KAZIMIERZ DANKIEWICZ

On a homogeneous functional inequality

In this paper we shall deal with the homogeneous functional inequality

(1)
$$\psi[f(x)] \leqslant g(x)\psi(x)$$

related to the homogeneous functional equation

(2)
$$\varphi[f(x)] = g(x)\varphi(x),$$

where f,g are given functions and ψ , ψ are unknown functions.

D. Brydak has given in the paper [2] (cf. also [1]) some theorems about continuous solutions $\psi, \psi: [0, \infty) \rightarrow [0, \infty)$ of (1) and (2), respectively, vanishing only at the origin. In this paper we shall prove analogous theorems for continuous and non-negative solutions of (1) and (2) which can take the zero value not only at the origin.

In the sequel we shall assume the following hypothesis (H)

- (i) $f: I \rightarrow I$ is a function strictly increasing and continuous in the interval $I = [0, \infty)$. Moreover 0 < f(x) < x for $x \in I_0 = (0, \infty)$.
- (ii) The function g: $I \rightarrow \mathbb{R}$ is continuous in I and g(x) > 0 for $x \in I$.
- (iii) There exists a non-void open subinterval J of I such that the sequence
- (3) $G_n(x) = \prod_{i=0}^{n-1} g[f^i(x)]$ for $x \in I$, $n \in \mathbb{N}$, where f^i denotes the i-th iterate of f, converges to zero, uniformly in J.
- 1. If hypothesis (H) is fulfilled, then equation (2) has a continuous solution in I depending on an arbitrary function and every continuous solution ψ of equation (2) in I satisfies the condition $\psi(0) = 0$ (cf. [4], p.48, Theorem 2.2).

Let U denote the union of all open (relatively to I) subsets of I on which the sequence $\{G_n\}_{n\in\mathbb{N}}$ converges uniformly to zero.

The following lemma has been proved in [5]:

LEMMA 1. Under hypothesis (H) for every continuous solution $\varphi: I \longrightarrow \mathbb{R}$ of (2) we have

$$\psi(x) = 0$$
 for $x \in I \setminus U$.

For $a \in \mathbb{R}$, $A \subseteq I$ and an arbitrary $\emptyset : I \longrightarrow \mathbb{R}$, if $a = \lim_{x \to 0} \emptyset |_{A}(x)$, then we shall write

$$a = (A) \lim_{x \to 0} \varphi(x).$$

Let us denote by Φ the family of all continuous, non-negative solutions Ψ of equation (2) in I such that the set $N(\Psi) = I \setminus \Psi^{-1}(\{0\})$ is dense in U.

We define the following relation \sim in the family $\dot{\Phi}$:

$$\varphi_1 \sim \varphi_2 \iff \bigvee_{\mathbf{a} \in \mathbb{R}} \mathbf{a} = (\mathbb{N}(\varphi_1) \cap \mathbb{N}(\varphi_2)) \lim_{\mathbf{x} \to 0} \frac{\varphi_1(\mathbf{x})}{\varphi_2(\mathbf{x})}.$$

The following lemma gives some properties of relation ~:

LEMMA 2. The relation \sim is an equivalence relation in the set Φ . If for ψ_1 , $\psi_2 \in \Phi$, $\psi_1 \sim \psi_2$, then there exists $a \in \mathbb{R}$ such that $\psi_1 = a\psi_2$.

Proof. The proof of the first part of this lemma is very simple thus it will be omitted.

Let ψ_1, ψ_2 fulfil the assumptions of lemma 2. Let $\mathbf{x}_0 \in \mathrm{N}(\phi_1) \cap \mathrm{N}(\phi_2)$. Then the sequence $\mathbf{x}_n = \mathbf{f}^n(\mathbf{x}_0)$ converges to zero and $\mathbf{f}^n(\mathbf{x}_0) \in \mathrm{N}(\phi_1) \cap \mathrm{N}(\phi_2)$ for $n=1,2,\ldots$, because ψ_1 and ψ_2 are solutions of equation (2) in I. Hence

$$\lim_{n\to\infty}\frac{\psi_1(x_n)}{\psi_2(x_n)}=a.$$

But, in view of (2),

$$\frac{\varphi_1(x_n)}{\psi_2(x_n)} = \frac{\varphi_1(x_0)G_n(x_0)}{\psi_2(x_0)G_n(x_0)} = \frac{\varphi_1(x_0)}{\psi_2(x_0)},$$

and $\psi_1(x_0) = a \psi_2(x_0)$. Since the set $N(\psi_1) \cap N(\psi_2)$ is

dense in U, then $\psi_1(x) = a \psi_2(x)$ for $x \in U$. According to the Lemma 1, the proof of the lemma is complete.

Let $\bar{\phi}\in\bar{\Phi}$. We denote by $\bar{\Phi}(\bar{\phi})$ the family of all functions $\phi\in\bar{\Phi}$ such that $\phi\sim\bar{\phi}$. It is obvious that:

THEOREM 1. $\Phi(\bar{\phi})$ is a one-parameter family of functions (cf. [2] p.21).

If the set $N(\bar{\phi})$ is not dense in U, then Theorem 1 fails to be true. We shall show it by the following

Example. Consider the functional equation

$$\varphi\left(\frac{x}{2}\right) = \frac{1}{2} \varphi(x)$$
 for $x \in I = [0,1)$.

