ANDRZEJ GRZASLEWICZ

On n-homomorphisms in Brandt groupoids

Introduction. In the note [1] has been proved that if
(G,*), (K»*) are groups, BBC R, Su = G and
hi E—* K is a homomorphism then there exists exactly one
homomorphism Es G — K being an extension of h, and the
form of E has been given. In the note [23 the authors ge-
neralized the results of the note CI3 considering the
Ehresmann groupoids instead of groups (G,*)» (£,*)e In
this note «e examine n-homomorphisms defined on E and
their extensions considering the Brandt groupoid (B ,O0
instead of the group (G,«) and the semigroup (M ,0 in-
stead of the group (£,*)-

Definitions and notations. In [33 W.Waliszewski gave
the following definition of Ehresmann groupoids The pair
(E,*), where E is a nonempty set and < is a binary ope-
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ration defined for some pairs (x,y)e E*E will be called
the Ehresmann groupoid if the following conditions are sa-
tisfied

a) If in equation x«(y»z) = (x«y) *2 one of its
sides or both of the products y>2, x*y are defined, then
both sides if this equation are defined and the equality
holds,

b) For every element xeE there exists exactly one
left unit f and exactly one right unit ex such that
XX =X s x*ex*

c) If the product x»y is defined, then ex = f*,

d) For every element x ftE there exists exactly one

A A
element x 1 (inverse to x) such that x*x = fx and

X T »X = ex.

An Ehresmann groupoid (E ,O is called a Brandt
groupoid if the following condition is satisfied

ej For every elements x,y 6 E there exists an element
2 &E such that the products x*z, s«<y are defined. Every
group is a Brandt groupoid, of course.

If (E,*) is an Ehresmann groupoid and /1, B are sub-
sets of E then we shall use the following notations

ABt={xy: xfcA, y&B and the product xy is defined},

A’1l:= £x: xfeE, x”16-a},

1n:= (efe-E: ex = x or xe =x for some zei],

1*2 Ige
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Below we give some properties of Ehresmann groupoid
(E,O which will be used in the sequel ( they can be easily

verified by the reader).

a) (x”1)"1 * x for x feE,

b) le s le**-- o for x1,...,x neE, V " -exn
defined,

c) fx = ex 1* ex = Fx-| for xe E,

d) (A”1)*1 = A for ACE,

a) if the product x.y is defined then e = f, for
X,y ek,

f) ex = fx = x * X"1 for X€I,

8) (AnB)(C nD)c ACn AD lNnNBC n BD- for A,B,C,DC E

h) (A uB)(C UD) = ACu AD nBC uBDb for AB,C,DCE

i) Cab)-1 = B-1.a-1 for ABC E,

d) (A MB)1 = A1 n B"1, (Au B)"1 = A"1lwn B"1,

CAu B)“1 = A“1\ B”1 for ABCE.

Moreover it is well known that every Ehresmann
groupoid is a sum of disjoint Brandt groupoids* By this
property the results of this paper can be used for Ehres-
mann groupoids.

DN will denote the domain of the function f and f*1(x)
the element inverse to f(x)-

If (z,0, (L,O are multiplicative systems then a

function g the domain of which is contained in K and the

range of which is contained in £ will be called an n-homo-
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morphism iff the equality gCx*«... = g(x,j) ¢ ... «gCx™)
holds whenever x”,...,xn6 K and the product x”e...»Xxn
is defined.

In the case n = 2 we say homomorphism instead of 2-homo-
morphism.

The function g¢g: x— -x2, xttRN{o0}, is a simple example
of 3-homomorpfaism of VIR into (RN. (0},0.

A function g will be called an extension of the fun-
ction f if f c g. In this case we say also that g is an
extension of f onto the set DD.

In this note R will denote a subset of a Brandt
groupoid B such that the following condition is satisfied

RR ¢ R] R uRrR ™ =B. AN
It is easy to verify that the following condition is ful-
filled

I = IR, Il ¢ R nR“1, R“1 « R"1 C R"1. (2)

(K,0 w ill denote a semigroup such that M= H un {0},
where (H ,0 is a group and x»0 = O»x = 0 for xfcM.
Finally, for a function g the range of which is contained
in the set Mwe put

Ng-= (xs x&Dg, g(x) £ 0].

Homomorphisms. In this section we consider homomor-
phisms of (R0 into (M,*) and their extensions.

