~ACA))<
whence

92(~ 1orl(e) ,~ o f 1(a)) f

which, in view of lemma 3, completes the proof.

V. The following definition of the stability is also
considered (cf. C33)*
DEFINITION 4. Equation (1) is said to be stable if

for all N , if there exists a positive S such
27



that
N(Ftx.y .~Cx),...) ,K(x,¥,9>(x),...)) <S for all x.y&E,,
then Jf is a sblution of (1) or W is bounded.

The corresponding theorem has now the form (R+ =
= (xfeRT x 0}){

THEOREM 4. Let OC: —*-E2 be a bisection, let

s V1 —*>V2 be bounded on bounded sets, and let there

exists an increasing function h”s R+ R+ such that the
following condition is fulfilled:
17) ~(]>2(x) ,B>2Cy)) 4 b2(¢c2(x,y)) for all x ,j6VvV2.
Let, moreover, conditions (9V(15) be fulfilled. If equa-
tion C1) is stable then equation (8) is stable, too.

Proof. Let

~"2(g(a,b,®(B) ,...) ,*b(a,b,p(@) ,.. »))"5 for a,b &E2.

The function is increasing, whence

h”92 (® (efb »p(s) ,...) ,L(a,b, d(@) ,.»*)) ~ h~S).
By condition (17) we get

yNi?>2G(a»b,d(a) , ¢»°) @ b«p(s) ,...)) ~ I ().
whence analogously as in theorems 1 and 3

ft (P (x,7,22pC«:x),...) ,K(x,y,2¢ec(X),...))< hgCS),
so £ 2dC~ is a solution of (1) or £2dCC is bounded.
In the former case, in view of lemma 3» £2¢°C if a solu-
tion of equation (8). If the function £2d<X is bounded,
then the function ¢ = jSN*tycXOC” is bounded, too, be-
ceuse j-l is bounded on bounded sets. This completes the

proof.
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R e marks

1. The function —» Vg maps bounded sets onto
bounded sets iff there exists an increasing function
h”~: R+—» R+ and a point a such that the following
condition is fulfilled:
(18) N (a)) <. h~r(~Cxfa)) for all xfcV,,.
In fact, let h® and a satisfy the above inequality and let
zZC be a bounded set. Then there exists an r > 0
such that

CNCxX™N) 4 r for all xfcZ.
Hence, in view of (18), we have for xfez
y2(>1(x) ,£i(a)) 4 L C~Cx.a)) 4 L Cr),

and thus the set £7(Z) is bounded.

Conversely let at be an arbitrary point and let

In view of the property of the function h" is well de-
fined. Further, fix an xeV” and put r = $U(x,a). Then
x e K(r) and

C2(P1W *si(a)4 V r) = (£.(?>9) ,
i.e. condition (18) is fulfilled. It is also evident that

h™ is increasing.

2. Note that the above condition regarding the func-
tion is equivalent to the following one: for every
point a there exists an increasing function h™:R+/"R+

such that the condition
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CgC~Cx),]ucCa)) < h~C~Cx.a)) for all x€-v4

is fulfilled.

3. Note that if a function J2 satisfies the Lipschitz
condition with a constant then it also fulfils the
assumptions of theorem 4 with hgCt) - .

VI. In paper M the suthor consider a definition of

the stability which is essentially more general than defi-
nition 1.

DEFINITION Equation CD is said to be iteratively
stable relatively to function k iff for every positive £
there exists a positive <S such that for all functions

®: E1 -» VIf if

SINPN (X*7 <W»KN"x »3, (N < A for all x*yf¢:s'i and all neN

then there exists a solution ¢ s E» —» of (1) such that
NpCx) ,th(x))<E for all x6E1(
where for arbitrary ¢ ; the sequence Fn (and

analogously Kn) is defined as follows:
?l(xy.0) = F(x,y,0(x) . ®(y) dKr(xy) .d1l(xy))
En+l(x,y, ) =
= F(kn(x,y) ,y.Pn(x,y,d).¢(y)dkn+lCxy) .d1(x,y» .ne N,
and the sequence kg is defined in the following way:
k~x.y) = k(x.y),
kn+l(x,y) = kCk~Cx.y),y), nfe N.
It is easy to prove inductively that ¢ satisfies equa-
tion (D iff it satisfies the equation Ea(x,y,p) = Kn(x,y,d)

for all neN.



