ANTONI CHRONOWSKI

Decompositions of bioperands

In this paper we shall describe some decompositions of bioperands. First of all we introduce some appropriate definitions. The description of the notations as a left [right] operand and a bioperand is based on the paper [1], vol. 2.

DEFINITION 1. If M is a non-empty set and S is a semigroup, we say that M is a left operand over the semigroup S if there is a mapping (left outer product)

(s,x) -> sx from S x M into M such that

$$s_1(s_2x) = (s_1s_2)x$$

for all s₁,s₂ ∈ S and x ∈ M.

Similarly, a non-empty set M is a right operand over a semigroup T if there is a mapping (right outer product) $(x,t) \mapsto xt$ from M × T into M such that

$$(x t_1) t_2 = x(t_1 t_2)$$

for all t, t eT and x e M.

If S and T are semigroups we say that a non-empty set M is a bioperand over the semigroups S and T if it is a left operand over the semigroup S, a right operand over the semigroup T and

$$(s x)t = s(x t)$$

for all seS, teT, xeM.

If S and T are monoids we put $1 \times x \times 1 = x$ for arbitrary $x \in M$ in all above cases.

Further on we shall write a left operand $_SM$, a right operand $_{M_{\rm TP}}$ and a bioperand $_SM_{\rm TP}$.

The set M is said to be a fibre of the bioperand S^{M_T} [left operand S^{M} , right operand M_T].

Next, we introduce definitions which are modelled on the suitable definitions of the semigroup theory and the algebraic object theory ([1], [3]).

DEFINITION 2. Let S_1 and T_1 be subsemigroups of semigroups S and T, respectively.

A non-empty subset N of the fibre M of the bioperand $_{S}M_{T}$ is said to be a left [right] invariant subset in the bioperand $_{S}M_{T}$ relative to the subsemigroup S_{1} [T_{1}], if $S_{1}N\subset N$ [N $T_{1}\subset N$].

A non-empty subset N of the fibre M is said to be an invariant subset in the bioperand S^M_T relative to the subsemigroups S_1 and T_1 , if $S_1N \subset N$ and $N T_1 \subseteq N$.

If $S_1 = S$ and $T_1 = T$ we simply say that N is an [left, right] invariant subset in the bioperand SM_{T} .

DEFINITION 3. Let S_1 and T_1 be subsemigroups of semigroups S and T, respectively.

If a non-empty subset N of the fibre M of the bioperand S^{M}_{T} with the left and right outer products restricted to the subset N and the subsemigroups S_1 and T_1 (respectively) is a bioperand $S_1^{N}_{T_1}^{T_1}$ over the semigroups $S_1^{T_1}$ and $T_1^{T_1}$, then the bioperand $S_1^{N}_{T_1}^{T_1}$ is said to be a FS-subbioperand of the bioperand $S_1^{M}_{T_1}^{T_1}$

If $S_1 = S$ and $T_1 = T$ then a FS-subbioperand is said to be a subbioperand.

Analogously we can define a FS-suboperand and a suboperand.

An idea of the symbols FS- (abbreviations for: fibre, structure) has been inspired by the paper [3], p.12.

It is easy to see a simple connection between notions of definitions 2 and 3.

DEFINITION 4. A family $(M_i: i \in I)$ of subsets of a set M salisfying the following conditions:

(i)
$$\phi \notin (M_i : i \in I),$$

(ii)
$$U(M_i: i \in I) = M_i$$

(iii)
$$\bigwedge_{i,j\in I} \left[i \neq j \Longrightarrow M_i \cap M_j = \phi \right],$$

is called a decomposition of the set M.

The decomposition received by means of the equivalence relation $\rho \subset M \times M$ will be called a ρ -decomposition.

The decomposition of the fibre M of the bioperand $_SM_T$ is said to be a decomposition of the bioperand $_SM_T$.

DEFINITION 5. If every subset M_i (for $i \in I$) in the decomposition $(M_i : i \in I)$ of the bioperand S^{M_T} is invariant [relative to the subsemigroups $S_i \subset S$ and $T_i \subset T$ for $i \in I$], then the family $(M_i : i \in I)$ is called a decomposition of the bioperand S^{M_T} into subbioperands [FS-subbioperands].

In the similar way we define a decomposition of the bioperand into suboperands [FS-suboperands].

DEFINITION 6. If there exists a decomposition of the bioperand $_{S}M_{T}$ into at least two different (with respect to the fibre) subbioperands [FS-subbioperands], then we say that the bioperand $_{S}M_{T}$ is decomposable into subbioperands [FS-subbioperands], otherwise, it is called indecomposable.

