ANTONI CHRONOWSKI

On the equivalence of definitions of a semidirect product of loops

This paper is a kind of sequel to the paper [2].

In the paper we shall consider the equivalence of three definitions of a semidirect product of loops.

Definitions of loop, subloop, normal subloop will be used according to [1].

In the sequel we shall identify isomorphic algebraic structures. According to [2] we may formulate the following two definitions.

DEFINITION 1. A loop T is called a semidirect product of a loop L on a loop K if and only if the following conditions are fulfilled:

- there exist subloops L* and K* of the loop T isomorphic to the loops L i K, respectively,
- 2° K* is a normal subloop of the loop T,

$$3^{\circ}$$
 L' K' = T,
 4° L' \cap K' = $\{1\}$.

DEFINITION 2. Let L and K be loops and let

φ: L × K × L × K → K be any mapping fulfilling the conditions:

$$(a_1) \quad \varphi(1,1,1,k) = \varphi(1,1,1,k) = \varphi(1,k,1,1) = k,$$

$$(a_2)$$
 $\varphi(1,k_1,1,k_2) = k_1k_2,$

$$(a_3)$$
 $\varphi(1_1,1,1_2,1) = 1,$

(a₄) the mapping
$$\psi(l_1,k_1,l_2,\cdot): K \longrightarrow K$$
 is a bijection,

(a₅) the mapping
$$\psi(l_1, \cdot, l_2, k_2) : K \rightarrow K$$
 is a bijection, for any $l, l_1, l_2 \in L$ and $k, k_1, k_2 \in K$.

Consider an algebraic structure [L×K, o] with a bi-nary operation o defined by

$$\langle l_1, k_1 \rangle \circ \langle l_2, k_2 \rangle = \langle l_1 l_2, \psi(l_1, k_1, l_2, k_2) \rangle$$

for any $\langle l_1, k_1 \rangle$, $\langle l_2, k_2 \rangle \in L \times K$.

The algebraic structure $[L \times K, \circ]_{\phi}$ is a loop with the identity element $\langle 1, 1 \rangle$.

The loop $[L \times K, \circ]_{\psi}$ is said to be a semidirect product of the loop L on the loop K.

The third definition will be closely modelled on the definitions of a semidirect product of groups ([3]) and semigroups ([4]).

First, we shall define a structure $(L \times K, \circ)_{\alpha}$ and we shall give the necessary and sufficient conditions under which this structure is a loop.

Let L and K be any loops, let F(K) be a set of all mappings of K into K. Let $\alpha: L \to F(K)$ be any mapping. If $1 \in L$ and $k \in K$ then k^1 denotes the image of k under the mapping $\alpha(1)$.

Consider an algebraic structure $(L \times K, \circ)_{\infty}$ where a binary operation \circ is defined by

$$\langle l_1, k_1 \rangle \circ \langle l_2, k_2 \rangle = \langle l_1 l_2, k_1^{l_2} k_2 \rangle$$

for any $\langle l_1, k_1 \rangle$, $\langle l_2, k_2 \rangle \in L \times K$.

THEOREM 1. The algebraic structure $(L \times K, \circ)_{\alpha}$ is a loop if and only if the following conditions are fulfilled:

(i) for any fixed $l \in L$ the mapping $k \mapsto k^{l}$ is a bijection from K onto K,

(ii)
$$\bigvee_{k_0 \in K} \bigwedge_{1 \in L} \bigwedge_{k \in K} (k_0^1 = 1 \land k^1 k_0 = k).$$

Proof. 1. Let $(L \times K, \circ)_{CC}$ be a loop. For any pairs $\langle 1, k \rangle$, $\langle 1, k_1 \rangle \in L \times K$ there exists a unique solution of the equation

$$\langle x,y \rangle \circ \langle 1,k \rangle = \langle 1,k_1 \rangle.$$

According to the definition of the operation • this equation may be rewritten as $\langle xl,y^lk \rangle = \langle l_1,k_1 \rangle$. So the equation $y^lk = k_1$ has a unique solution and for any fixed lel the mapping $y \rightarrow y^l$ is a bijection from K onto K. The condition (i) is fulfilled.

