ANTONI CHRONOWSKI

Decompositions of bioperands

In this paper we shall describe some decompositions
of bioperands. First of all we introduce some appropriate
definitions. The description of the notations as a left
[right} operand and a bioperand is based on the paper [1],
vol. 2.

DEFINITION 1. If Mis a non-empty set and S is a'se-
migroup, me say that U is a left operand over the semi-
group S if there is a mapping Cleft outer product)

(s,x) »*sx from S*M into W such that
s1(s2x) =(s1ls2)x
for all sy,s2€S and x&M.

Similarly, a non-empty set Mis a right operand over
a semigroup T if there is a mapping (right outer product)
(x,t)»-*-xt from MxT into M such that
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for all t1(t26T and xeM.

If S and T are semigroups we say that a non-empty set
Mis a bioperand over the semigroups S and 7 if it is a
left operand over the semigroup S, a right operand over
the semigroup T and

(s x)t = s(x t)

for all seS, ts T, xe M

If S and T are monoids we put 1 x = x 1 = x for
arbitrary xeM in all above cases.

Further on we shall write a left operand gM, a right
operand and a bioperand glip.

The set Mis said to be a fibre of the bioperand glUj,
[left operand gMf right operand

Next, we introduce definitions which are modelled on
the suitable definitions of the semigroup theory and the
algebraic object theory ([1], [33)*

DEFINITION 2. Let and T be subsemigroups of semi-
groups S and Tf respectively.
A non-empty subset N of the fibre M of the bioperand gtyj,
is said to be a left [right] invariant subset in the bi-
operand gMg, relative to the subsemigroup [T~], if
SAN C N [N C NJ.
A non-empty subset N of the fibre M is said to be an in-
variant sublet in the bioperand gMT relative to the sub-

semigroups and T~, if SAN CN and N T~ c N.



I f =S and T =T we simply say that N is an Cleft,
right3 invariant subset in the bioperand gi”.

DEFINITION 3. Let and 3L, be subsemigroups of semi-
groups S and T, respectively.
If a non-empty subset N of the fibre M of the bioperand
s“t with the left and right outer products restricted to
the subset N and the subsemigroups and T" (respectively)
is a bioperand Q Nm over the semigroups S*' and T,'., then
the bioperand « NnAlis said to be a FS-subbioperand of the

bl Xi

bioperand gM”.
I f =S and = T then a FS-subbioperand is said to
be a subbioperand.

Analogously we can define a FS-suboperand and a sub-
operand.

An idea of the symbols FS- (abbreviations for: fibre,
structure) has been inspired by the paper [3], p.12.

It is easy to see a simple connection between notions
of definitions 2 and 3»

DEFINITION. 4. A family ( : i &l) of subsets of a

set M satisfying the following conditions*

(i) «NCM~"iel),

(ii) UCMes i €1) = M,

(iii) n [i Lo=~"M o M =],
i.ofel i 3

is called a decomposition of the set M.
The decomposition received by means of the equiva-
lence relation pcMxM will be called a ¢-decomposition.
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The decomposition of the fibre M of the bioperend giUp
is said to be a decomposition of the bioperand gBij,.

DEFINITION 5. If every subset (for i bl) in the
decomposition (M”: it 1) of the bioperand gw\ is inva-
riant C”elative to the subsemigroups c S and Ti C T
for ifcl], then the family iel) is called a decom-
position of the bioperand glip into subbioperands [FS-sub-
bioperands].

In the similar way we define a decomposition of the
bioperand into suboperands [FS-suboperands].

DEFINITION 6. If there exists a decomposition of the
bioperand gHp into at least two different Cwith respect to
the fibre) subbioperands t*"S-subbioperands]f then we say
that the bioperand gld* is decomposable into subbioperands
[FS-subbioperands], otherwise, it is called indecomposable.

Analogously we define a bioperand decomposable (jLn-
decomposable] into suboperands QPS-suboperands].

Let S be a semigroup. Extend the binary operation on
S to the set Su(l), where 1 is an element not contained
in S, putting 11=1 and 1 s =s 1 =s for every seS.
Clearly, S u{l} is a monoid with resnect to this extended
operation and 1 is its identity element. If S is a semi-
group, then SrI denotes the monoid obtained by the adjun-
ction of an identity element to S if S does not contain

an identity element, and =S if S is a monoid.
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The equivalence relation on M generated by any relar
tion pem 4M will be denoted by ¢e ([2], p.19).
The symbol p(x) denotes that equivalence class of the
equivalence relation ¢ which contains x. An equivalence
class of the equivalence relation will be also called
Y-class.