Analogously we define a bioperand decomposable [in-decomposable] into suboperands [FS-suboperands].

Let S be a semigroup. Extend the binary operation on S to the set $S \cup \{1\}$, where 1 is an element not contained in S, putting 1.1 = 1 and 1.s = s.1 = s for every $s \in S$. Clearly, $S \cup \{1\}$ is a monoid with respect to this extended operation and 1 is its identity element. If S is a semigroup, then S^1 denotes the monoid obtained by the adjunction of an identity element to S if S does not contain an identity element, and $S^1 = S$ if S is a monoid.

The equivalence relation on M generated by any relation $\rho \in M \times M$ will be denoted by ρ^e ([2], p.19). The symbol $\rho(x)$ denotes that equivalence class of the equivalence relation ρ which contains x. An equivalence class of the equivalence relation ρ will be also called ρ -class.

In the bioperand $_{S}M_{T}$ we define relations \mathbb{L}^{*} and \mathbb{R}^{*} by the rules:

$$x \mathcal{L}^* y \iff \bigvee_{s \in S^1} (s x = y),$$

 $x \mathcal{R}^* y \iff \bigvee_{t \in T^1} (x t = y),$

for all x,y & M.

The relations \mathcal{L}^* and \mathcal{R}^* are reflexive and transitive.

By means of the relations $\hat{\mathcal{L}}^*$ and R^* we define in the bioperand $_{S}M_{TP}$ a relation

$$\mathcal{D}^* = (\mathcal{L}^* \cup \mathcal{R}^*)^e.$$

Every \mathcal{D}^* -class is an invariant subset in the bioperand $\mathbf{S}^{\mathbf{M}}_{\mathbf{T}}$. The decomposition of the fibre M by means of the relation \mathcal{D}^* is a decomposition of the bioperand $\mathbf{S}^{\mathbf{M}}_{\mathbf{T}}$ into the subbioperands.

THEOREM 1. The D^* -decomposition of any bioperand S^{M_T} is the only decomposition of this bioperand into indecomposable subbioperands.

Proof. We have already noticed above that in every bioperand $S^{M}T$ the relation D^{*} determines the decomposition of this bioperand into subbioperands. We shall

prove that it is the only decomposition of the bioperand $S^{M_{\rm T}}$ into indecomposable subbioperands.

Let (N4: i ∈ I) be any decomposition of the bioperand Mm into subbioperands. Let N, for i e I be any class in this decomposition. We shall show that if $x \in N_4$ then $\mathfrak{D}^{\overline{T}}(x) \subset \mathbb{N}_{4}$. Suppose that there exists an element $y \in \mathbb{M} \setminus \mathbb{N}_{4}$ such that $(x,y) \in \mathbb{D}^{n}$. Then by the Proposition 4.26 of [2], p.21, there exists a sequence z₁, z₂,..., z_n ∈ M such that $z_1 = x$, $z_n = y$, $(z_k, z_{k+1}) \in (L^* \cup R^*) \cup (L^* \cup R^*)^{-1}$ k = 1, 2, ..., n-1. Since $z_4 = k \in N_1$ and $z_n = y \in M \setminus N_1$ there exists $k \in \{1,2,\ldots,n-1\}$ such that $z_k \in N_1$ and $z_{k+1} \in M \setminus N_i$. If $(z_k, z_{k+1}) \in L^* \cup R^*$, then either s $z_k =$ = z_{k+1} or $z_k t = z_{k+1}$ for some elements $s \in S^1$ and $t \in T^1$. As the subset N_i is invariant so $z_{k+1} \in N_i$. This contradicts the assumption that $z_{k+1} \in M \setminus N_i$. We receive the analogous contradiction considering the case where $(z_k, z_{k+1}) \in (\mathcal{L}^* \cup \mathcal{R})^{-1}$. Hence an arbitrary subset N_i of the decomposition $(N_i: i \in I)$ is either a \mathfrak{D}^* -class or a union of D*-classes.

This completes the proof.

We define relations \mathcal{L}^{**} and \mathcal{R}^{**} in the bioperand $\mathbf{S}^{\mathsf{M}}\mathbf{T}$ by the rules

$$\mathcal{L}^{**} = (\mathcal{L}^{*})^{e}$$
 and $\mathcal{R}^{**} = (\mathcal{R}^{*})^{e}$.

Every \mathcal{L}^{**} -class [\mathbb{R}^{**} -class] is a left [right] invariant subset in the bioperand S^{M_m} .