Since $(L \times K, \circ)_{\infty}$ is a loop thus there exists a pair $\langle l_0, k_0 \rangle \in L \times K$ such that $\langle l_0, k_0 \rangle \circ \langle l, k \rangle = \langle l, k \rangle \circ \langle l_0, k_0 \rangle = \langle l, k \rangle$,

for an arbitrary <1,k> &L × K.

This means that

 $\langle l_0 l, k_0^{\frac{1}{2}} k \rangle = \langle l, k \rangle$ and $\langle ll_0, k_0^{\frac{1}{2}} k_0 \rangle = \langle l, k \rangle$. Hence $l_0 = 1$, $k_0^{\frac{1}{2}} = 1$, $k_0^{\frac{1}{2}} k_0 = k$, and thus the condition (ii) is fulfilled.

2. It is a routine matter to verify that if the conditions (i) and (ii) hold, then $(L \times K, \circ)_{\alpha}$ is a loop with the identity element $\langle 1, k_{\alpha} \rangle$.

We give an example of a structure $(L \times K, \circ)_{\infty}$ in which the identity element has the form $\langle 1, k_o \rangle$, where $k_o \in K$ and $k_o \neq 1$.

Example 1.

Consider the group $L_2 = \{1,2\}$ given by the table:

	1	2
1	1	2
2	2	1

Define the mapping h: $L_2 \longrightarrow L_2$ as follows: h(1) = 2, h(2) = 1. Let α : $L_2 \longrightarrow F(L_2)$ and α (1) = α (2) = h. The binary operation in the structure $(L_2 \times L_2, \circ)_{\alpha}$ is given by the table:

0	(1,1)	(1,2)	(2,1)	(2,2>
<1,1>	<1 , 2>	〈1,1 〉	(2,2)	<2,1>
<1,2>	<1,1>	<1 , 2>	(2,1)	(2,2>
<2,1>	(2,2)	⟨2,1⟩	<1,2>	<1,1>
<2,2>	(2,1)	(2,2)	(1,1)	<1,2>

It is clear that $(L_2 \times L_2, \circ)_{\alpha}$ is a group with the identity element $\langle 1, 2 \rangle$.

DEFINITION 3. The loop $(L \times K, \circ)_{\infty}$ is said to be a semidirect product of the loop L on the loop K.

In the sequal the symbol $(L \times K, \circ)_{\infty}$ will denote a semidirect product in the sense of definition 3 of the loop L on the loop K.

The question arises whether these three definitions are equivalent.

It has been proved in [2] that definitions 1 and 2 are equivalent. We shall prove that definition 3 implies definitions 1 and 2, but not conversely.

THEOREM 2. Every loop (L \times K, °) is a semidirect product, in the sense of definition 1, of the loop L on the loop K.

Proof. Let $\langle 1, k_0 \rangle$, $k_0 \in K$ be the identity element of the loop $(L \times K, \circ)_{\infty}$. It is easy to verify that $L^* = \{\langle 1, k_0 \rangle : 1 \in L\}$ and $K^* = \{\langle 1, k \rangle : k \in K\}$ are subloops of the loop $(L \times K, \circ)_{\infty}$ isomorphic to the loops L and K, respectively.

Thus condition 10 holds.

To prove condition 2° we must show the following equalities:

- (a) $\langle 1, k \rangle \circ K^* = K^* \circ \langle 1, k \rangle$,
- (b) $\langle 1_1, k_1 \rangle \circ [\langle 1_2, k_2 \rangle \circ K^*] = [\langle 1_1, k_1 \rangle \circ \langle 1_2, k_2 \rangle] \circ K^*,$
- (c) $[K^* \circ \langle 1_1, k_1 \rangle] \circ \langle 1_2, k_2 \rangle = K^* \circ [\langle 1_1, k_1 \rangle \circ \langle 1_2, k_2 \rangle],$

for any pairs $\langle 1,k \rangle$, $\langle 1,k_1 \rangle$, $\langle 1,k_2 \rangle \in L \times K$.