LEMVA 1. If (E,*) is an Ehresmann groupoid being
a subgroupoid of CB,«) and N:= E n E, then the following

conditions are fulfilled
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a) NN C N, N“1. N~1 C IT1, @
b) No IT1 = E, (4)
Co) RNN=RNE, @
Cd) RNNUCRNN)~1UE = B, (6)
e) RNN.NCRNN, @
f) N.RNNCRNN. t3))
Moreover, if the following condition

RNN.R4NCRNN @
holds, then the following conditions are fulfilled
9) RNE.ECRNE, (10)
h) E.RNECRNE, (11)
i) CRUE). (Rn€Ek)CRWME. C12)

Pr oof. We have

N. N=CR nE)(R nE) CERNEECRDNE =N,

N1 . N1 = (N *N)"1C IT1,

NUITL r(RMTE)o (Rn E)’1 = (R fiE)u (R“1n E“1) =
=RnNnE)u (RTL E) = (EME'1)NE:bNE =E,

R\N
RuNUCENN“1U E=R\ EU CRNE)'1UE =

R\ (RrtE) =RNRURNE=RNE,

CRNE UR’12\ EUE=RUR‘1IME =BUuE = B,
thus conditions C3) - C6) hold. Suppose now that
RN .n£r \N. Since R\N +« KCRRCR, there exist
elements x R N N, y € Neuch that their product xy is
defined and rye N, Then xy, yeE and, since E is an
Ehresmann groupoid, also xeE. Hence xtR mE = N,
which is a contradiction. Thus condition (7) is satisfied.
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Analogously one cen prove that (8) holds.
Now let us assume that condition (9) is fulfilled. Suppose
that (10) is not satisfied. Then there exist elements
XtRNE, y6 E such that the product xy is defined and
XyjfRNE. By (5) and (6) there are possible two cases
a) xye (R\E)*"1 or b/ XYySE.
In the case a) y *x 1frR\E, whence, by (5), (9) and be-
cause xfc-R\E, we get y_16-R4E, which is a contradiction,
too. Thus condition (10) is fulfilled. Analogously one can
prove that (11) holds. Finally we have

(RUE)«(ROE) =RR u REuER UEECRUREUERUEcC

cRu (RSEUE). E UE «(RvVE uE) oE =

= RUR\E ¢« EUEUE <« R\EC RuRseuE=R UE,

which completes the proof.

LEMMA 2. Let h: R-*-M be a homomorphism and

Ehi= Nh u Nn*/1* Tllen ~he following conditions are fulfilled

a) E” is an Ehresmann groupoid unless E» = 0,
b) \' =R n Eh,
c) R\Nh * R4Nh c RN Nh*
d) the function E defined as follows
0 for X6 R4Eh,
h (x) for x«\ '

for XxfrNjl14Rh
is the only extension of the homomorphism h onto the set

R u Eh.
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Pr oof. Weshall write N, E instead of N”, E”~. Let
E be nonempty, let x,y belong to E and let the product xy
be defined* The following cases are possible

a') x.yfcN, b') x€&N*"1, y&IT1, c¢') XfeN, J6N"1,

d') x6 IT1, ye N.

In the case a') we have xeN, yeN, Ne R, xyeR, h(x)®
4 0 4 h(y). Since h is a homomorphism, we have hCxy) ~ 0,
which implies xyt N. Thus N . NC N, whence N"1«N"1c N'l
Let now xtr N, yfeN"~. Then the following two cases are
possible

cjj) xyfc R, Cg) xye-R”1.
In the case cjj), since h is a homomorphism defined on R,
we have h(xy) e« h(y“1l) = hCx) 0. Thus xy(«N, In the case
c™) y“1*x"16H and we have My”1*!”1)» h(x> = h(y”1) ~
4 0, which gives y"~x"1&N, Hence xye N‘1, Thus N.N“lc g
Analogously one can show, that N-~1»N C E. From the above
considerations it follows that E»E C E.
Let now xfcE. Then xtN or xfelTl1 and hCx) 0 or
h(,xqﬂ) ~ 0. Sint:e ex,fx &R and h is a homomorphism de-
fined on R we obtain h(fx) *h(x) »h(ex) = h(x) ~ 0 or
0 ™~ hCx-1) = hCex)'hCx*"1) »h(fx), whence ex*fxfeE* By the
definition of the set E we obtain E = E~1. Thus we have
shown that CE,*) is an Ehresmann groupoid » Now we shall
show that N =R n E. N is contained in R n E, of course.
Let us suppose R n E £ N. Then there exists an element
xeR n E such that x~N. Thus xtR n N~1, whence x~"b N,
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fx &Nt h(x ') ~ O. Since h is a homomorphism we have
h(xVh(x <1) = h(fx) ™~ 0, which is a contradiction. Thus
the equality b) holds. Now we shall prove that condition
c) is fulfilled. Of course, R\N « R\N CR. Let us sup-
pose that there exist elements xjtR v N such that the
product xy is defined and xy € N. Then h(xy) ~ 0,
whence, because h is a homomorphism, h(x) £ 0. This con-
tradicts the fact that xtRNN and therefore condition
c) is satisfied.
The function E is well defined on the set R u E, because
(ENE)u N u (f\' N) =R u E and the sets R\E, N, N~1vN
are disjoint. Moreover, by the definition of E we conclude
that h ¢ E. From the equality
(RUE)*CRo E) =(RNNMUNUITL)*(R\N U NunlT1) =
=(R\N).(RN N)U (RnNV N u (RS N)o(N~1>N)U
N «(RsSN)UN. N uN *N“1\ N)UN“1%N)*~ N)u
u(N“1n N). NG (N"1sN).(IT1uN)
and from lemma 1 we conclude that for x,ytR uE such