In the bioperand gM* we define relations £.1tkand 3}Ii
by the rules:

X Jly V . (s x =vy),

XH*y 2 t\/er (x t

y),

for all x,y &bl
The relations L and A are reflexive and transitive.

By means of the relations < and S we define in the

bioperand gM"* a relation
if= (11 96

Every D*-class is an invariant subset in the biope-
rand gMj» The decomposition of the fibre M by means of the
relation if is a decomposition of the bioperand gv" into
the subbioperands.

THEOREM 1. The if -decomposition of any bioperand gV
is the only decomposition of this bioperand into indecom-
posable subbioperands*

Pr oof. We have already noticed above that in
every bioperand gwvg, the relation 2)*determines the decom-

position of this bioperand into subbioperands. We shall
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preve that it is the only decomposition of the biope-
rand s“t into indecomposable subbioperands.
Let (N”~: i~1) be any decomposition of the bioperand
into subbioperands. Let for ie | be any class in
this decomposition. Ve shall show that if xe then
2f(x) ¢ N~ Suppose that there exists an element yfeM~AN~”

such that (x,y)fe3D* . Then by the Proposition 4.26 of [2]1,

p.21, there exists a sequence ,z2,...,zn&U such that

z\ ~ X* zn = **k+l) & UR*n (fFmnrl) for

kK =1,2,...,n-1. Since z r xe " and z& =

there exists kc¢{l,2,...,n -1} such that z"fc and

zk+16 M4 Ni* If C » then either s zn =
n

= or z~t =z~~~ for some elements seS and

tfeT1l. As the subset is invariant so Zjc+16 N~ This

contradicts the assumption that We receive

the analogous contradiction considering the case where
e (/1* n * Hence an arbitrary subset of

the decomposition (N~: it 1) is either a 2)*-class or
a union of D -classes.

This completes the proof.

We define relations L and n in the bioperand
by the rules

and ?2r= (tf)e.

Every £**-class -class] is a left fright] invariant

subset in the bioperand gMy,



The decomposition of the set Mby means of the rela-
tion £**[R**] is a decomposition of the bioperand gid"\
into the left [right] suboperands.

Let us observe that £**c 3¥Y* and Hd*uc 31* o

Every subbioperand of the b -decomposition of the
bioperand gMj, is a union of some left [right] suboperands
of the bioperand gM~.

THEOREM 2. The £**- decomposition [ JR**- decomposition]
of any bioperand gl® is the only decomposition of this bi-
operand into indecomposable left [right] suboperands.

The proof of this theorem is similar to the proof of
Theorem 1.

In a bioperand gM"* we define relations £ IR, Tt by

the rules *

X £ Y«=>S1x = Sly,
X 3y <=HxT1l = yT1,
M =£n4d »
for all x,y eM.
The relations £ ,IR ,X will be called Green's rela-

tions. Tnese relations are a generalization of the well-
known Green's relations in the semigroup theory ([2\ p.38).
The relations £ ,R t Hi are equivalences.

LEMMA. For arbitrary elements x and y in the fibre M
of the bioperand gM" the following conditions are satis-

fied t
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(i) X X *\/ \VAN (BI'Ie X * e2x =y),
S~Sgfc S

am xXRyw V., (yt-1:Xb. Xpsy).

NotgfeT!

These results are direct consequences of the defini-
tions of the relations £ and R .

Let s be anj fixed element in the semigroup S. We de-
fine a mapping 1, M-*m M as follows

lg (x) = 8 X

for all xfTtM

The mapping 16 is said to be a left translation in
the bioperand s%*

For any fixed t fcT we define a mapping r*: M— M

as follows

rfe(x) = x t, X M
We call it a right antitranslation in the bioperand
SAT*
In the sequel of our consideration the following two
theorems wiill be useful*

THEOREM Let g be any arbitrary bioperand over
semigroups S and T. Let x,y e M be elements such that
XRy, i.e. xt,j =y and y t2 = x for some elements
t>j,/\2/\ *

Ther. the mappings r* |£(x) and r,. |£(y) are mutually
. . . 1 . 2 :

inverse bisections preserving n -classes, i.e. the argu-
ments and their corresponding values belong to the same

R -class.
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THEOREM 4. Let g\ be an arbitrary bioperand over se-
migroups S and T. Let x,y &M be elements such that x£fvy,
i,e. s =y and s2y = x for some elements s,j,s26S1.
Then the mappings le |ft(x) and 1_ |R(y) are mutually
inverse bisections p%serving £ -cla®525es, i.e. the argu-
ments and their corresponding values belong to the same
£ -class.