The decomposition of the set M by means of the relation $\mathcal{L}^{**}[\mathcal{R}^{**}]$ is a decomposition of the bioperand S^{M_T} into the left [right] suboperands.

Let us observe that $\mathcal{L}^{**} \subset \mathcal{D}^*$ and $\mathcal{R}^{**} \subset \mathcal{D}^*$.

Every subbioperand of the \mathfrak{D}^* -decomposition of the bioperand S^{M_T} is a union of some left [right] suboperands of the bioperand S^{M_T} .

THEOREM 2. The $\int_{-\infty}^{\infty}$ decomposition [\mathbb{R}^{4n} decomposition] of any bioperand \mathbb{S}^{M} is the only decomposition of this bioperand into indecomposable left [right] suboperands.

The proof of this theorem is similar to the proof of Theorem 1.

In a bioperand $S^{M_{\widetilde{\mathbf{T}}}}$ we define relations \mathcal{L} , \mathcal{R} , \mathcal{H} by the rules:

$$x \ y \Leftrightarrow s^{1}x = s^{1}y,$$

 $x \ R \ y \Leftrightarrow xT^{1} = yT^{1},$
 $x \ R \ y \Leftrightarrow xT^{2} = yT^{2},$

for all $x,y \in M$.

The relations \mathcal{L} , \mathcal{R} , \mathcal{R} will be called Green's relations. These relations are a generalization of the well-known Green's relations in the semigroup theory ([2], p.38). The relations \mathcal{L} , \mathcal{R} , \mathcal{R} are equivalences.

LEMMA. For arbitrary elements x and y in the fibre M of the bioperand S^{M}_{T} the following conditions are satisfied:

(i)
$$x \perp y \Leftrightarrow \bigvee_{s_1, s_2 \in S^1} (s_1 y = x \wedge s_2 x = y),$$

(ii)
$$x R y \Leftrightarrow \bigvee_{t_1, t_2 \in T^1} (yt_1 = x \land xt_2 = y).$$

These results are direct consequences of the definitions of the relations $\mathcal L$ and $\mathcal R$.

Let s be any fixed element in the semigroup S. We define a mapping 1: M -> M as follows

$$l_{c}(x) = s x$$

for all x & M.

The mapping $\mathbf{l}_{_{\mathbf{S}}}$ is said to be a left translation in the bioperand $_{\mathbf{S}}\mathbf{M}_{\mathbf{p}}.$

For any fixed $t \in T$ we define a mapping $r_t \colon M \longrightarrow M$ as follows

$$r_t(x) = x t, x \in M.$$

We call it a right antitranslation in the bioperand $\mathbf{S}^{M}\mathbf{T}^{\bullet}$

In the sequel of our consideration the following two theorems will be useful.

THEOREM 3. Let $_{S}^{M}T$ be any arbitrary bioperand over semigroups S and T. Let $x,y\in M$ be elements such that x R y, i.e. $x t_1 = y$ and $y t_2 = x$ for some elements $t_1,t_2\in T^1$.

Then the mappings $r_t/L(x)$ and $r_t/L(y)$ are mutually inverse bijections preserving R -classes, i.e. the arguments and their corresponding values belong to the same R -class.

THEOREM 4. Let $_{S}M_{T}$ be an arbitrary bioperand over semigroups S and T. Let $x,y\in M$ be elements such that $x\perp y$, i.e. $s_{1}x=y$ and $s_{2}y=x$ for some elements $s_{1},s_{2}\in S^{1}$. Then the mappings $l_{s_{1}}\mid R(x)$ and $l_{s_{2}}\mid R(y)$ are mutually inverse bijections preserving L-classes, i.e. the arguments and their corresponding values belong to the same L-class.

The proofs of the Theorems 3 and 4 are quite similar to the proofs of Green's Lemmas ([2], p.42-43).

THEOREM 5. Green's relation ${\cal R}$ determines a decomposition of the bioperand ${}_SM_T$ into left FS-suboperands.

We define a subset S_R of the semigroup S^1 as follows $S_R = \{s \in S^1 \colon l_s \in T_1(R)\}.$

It is clear that S_R is the subsemigroup of the semigroup S^1 . It follows immediatelly from these considerations that the R-class R is the left FS-suboperand S_R over the semigroup S_R of the bioperand S_R .

Therefore we can consider every R-class in the bioperand S^{M}_{T} as a left FS-suboperand of the bioperand S^{M}_{T} , which ends the proof.

Using Theorem 3, in a quite similar way, we can prove the following

THEOREM 6. Green's relation $\mathcal L$ determines a decomposition of the bioperand $S^{\mathbb M_p}$ into right FS-suboperands.