(a) Let $\langle l_1, k_1 \rangle \in \langle l, k \rangle \circ K^*$ and so $\langle l_1, k_1 \rangle =$ $= \langle l, k \rangle \circ \langle 1, k_2 \rangle = \langle l, k^1 k_2 \rangle \text{ where } k_2 \in K. \text{ There exists an element } k_3 \in K \text{ such that } k^1 k_2 = k_3^1 k \text{ and so we have }$ $\langle l_1, k_1 \rangle = \langle l, k_3^1 k \rangle = \langle 1, k_3 \rangle \circ \langle l, k \rangle \in K^* \circ \langle l, k \rangle. \text{Hence}$ $\langle l_1, k_2 \rangle \circ K^* \subset K^* \circ \langle l, k \rangle.$

We can equally well obtain the converse inclusion.

(b) Let $\langle 1, k \rangle \in \langle 1_1, k_1 \rangle \circ [\langle 1_2, k_2 \rangle \circ K^*]$. Then $\langle 1, k \rangle = \langle 1_1, k_1 \rangle \circ [\langle 1_2, k_2 \rangle \circ \langle 1, k_3 \rangle] = \langle 1_1 1_2, k_1^{-2} (k_2^1 k_3) \rangle$, $k_3 \in K$. There exists $k_4 \in K$ such that $k^{-2} (k_2^1 k_3) = (k_1^{-2} k_2)^{-1} k_4$. Hence $\langle 1, k \rangle = \langle 1_1 1_2, (k_1^{-2} k_2)^{-1} k_4 \rangle = [\langle 1_1, k_1 \rangle \circ \langle 1_2, k_2 \rangle] \circ \langle 1, k_4 \rangle \in [\langle 1_1, k_1 \rangle \circ \langle 1_2, k_2 \rangle] \circ K^*$.

A similar argument establishes the converse inclusion.

(c) A closely analogous argument leads to the equality (c).

Let us observe that $\langle 1,k \rangle = \langle 1,k_o \rangle \circ \langle 1,k \rangle$ for any pair $\langle 1,k \rangle \in L \times K$. Hence condition 3° of definition 1 holds. Evidently, condition 4° is also fulfilled. This completes the proof.

Let the loop T be a semidirect product in the sense of definition 1 of the loop L on the loop K. The loops L* and K* have the same sense as in definition 1. Consider a semidirect product $(L \times K, \circ)_{\alpha}$ with the identity element $\langle 1, k_0 \rangle$. Denote by $L_1^* = \{\langle 1, k_0 \rangle \colon 1 \in L\}$ and $K_1^* = \{\langle 1, k \rangle \colon k \in K\}$ the subloops of the loop $(L \times K, \circ)_{\alpha}$.

In the sequel we shall use the following

PROPOSITION. Let the loop T be a semidirect product in the sense of definition 1 of the loop L on the loop K. Let λ : T \longrightarrow (L × K, •) $_{\infty}$ be an isomorphism such that λ (L*) = L* $_{1}$ and λ (K*) = K* $_{1}$. Then

$$l_1(l_2k) = (l_1l_2)k$$

for any $l_1, l_2 \in L$ and $k \in K$.