The proofs of the Theorems 3 and 4 are quite similar
to the proofs of Green's Lemmas ([2], p.42-43).

THEOREM 5» Green's relation 3} determines a decompo-
sition of the bioperand gw\ into left FS-suboperands.

Proof. Let R be any fixed R -class in the biope-
rand gMrp. Let x,y€R and x £ y. Therefore s x =y for
an element seSA. It follows immediately from Theorem 4
that |IglR: R -*m R is a bisection which will be denoted
by 1 for short. The set of all left translations 1 de-
termined in this way we denote by T-~(R). We shall prove
that Tj._(R) is a group. Let 1_ ,132e T;(.CR). For any fi-
xed element zeR we denote w= (1 1 )(z). Since 1

S1 s2 Sl
and 1 are bisections preserving £ -classes so w £ z.
Moreovzer, w= (I_ 1 )(z) = 1_ (z) so (s.sP)z = w.

5/j s2 1
Hence 1U D2e T.(R), i.e. 1_ IBZGT),((R‘). It follows from
Theorem 4 that for every left translation 1g& TqCR)
there exists a left tranlsation |Is,é TACR) such that
1S and 15* are mutually inverse bisections. Therefore
T~AR) is a group.
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We define a subset Sg of the semigroup Sn as follows

Sg = [seée S1* 1s 6 TICR)}.
It is clear that Sg is the subsemigroup of the semigroup
S . It follows immediately from these considerations that
the $ -class R is the left FS-suboperand 9 R over the semi-
group Sg of the bioperand glij,. &
Therefore we can consider every 51 -class in the bioperand
oMp as a left FS-suboperand of the bioperand gM”, which
ends the proof.

Using Theorem 3» in a quite similar way, we can prove
the following

THEOREM 6. Green's relation £ determines a decompo-
sition of the bioperand gHp into right FS-suboperands.

In a similar manner as in the semigroup theory ([1],
vol.l) we can construct SchUtzenberger's groups over X -
classes in, a bioperand.

Let H be an arbitrary X - class in the bioperand gw\ and
let xg&H be an arbitrary fixed element. Let y be an
arbitrary element in X -class H. Since xQX y so xQI vy
and x0 IR y. Then there exist elements s~Sjb SA and

t1tt26 T1 such that s~ =y, s2y = xQ, x0» =j, vy =

= x0. Hence 1S V =*» 1s2(& = xo» rtl”™xo)
ric (y) = xQ. By*Theorems 3 and 4 the left translations

1 IH. 1 IH and the right antitranslations r* |H, r* |H
Sl s2 *1 z2
are bisections of the subset H onto itself such that

1-Is =1s 1lg =id(H) and rfcr. =rfcrft = id(H).
S1 32 s2 S1 22 2 C



Let us denote by o and Tr " x o the sefcs of all
left translations and right antitranslations, respectively,
defined in the above way on the X-class H for the fixed
element xQ and for an arbitrary element vyt H.
Let zQ be any fixed element of It -class B. It is easy to
see that T,(H)X = TX(H) and V H)x =V H)z * So w
shall write T,(H) and T (H) instead of T ,(K) and T (H)
THEOREM 7. Let H be any It-class in the\bioperand g)l(—|0j..
The sets of all left translations TA(H) and all right anti-
translations Tr (H) are groups.

Pr oof. We shall prove that the set of all left

translations T-,(E) is a group. Let 1 ,1_ 6 T,CH) and x

1 s2 .1
be any fixed element of It -class H. Then (1 1 )(x)
S1 &
=10 _(x)6H, i.e. 1 1 6 T-CH). We have seen that every

51 s2 A
left translation from the set T-~(H) is a bisection on the

subset H which has an inverse being a left translation
from the set T~(H), Therefore the set T~(H) is a group.
Analogously we can show that the set Tr(H) is a group.
The groups T~(H) and Tr(H) will be celled Schlltzen-
berger's groups over It-class E in the bioperand pgAp.
THEOREM 8. The Green's relation % determines the de-
composition of the bioperand gv" into FS-subbioperands.
Pr oof. Let Hbe an arbitrary fixed It-class in
the bioperand gM”~. We define the subsets 8~7c SA and

Tgc T1 as followst
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% o W H)} *

TH = [teT1: rt £Tr(H)} .

The sets Sg and Tg are subsemigroups of the semugroups SrI
and T\ respectively. Therefore every ~-class in the bi-
operand «Mn can be considered as a FS-subbioperand

over the semugroups Sg and Tg of the bioperand gM,j.

This completes the proof.
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