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On a homogeneous functional inequality

In this paper we shall deal with the homogeneous

functional inequality

CD ty[f(x)] 4 g(x)4(x)

related to the homogeneous functional equation

(2) = gcx)f(x),

where f,g are given functions and ¢, are unknown
functions.

D. Brydak has given in the paper [2j (cf. also [1])
some theorems about continuous solutions ®,0: {(),&)--» £0,M)
of (1) and C2), respectively, vanishing only at the origin.
In this paper we shall prove analogous theorems for conti-
nuous and non-negative solutions of (1) and (2) which can

take the zero value not only at the origin.
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In the sequel we shell assume the following hypothe-
sis (H)
(1) f:1 *m 1 is a function strictly increasing and con-
tinuous in the interval 1 = [0,0C). Moreover
0 < f(x) < x for x fIQs (0,cfc).
Cii) The function g: | -» E is continuous in | and
g(x) > 0 for z«l.
Ciii) There exists a non-void open subinterval J of I

such that the sequence

() G® «'I'i'l;’; o) ] for xel, nar,

where f* denotes the i-th iterate of f, converges
to zero, uniformly in J.

1. If hypothesis (E) is fulfilled, then equation (2)
has a continuous solution in | depending on an arbitrary
function and every continuous solution of equation (2)
in | satisfies the condition vf(0) - o (cf. [4], p.48,
Theorem 2.2).

Let U denote the union of all open (relatively to 1)
subsets of | on which the sequence I7n}nbIN converges
uniformly to zero.

The following lemma has been proved in [5]*

LEMMA 1. Under hypothesis (H) for every continuous

solution t 1 —»K of (2) we have

\|>x) 5 O for x41 N U.

62



For a6E, Ac | and an arbitrary ~r | -*mE, if

a = lim vP].(x), then we shall write
X-*.0 *

as (Al 4>(x).
x>0
Let us denote by $ the family of all continuous,
non-negative solutions ~ of equation C2) in | such that
the set Ntvf) = I N is dense in U.

We define the following relation ~ in the family &

Ry \Y a = n NC~p)) . lim
1 afck I+0 "2/
The following lemma gives some properties of relation ~ t
LEMMA 2» The relation ~ is an equivalence relation
in the set ® . If for ~ t'Cg 1 n2*- tben fcllere
exists aeE such that = sn2*

Pr oof. The proof of the first part of this lemma
is very simple thus it will be omitted.
Let 4/1t4)2 fulfil the assumptions of lemma 2. Let
XQfe N(<p,p M N(-p2) . Then the sequence Xg = ~(x0) con-

verges to zero and "~ (x0)e NC”™) n N(p2) for n=1,2,...,

because ~ and ~2 are solutions of equation (2) in I.
Hence

. - w

lim = a.

Nn-*-00

But, in view of (2),

= = 9
and fyCx0) = a”>2Cx0). Since the set n Nep2) is
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dense in U, then ~"W((Xx) = av2(x) for xeU. According to
the Lemma 1, the proof of the lemma is complete.

Let 6 ® . We denote by o (*) the family of all
functions ¢ such that n
It is obvious that:

THEOREM 1. @ (~) is a one-parameter family of fun-
ctions (cf. [2] p.21).

If the set N(v])is not dense in U, then Theorem 1
fails to be trtle. We shall show it by the following

Example. Consider the functional equation
N A (x) for x &1 = Co,l).
Let and ~Q be two functions defined in the interval

[hi]

mg) for

-(x - (% -.}/)) for ’

and
0 for e
toP) = -
H . W for [II]
and \go
(Cf. n 3,

then we get the functions ~ N such that

(NGEHN NCY) Tim =1.

X-*-0

We also have that $ C ap for every a& R. In this example

the set N(Op) is not dense in U = 1.



2. In this section of the paper we deal with inequa-
lity (1). We assume that hypothesis (H) is fulfilled. If
¢ is a continuous non-negative solution of (1) in I, then

there exists the limit

lim for x tlc,
nroo”™ E T

where Gn(x) is defined by formula (3)» and the function

for xel,
(@) vfoO) =
vV 0 for x =0
is a solution of equation (2) in |, upper semi-continuous

in | and continuous at zero (cf. C33» p.l0).

We are going to give the following sufficient condi-
tions for the solution to be continuous in the
whole 1.

THEOREM 2. Let hypothesis (H) be fulfilled. If ¢ is
a solution of inequality (1) in | such that there exists
a continuous solution of equation (2) in | fulfilling

the condition

(5) = 4T 1((0})) ,
where f_| denotes the i-th iterate of the functions f_l,

and there exists the limit

(6) » = (1 Ne jw LY
then L0, defined by (4), is continuous in 1/

Proof. If xeNCvf), then the sequence xn = fn(x)
converges to zero and xnfe N(vf) for n=1f2,... . It im-
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plies, by virtue of (6), that there exists a sequence £

such that 0 and

pCACX)] (a + £En)vf[fn(x)] .
Hence, in view of (2),
d(NxWM = (a + en)*Cx)Gn(x)

and, consequently,

lim We = avf(x) for xeH(L>),
Nn-*-00 n' '

If x~N(vf),then(5and(2}iimply that ¢ [*(x)] =0 for
n& IN and

Consequently ¢O0 = avf in | and WJQ is a continuous solu-
tion of equation (2) in 1.

We conclude the paper with two simple remarks.
Denote by ¢y the family of the continuous solutions of
equation (2) in | such that for the given solution ¢ of
inequality (1) in | conditions (5), (6) are fulfilled.

Remark 1. If for a certain 4ypbdy the limit a

defined by C6) is different from zero, then

where ~ is defined by (4).
Remark 2. @y is a one-parameter family of

functions.
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