An iterative analogue of definition 3 reads as
follows:

DEFINITION 6. Equation (1) is said to be iteratively
stable relatively to function k iff there exists a posi-
tive such that for every positive £ and all functions
o* B1 vl1, if
§1(?nCx,y,d),Kn(x,y,d))<£. for all x.ytE,, and all ne N,
then there exists a solution D EN of CD such
that

51((x) \(x)) < for all xeE1f
where Fn and K, are defined as in definition 5»

Before formulating other theorems we prove the
following:

LEMVA 4. Let a bisection oC and function
satisfy conditions (9)» (10), (11), (13) e Let, moreover,
functions Fn, Gn, kQ, gQ be defined as in definition 5.
The following equalities hold:

(19) OCk~x.y) = gn(0C(x) ,a(y))
(20) jbrCx.y™)

on(a(x),a(y),>1d¢oc"l),

(21) N 2Gn Ca,b 4i) Fn(orl(a),cT1(b) ,£2dCX).

Proof. The proof will be by induction. For n =1
relations (19)-(21) are evident. Assume that they hold for
an neN. In view of (9) we have

akn+l(x,y>

OCK(KNCx»Y) »?) =

9(0tkn(x,y) ,«(y)) =
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« BCBUCKCX) ,oc(y)) ,a(y» X
Thus (19) is fulfilled.

Similarly by (11) we get
b Fn+l (X*7»®) = PY»*(*»*:0). 0 (Y) »4*n<*y> »4*(X,y3>

Gledn(z,y) ,ocly) .Gn(a(x) .ct(y) ~dcll) Nd(y) A7 (x.y) "dl(X.y))

Gtg~ttU) oc(y)) .a(y) .Gn(ot(x) ,a(y) ~.dpa“l),

AN dellke(y>"p<x'pri(« (N .a(yY» .~ ® « Th(oc(r) ,<x(y»)
* e+ d(«(x),a(j),s”horl).

Tbus (20) is fulfilled, too.

The proof of (21) is analogous.

From lenma 4, taking in the proofs of theorems & end
3 functions Fn, Gn, Kg, Lg instead of functions F, G, K, L,
respectively, we get two theorems:

THEOREM 3* bet «C be a bisection, let and ~ be
uniformly continuous functions and let conditions (9) -
(15) be fulfilled. If equation (1) is iteratively stable
relatively to the function Kk in the sense of definition 5*
then equation (8) is iteratively stable relatively to
function g in the sense of the same definition, too.

THEOREM 6. Let cC be a bisection, Iettj’>" and sa-
tisfy Lipschitz condition and let conditions (9) - (15) be
fulfilled. If equation (1) is iteratively stable relati-
vely to function Kk in the sense of definition 6, then
equation (8) is iteratively stable relatively to function

g in the sense of the same definition, too.
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Remarks
1. All the theorems of this paper can be proved ana-

logously for the equation

2. In the case «here equations ('O and (8) have the

form

(22) AK(XY)) = KU>00 A (Y))

(23) 4>(g(a,b)) = L(44a) ,4(b)) ,

they are equations of homomorphisme and of groupoid

EN with the operation k(x,y) into groupoid with the
operation K(u,v) and of groupoid E2 with the operation
g(a,b) into groupoid V2 with the operation L(w,z), respe-
ctively. So the results of this paper extend those of
papers [73 and [83,
Notice that if equation (1) is of form (22) and conditions
(11) « (12) and (15) are fulfilled then equation (8) must
be of form (23)e

3. Equation (1) contains as a particular case the
equation

U4YK(x)) = K(x,vf(x))

whose stability was considered by D. Brydak (cf. [4]) and
E. Turdza (cf. C93), Equation (1) contains also the cosine

equation whose stability was studied by J.A. Baker (cf.(2l).
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