Proof. Let $l_1 = x^1(\langle l_1^i, k_0 \rangle), l_2 = \lambda^{-1}(\langle l_2^i, k_0 \rangle), k = \lambda^{-1}(\langle l_1, k_1 \rangle), \text{ where } \langle l_1^i, k_0 \rangle, \langle l_2^i, k_0 \rangle \in L_1^{*} \text{ and } \langle 1, k' \rangle \in K_1^{*}.$

Then,
$$l_1(l_2k) = \lambda^{-1}(\langle l_1', k_0 \rangle) [\lambda^{-1}(\langle l_2', k_0 \rangle) \lambda^{-1}(\langle 1, k' \rangle)] =$$

$$= \lambda^{-1}(\langle l_1', k_0 \rangle \lambda^{-1}(\langle l_2', k' \rangle) = \lambda^{-1}(\langle l_1' l_2', k' \rangle) =$$

$$= \lambda^{-1}(\langle l_1' l_2', k_0 \rangle) \lambda^{-1}(\langle 1, k' \rangle) = [\lambda^{-1}(\langle l_1', k_0 \rangle \lambda^{-1}(\langle l_2', k_0 \rangle)]$$

$$\lambda^{-1}(\langle 1, k' \rangle) = (l_1 l_2) k.$$

We shall give an example of a loop $[L\times K,\circ]_{\mathbb{Q}}$ for which there is no a mapping $\mathbb{C}:L\longrightarrow F(K)$ such that the loops $(L\times K,\circ)_{\mathbb{Q}}$ and $[L\times K,\circ]_{\mathbb{Q}}$ are isomorphic.

Example 2.

Consider the loop $K = \{1,2,3,4,5\}$ given by the table.

	1	2	3	4	5
1	1	2	3	4	5
2	2	1	5	3	4
3	3	4	1	5	2
4	4	5	2	1	3
5	5	3	4	2	1

Define a mapping $\psi : K \times K \times K \times K \to K$ as follows $\psi(l_1, k_1, l_2, k_2) = \begin{cases} (k_1 \ 2)(2 \ k_2) & \text{for } l_1 \neq 1 \text{ and } l_2 \neq 1, \\ k_1 k_2 & \text{for } l_1 = 1 \text{ or } l_2 = 1. \end{cases}$

The mapping φ satisfies the conditions $(a_1) - (a_5)$ of definition 2.

By means of the mapping φ we construct the semidirect product $[K \times K, \circ]_{\varphi}$ of the loop K on the loop K.

Suppose that there exists a mapping $\alpha: K \to F(K)$ such that the loops $[K \times K, \circ]_{\phi}$ and $(K \times K, \circ)_{\alpha}$ are isomorphic, i.e. there exists an isomorphism $\lambda: [K \times K, \circ]_{\phi} \to (K \times K, \circ)_{\alpha}$.

The subloops $L^* = \{\langle 1,1 \rangle : 1 \in K \}$ and $K^* = \{\langle 1,k \rangle : k \in K \}$ of the loop $[K \times K, \circ]_{\phi}$ satisfy conditions $1^\circ - 4^\circ$ of definition 1. As the loop K is isomorphic to the loops L and K^* so the loop $[K \times K, \circ]_{\phi}$ is a semidirect product in the sense of definition 1 of the loop K on the loop K. Let $\langle 1,k_o \rangle$ be the identity element of the loop $(K \times K, \circ)_{\alpha}$. The sets $L_1^* = \{\langle 1,k_o \rangle : 1 \in K \}$ and $K_1^* = \{\langle 1,k \rangle : k \in K \}$ are subloops of the loop $(K \times K, \circ)_{\alpha}$.

The following cases can take place:

(a)
$$\lambda(L^*) = L_1^*$$
 and $\lambda(K^*) = K_1^*$,

(b)
$$\lambda(L^*) \neq L_1^* \text{ or } \lambda(K^*) \neq K_1^*$$
.

We shall show that the case (b) does not hold. As L* is not a normal subloop of the loop $[K\times K,\circ]_{\phi}$ so $\lambda(L^*) \neq K_1^*$.

It is sufficient to prove that the loop $[K \times K, c]_{\phi}$ has no five-element subloop different from L^* and K^* .