In a similar manner as in the semigroup theory ([1], vol.1) we can construct Schützenberger's groups over % - classes in a bioperand.

Let H be an arbitrary \mathcal{R} - class in the bioperand $_{S}M_{T}$ and let $x_{0} \in H$ be an arbitrary fixed element. Let y be an arbitrary element in \mathcal{R} -class H. Since $x_{0} \mathcal{R}$ y so $x_{0} \mathcal{L}$ y and $x_{0} \mathcal{R}$ y. Then there exist elements $s_{1}, s_{2} \in S^{1}$ and $t_{1}, t_{2} \in T^{1}$ such that $s_{1}s_{0} = y$, $s_{2}y = x_{0}$, $x_{0}t_{1} = y$, $y t_{2} = x_{0}$. Hence $l_{s_{1}}(x_{0}) = y$, $l_{s_{2}}(y) = x_{0}$, $r_{t_{1}}(x_{0}) = y$. $r_{t_{2}}(y) = x_{0}$. By Theorems 3 and 4 the left translations $l_{s_{1}}H$, $l_{s_{2}}H$ and the right antitranslations $r_{t_{1}}H$, $r_{t_{2}}H$ are bijections of the subset H onto itself such that $l_{s_{1}}l_{s_{2}} = l_{s_{2}}l_{s_{1}} = id(H)$ and $r_{t_{1}}r_{t_{2}} = r_{t_{2}}r_{t_{1}} = id(H)$.

Let us denote by $T_1(H)_{X_0}$ and $T_r(H)_{X_0}$ the sets of all left translations and right antitranslations, respectively, defined in the above way on the $\mathcal X$ -class H for the fixed element x_0 and for an arbitrary element $y \in H$.

Let z_0 be any fixed element of $\mathcal X$ -class H. It is easy to see that $T_1(H)_{X_0} = T_1(H)_{Z_0}$ and $T_r(H)_{X_0} = T_r(H)_{Z_0}$. So we shall write $T_1(H)$ and $T_r(H)$ instead of $T_1(H)_{X_0}$ and $T_r(H)_{X_0}$.

THEOREM 7. Let H be any \mathcal{H} -class in the bioperand $\mathbf{S^{M}T}$. The sets of all left translations $\mathbf{T_{1}}(\mathbf{H})$ and all right antitranslations $\mathbf{T_{r}}(\mathbf{H})$ are groups.

Proof. We shall prove that the set of all left translations $T_1(H)$ is a group. Let $l_{s_1}, l_{s_2} \in T_1(H)$ and x be any fixed element of $\mathbb X$ -class H. Then $(l_{s_1}l_{s_2})(x) = l_{s_1s_2}(x) \in H$, i.e. $l_{s_1}l_{s_2} \in T_1(H)$. We have seen that every left translation from the set $T_1(H)$ is a bijection on the subset H which has an inverse being a left translation from the set $T_1(H)$. Therefore the set $T_1(H)$ is a group. Analogously we can show that the set $T_1(H)$ is a group.

The groups $T_1(H)$ and $T_r(H)$ will be called Schützenberger's groups over R-class H in the bioperand S^{M_T} .

THEOREM 8. The Green's relation ${\mathbb R}$ determines the decomposition of the bioperand ${\mathbb R}^{M_T}$ into FS-subbioperands.

Proof. Let H be an arbitrary fixed \mathbb{X} -class in the bioperand \mathbb{S}^M_T . We define the subsets $\mathbf{S}_H \subset \mathbb{S}^1$ and $\mathbf{T}_H \subset \mathbf{T}^1$ as follows:

$$S_{H} = \left\{ s \in S^{1} : 1_{s} \in T_{1}(H) \right\},$$

$$T_{H} = \left\{ t \in T^{1} : r_{t} \in T_{r}(H) \right\}.$$

The sets S_H and T_H are subsemigroups of the semugroups S^1 and T^1 , respectively. Therefore every \mathcal{X} -class in the bioperand $S_H^{M_T}$ can be considered as a FS-subbioperand $S_H^{M_T}$ over the semugroups S_H and T_H of the bioperand $S_H^{M_T}$.

This completes the proof.

References

- [1] Clifford A., Preston G., The Algebraic Theory of Semigroups, vol. 1 and 2, Mir Fublishers, Moscow 1972 (Russian).
- [2] Howie J.M., An Introduction to Semigroup Theory, Academic Press, 1976.
- [3] Tabor J., Algebraic objects over a small category, Diss. Math., 155 (1978).