Let Ψ_o and $\overline{\Psi}_o$ be two functions defined in the interval $\begin{bmatrix} 1,1\\ 4,2 \end{bmatrix}$ by

$$\psi_{0}(x) = \begin{cases} -(x - \frac{1}{4})(x - \frac{3}{8}) & \text{for } x \in \left[\frac{1}{4}, \frac{3}{8}\right) \\ -(x - \frac{3}{8})(x - \frac{1}{2}) & \text{for } x \in \left[\frac{3}{8}, \frac{1}{2}\right] \end{cases}$$

and

$$\bar{\psi}_{o}(\mathbf{x}) = \begin{cases} 0 & \text{for } \mathbf{x} \in \left[\frac{1}{4}, \frac{3}{8}\right) \\ \psi_{o}(\mathbf{x}) & \text{for } \mathbf{x} \in \left[\frac{3}{8}, \frac{1}{2}\right] \end{cases}$$

If we extend the functions ψ_0 and $\overline{\psi}_0$ to continuous solutions of equation (2) on I (cf. [4], p.48, Theorem 2.2), then we get the functions ψ , $\overline{\psi}$ such that

$$(N(\varphi) \cap N(\bar{\varphi})) \lim_{x \to 0} \frac{\varphi(x)}{\bar{\varphi}(x)} = 1.$$

We also have that $\emptyset \neq a \bar{\emptyset}$ for every as \mathbb{R} . In this example the set $\mathbb{N}(\bar{\emptyset})$ is not dense in $\mathbb{U}=\mathbb{I}$.

2. In this section of the paper we deal with inequality (1). We assume that hypothesis (H) is fulfilled. If ψ is a continuous non-negative solution of (1) in I, then there exists the limit

$$\lim_{n\to\infty}\frac{\psi[f^n(x)]}{G_n(x)}\quad\text{for }x\in I_0,$$

where $G_n(x)$ is defined by formula (3), and the function

(4)
$$\varphi_0(x) = \begin{cases} \lim_{n \to \infty} \frac{\psi[f^n(x)]}{G_n(x)} & \text{for } x \in I_0 \\ 0 & \text{for } x = 0 \end{cases}$$

is a solution of equation (2) in I, upper semi-continuous in I and continuous at zero (cf. [3], p.10).

We are going to give the following sufficient conditions for the solution ϕ_o to be continuous in the whole I.

THEOREM 2. Let hypothesis (H) be fulfilled. If Ψ is a solution of inequality (1) in I such that there exists a continuous solution Ψ of equation (2) in I fulfilling the condition

(5)
$$\varphi^{-1}(\{0\}) = \bigcup_{i=0}^{\infty} f^{-i}(\psi^{-1}(\{0\})),$$

where f^{-1} denotes the i-th iterate of the functions f^{-1} , and there exists the limit

(6)
$$\mathbf{a} = (N(\varphi)) \lim_{\mathbf{x} \to 0} \frac{\psi(\mathbf{x})}{\varphi(\mathbf{x})},$$

then ϕ_0 , defined by (4), is continuous in I_4

Proof. If $x \in N(\phi)$, then the sequence $x_n = f^n(x)$ converges to zero and $x_n \in N(\phi)$ for n=1,2,... It im-

plies, by virtue of (6), that there exists a sequence \mathcal{E}_n such that $\mathcal{E}_n \longrightarrow 0$ and

$$\psi[f^n(x)] = (a + \varepsilon_n) \psi[f^n(x)].$$

Hence, in view of (2),

$$\psi[f^{n}(x)] = (a + \varepsilon_{n})\psi(x)G_{n}(x)$$

and, consequently,

$$\lim_{n\to\infty}\frac{\psi[f^n(x)]}{G_n(x)}=a\,\psi(x)\quad\text{for }x\in\mathbb{N}(\psi).$$

If $x \notin N(\varphi)$, then (5) and (2) imply that $\psi[f^n(x)] = 0$ for $n \in \mathbb{N}$ and

$$\lim_{n\to\infty}\frac{\psi[f^n(x)]}{G_n(x)}=0=a\,\phi(x).$$

Consequently $\phi_0 = a \phi$ in I and ϕ_0 is a continuous solution of equation (2) in I.

We conclude the paper with two simple remarks. Denote by Φ_{ψ} the family of the continuous solutions ψ of equation (2) in I such that for the given solution ψ of inequality (1) in I conditions (5), (6) are fulfilled.

Remark 1. If for a certain $\varphi \in \Phi_{\psi}$ the limit a defined by (6) is different from zero, then

$$(N(\psi_0)) \lim_{x \to 0} \frac{\psi(x)}{\psi_0(x)} = 1,$$

where \$\phi\$ is defined by (4).

Remark 2. Φ_{ψ} is a one-parameter family of functions.

References

- [1] Brydak D., On functional inequalities in a single variable. Dissertationes Math. CLX. Warszawa 1979.
- [2] Brydak D., O nierównościach funkcyjnych jednej zmiennej, Rocz. Nauk.-Dydakt. WSP, z.61, Kraków (1977), 7-30.
- [3] Brydak D., On the homogeneous functional inequality, Rocz. Nauk.-Dydakt. WSP, z.69. Kraków (1979), 9-13.
- [4] Kuczma M., Functional equations in a single variable, Monografie Mat. 46, Warszawa (1968).
- [5] Wegrzyk R., Continuous solutions of a linear homogeneous functional equation, Ann. Polon. Math. XXXV. 1 (1977), 15-20.