Let P be a subloop of the loop $[K \times K, \circ]_{\mathbb{P}}$. Let $\mathbb{T}_{\mathbb{Q}}(P) = \{1 \in K: \bigvee_{k \in K} \langle 1, k \rangle \in P\}$ and $\mathbb{T}_{\mathbb{Q}}(P) = \{k \in K: \bigvee_{1 \in K} \langle 1, k \rangle \in P\}$. The set $\mathbb{T}_{\mathbb{Q}}(P)$ is a subloop of the loop K. The loop K has the following subloops: $\{1\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{1,2,3,4,5\}$. All subsets of the loop K containing at least two elements different from 1 generate the loop K. Let us define on the set $K = \{1,2,3,4,5\}$ a binary operation as follows

$$k_1 \cdot k_2 = (k_1 2)(2k_2)$$

for any k1,k2 eK.

On the right side of the equality is the binary operation in the loop K.

The binary operation . has the following table:

·	1	-2	3	4	5
1	1	2	4	5	3
2	2	1	5	3	4
3	5	4	3	2	1
4	3	5	1	4	2
5	4	3	2	1	5

The set K with the binary operation \bullet is a quasigroup which will be denote by K_2 .

The quasigroup K_2 has the following subquasigroups: {1}, {3}, {4}, {5}, {1,2}, {1,2,3,4,5}. Each subset of K_2 different

from $\{1,2\}$ with two or more elements generate the quasigroup K_2 .

Consider the following cases:

- 1) If $\pi_1(P) = \{1\}$ and $\pi_2(P) = \{1,2,3,4,5\}$ then $P = K^*$.
- 2) If $\pi_1(P)$ is a two-element subloop then the subset $\pi_2(P)$ have to have at least three elements. Because each three-element subset of the set K generates the loop K and the quasigroup κ_2 , so there does not exist a five-element sublcop P satisfying above assumptions.
- 3) If $\pi_1(P) = \{1,2,3,4,5\}$ then putting $\pi_2(P) = \{1\}$ we get the subloop L. The subloop L is a unique five-element subloop P for which $\pi_2(P)$ is a one-element subset. It is easy to see that putting $\pi_2(P) = \{1,2\}$ we do not receive a five-element subloop P. It is a routine matter to check that taking for $\pi_2(P)$ other subset containing at least two elements we do not obtain a five-element subloop P because these subsets generate the loop K or the quasigroup K_2 .

Therefore, the subloops L^* and K^* are the unique five-element subloops of the loop $[K \times K, \bullet]_{\mathbb{Q}^*}$.

Then only case (a) is possible.

Let $\langle 2,1\rangle,\langle 3,1\rangle \in L^*$ and $\langle 1,4\rangle \in K^*$. Then $[\langle 2,1\rangle \circ \langle 3,1\rangle] \circ \langle 1,4\rangle = \langle 5,1\rangle \circ \langle 1,4\rangle = \langle 5,4\rangle$ and $\langle 2,1\rangle \circ \langle 3,1\rangle \circ \langle 1,4\rangle] = \langle 2,1\rangle \circ \langle 3,4\rangle = \langle 5,5\rangle$ which contradicts the Proposition.

There exists no a mapping $\alpha: K \to F(K)$ for which the loops $[K \times K, \circ]_{\mathbb{Q}}$ and $(K \times K, \circ)_{\alpha}$ are isomorphic.

It follows from the above example that definition 3 is not equivalent to definitions 1 and 2.

In the sequel of the paper we assume that loops L and and K are groups.

In order to get definitions of a semidirect product of a group L on a group K corresponding to definitions 1, 2, and 3 for loops, some natural additional requirement are imposed. For example, we shall use notions a group, a normal subgroup, instead of a loop, a normal subloop, respectively.

In definition 3 we shall assume that the mapping α is a homomorphism and the set F(K) is a group of all automorphisms Aut(K) of the group K.

These assumptions are equivalent to the following conditions:

- (1) for any fixed element $l \in L$ the mapping $k \rightarrow k^{l}$ is a bijection on K,
- (2) $(k_1k_2)^1 = k_1^2k_2^1$ and $(k_1)^{12} = k_1^{12}$ for all $1, 1, 1, 2 \in L$ and $k, k_1, k_2 \in K$.

In monography [3] there is proved the equivalence of definitions 1 and 3 of a semidirect product of groups.

Let [LxK,] be an algebraic structure constructed according to definition 2, where L and K are groups.

Now, we shall prove that every group $[L \times K, \circ]_{\varphi}$ has the form $(L \times K, \circ)_{\alpha}$ and conversely, every group $(L \times K, \circ)_{\alpha}$ can be considered as a group in the form $[L \times K, \circ]_{\varphi}$.

THEOREM 3. Let L and K be arbitrary groups. Then $[L \times K, \circ]_{\varphi}$ is a group if and only if $\varphi(1_1, k_1, 1_2, k_2) = k_1^{l_2} k_2$ for all $1_1, 1_2 \in L$, $k_1, k_2 \in K$ and conditions (1) and (2) are fulfilled.

Proof. (i) Suppose that $[L \times K, \circ]_{\phi}$ is a group. For arbitrary pairs $\langle l_1, k_1 \rangle, \langle l_2, k_2 \rangle \in L \times K$ we have $\langle l_1, k_1 \rangle \circ \langle l_2, k_2 \rangle = \langle l_1 l_2, \psi(l_1, k_1, l_2, k_2) \rangle$. On the other hand, $\langle l_1, k_1 \rangle \circ \langle l_2, k_2 \rangle = (\langle l_1, 1 \rangle \circ \langle 1, k_1 \rangle) \circ (\langle l_2, 1 \rangle \circ \langle 1, k_2 \rangle) = (\langle l_1, 1 \rangle \circ \langle l_2, 1 \rangle) \circ [(\langle l_2^{-1}, 1 \rangle \circ \langle 1, k_1 \rangle \circ \langle l_2, 1 \rangle) \circ \langle 1, k_2 \rangle]$. Notice that

(3)
$$\langle 1_{2}^{-1}, 1 \rangle \circ \langle 1, k_{4} \rangle \circ \langle 1_{2}, 1 \rangle = \langle 1, \psi(1_{2}^{-1}, k_{1}, 1_{2}, 1) \rangle \circ$$

Then $\langle 1_{4}, k_{4} \rangle \circ \langle 1_{2}, k_{2} \rangle = \langle 1_{4}1_{2}, 1 \rangle \circ [\langle 1, \psi(1_{2}^{-1}, k_{4}, 1_{2}, 1) \rangle \circ$
 $\langle \langle 1, k_{2} \rangle] = \langle 1_{4}1_{2}, 1 \rangle \circ \langle 1, \psi(1_{2}^{-1}, k_{1}, 1_{2}, 1) k_{2} \rangle =$
 $= \langle 1_{4}1_{2}, \psi(1_{2}^{-1}, k_{1}, 1_{2}, 1) k_{2} \rangle \circ$

Hence

 $\langle l_1 l_2, \phi(l_1, k_1, l_2, k_2) \rangle = \langle l_1 l_2, \phi(l_2^{-1}, k_1, l_2, 1) k_2 \rangle$ and so $\phi(l_1, k_1, l_2, k_2) = \phi(l_2^{-1}, k_1, l_2, 1) k_2$. Putting $k_1^2 = \phi(l_2^{-1}, k_1, l_2, 1)$ we have $\phi(l_1, k_1, l_2, k_2) = k_1^{l_2} k_2$.

It follows from the condition (a_5) that for any fixed element l_2 the mapping k_1^{2} is a bijection on K.

We shall show that $(k_1k_2)^1 = k_1^1k_2^1$ and $(k^1)^{12} = k^11^{12}$ for all $1,1_1,1_2 \in L$, $k,k_1,k_2 \in K$.

Applying (3) we get

 $\langle 1, \psi(1^{-1}, k_1 k_2, 1, 1) \rangle = \langle 1^{-1}, 1 \rangle \circ \langle 1, k_1 k_2 \rangle \circ \langle 1, 1 \rangle =$ $= \langle 1^{-1}, 1 \rangle \circ \langle 1, k_1 \rangle \circ \langle 1, k_2 \rangle \circ \langle 1, 1 \rangle = (\langle 1^{-1}, 1 \rangle \circ \langle 1, k_1 \rangle \circ$ $\circ \langle 1, 1 \rangle) \circ (\langle 1^{-1}, 1 \rangle \circ \langle 1, k_2 \rangle \circ \langle 1, 1 \rangle) = \langle 1, \psi(1^{-1}, k_1, 1, 1) \rangle \circ$ $\circ \langle 1, \psi(1^{-1}, k_2, 1, 1) \rangle = \langle 1, \psi(1^{-1}, k_1, 1, 1) \psi(1^{-1}, k_2, 1, 1) \rangle .$

Then $\varphi(1^{-1}, k_1 k_2, 1, 1) = \varphi(1^{-1}, k_1, 1, 1) \varphi(1^{-1}, k_2, 1^{-1}, 1)$, i.e. $(k_1 k_2)^1 = k_1^1 k_2^1$.

Furthermore, $\langle 1, \psi((1_11_2)^{-1}, k, 1_11_2, 1) \rangle = \langle (1_11_2)^{-1}, 1 \rangle \circ$ $\circ \langle 1, k \rangle \circ \langle 1_11_2, 1 \rangle = \langle 1_2^{-1}, 1 \rangle \circ \langle \langle 1_1^{-1}, 1 \rangle \circ \langle 1, k \rangle \circ \langle 1_1, 1 \rangle) \circ$ $\circ \langle 1_2, 1 \rangle = \langle 1_2^{-1}, 1 \rangle \circ \langle 1, \psi(1_1^{-1}, k, 1_1, 1) \rangle \circ \langle 1_2, 1 \rangle =$ $= \langle 1, \psi(1_2^{-1}, \psi(1_1^{-1}, k, 1_1, 1), 1_2, 1) \rangle \circ$

Hence, $\varphi((1_11_2)^{-1}, k, 1_11_2, 1) = \varphi(1_2^{-1}, \varphi(1_1^{-1}, k, 1_1, 1), 1_2, 1)$, i.e.

 $k^{1_11_2} = (k^{1_1})^{1_2}$.

(ii) Let $\psi(l_1,k_1,l_2,k_2)=k_1^{-2}k_2$ for all $l_1,l_2\in L$, $k_1,k_2\in K$ and let be conditions (1) and (2) fulfilled. We shall prove that the mapping ψ satisfies the conditions $(a_1)-(a_5)$ of definition 2.

It is a routine matter to verify that the conditions (a_1) - (a_3) hold.

Notice that the mapping $g(x) = \phi(l_1, k_1, l_2, x) = k_1^{2}x$ is a bijection of the group K onto itself. The fuction $h(x) = \phi(l_1, x, l_2, k_2) = x^{2}k_2$ is also a bijection of the group K onto itself.

Therefore conditions (a_4) and (a_5) are fulfilled.

This completes the proof.

In view of Theorem 3 the definitions of a semidirect product of groups corresponding to definitions 2 and 3 for loops are equivalent.

References

- [1] Eruck R.H., A Survey of Binary Systems, Ergebnisse der Math.. Heft 20. Springer, Berlin, 1958.
- [2] Chronowski A., On a semidirect product of loops, Rocz. Nauk. Dydakt. WSP w Krakowie, Prace Matematyczne X, Z.82, 1982, 7-14.
- [3] Holl M., Tieorija grupp, Izdatielstwo Inostrannoj Litieratury, Moskwa, 1962.
- [4] Nico W., On the regularity of semidirect products, J. Algebra, 1983, 80, Nr 1, 29-36.