that the product xy is defined the following cases are

possible

1) X tRuU N, y eRN N, XytRsN
2) XtRsN, JfCcN, xyftRs N
3) XtRAN, y& ITINN, xyfc RvN
"+ x fcN, ye R\ N, xy fRnN
5) x e N, JbN, XJ4 N,
6) Xt N, y N'1I\ N, xyfrN,
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7) X N, y BN1uN, xyt 1T14N,
8) X N14N ykRuUNf xyt Rn N,
9) XEITINN yEN, xy t N,
10) X€IT1\ N,y €N, xyt ITLNN,
11) XeITiNy, y &N'In N, xyfe N~1nN.
The equality E(x)» E(y) = Etxy) holds in the cases 1),
2), 4-)» 5) because of the inclusion h c E. We shall show
that this equality holds in cases 7) and 9)¢ In other ca-
ses proofs are analogical. In case 7) we have xt-N,
y"~é N, y"1.x”"1ft N. Hence from the definition of E and
because h is a homomorphism we get

h(y”1»x“1)* hex') - h(y“1l),

h(y_/l.x"1) = h(y“1)+ b*1(x),

h"1l C(xy)_1) = h(x). h"1(y"1) t

E(xy) e E(X)* E(y).
In case 9) we get x_'|,y,xyeN. Analogously as above we
have

h(x”1) « h(xy) = hCy),

h(xy) = h"1(x“1)» h(y),

E(xy) =E(X)* E(y).
Thus we showed that E is @ homomorphism.
Finally let E~, E2 be extensions of h onto the set R un E.
For x~T4Y K we have x“4Y k and- E’\(x'_]1') = h(x"‘l') =
= EgCx””"). Hence, because E is an Ehresmann groupoid,
x,x“1,fx6 E and E~, Eg are homomorphisms, we get

E<(x) = E1“1(x“1) =E 2" (x-1) = Eg(x) ,
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which together with hc h c Ej means that E defined
in lemma 2 is the only extension of h onto the set R nE
and completes the proof*

THEOREM 1. Let h: R-*-M be a function and
Bh!= Nh u l\h_ﬂ- Tiien b is a homomorphism if and only if

the following conditions are fulfilled

a) E”N is an Ehresmann groupoid unless =0,

b) R n Eh = Nh,

c) RYUEN « RNE® C RUE™

d) there exists a homomorphism Ei E~— H such that

E(x) = h(x) for xe N~
Proof. In virtue of lemma 2 one can conclude that
conditions a) - d) are fulfilled when h is a homomorphism.
Let now conditions a) - d) be satisfied, x,ytR and let
the product xy be defined. Then xyfcR. By a), c) we can
use lemma 1. Prom the equality R = R\N u N and condi-
tions b), d), (3)» (5)» (7)* (8) it follows that there are

possible the following cases

1) xfc RSN, JTIRNN, Xyt Bn N,

2) XtB\N, ytN, Xy e R N,

3) x feN, yt R4 N, xXyfrRMN,

4) Xt N, Y frN, Xy N,

where <:= It is easy to verify that in each of the

above cases the equality hCx)e h(y) = h(xy) holds, which

completes the proof.
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LEMMA 3. Let hi R—» M be a homomorphism and let 15
be a subset of b such that Rc E and 5 . 5 c 1, Let
E: 5 —» M be ahomomorphism being an extension of h. Then
Eh = Ee , where Eh:= Nawun Hjl, Eei= % un N

Proof. Since hc E, we have C Nj and Eh c Ejj.
Let xtrEjg. First let us consider the case, where xfcR.
Then X&RnNEjj C 5nEE and, by lemma 2, xe Nj and
ECx) ~ 0. Since hc¢c E and xtR, the equality hCx”® E(x)
holds. Thus x&R and hCx) 0 0, which means that
X 6 NE ¢ E”. In the case x“1e R we get x“leb n = Ne
and E(x“W) 0 0. Hence and by the equality h(x“1)= ECx-")
we have h(x ) 0 O. Therefore x &N, whence x & c
C Ee, which completes the proof.

THEOREM 2. Let h: R -*m M be a homomorphism. Then

there exists a homomorphism Et B -*» M being an extension

of h if and only if E~ =B or = 0, where Eht=Nbu N£ .
Proof. It is easy to see that conditions h =0
and = 0 are equivalent. Now let h / 0. Let Et B-» M

be a homomorphism which is an extension of h, and suppose
that B <€ Ee = Ee (cf. Lemma 3). Then there exist elements
a,be B such that E(a) 0 0 and ECb) = O, B is a Brandt
groupoid, therefore there exists an element ce B such
that the products be and ca are defined. By the equality
c“"eb“1*bca s a and because E is a homomorphism defined
on B we obtain the contradictiont 0 0 ECa) = E(c“1b“1)»
*E(b) *E(ca) = 0, thus the equality B = E~ holds. If the
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equality E” = B holds then =RnEh=RNIB =R

Thus h(x) / 0 for xfcR. From lemma 2 it follows that

there exists an extension of h onto the set R mE” =

= R o B = B, which completes the proof.
n-homomorphisms. In this section we assume that n is

an integer and ,n > 2.
THEOREM 3. A function

gs R—» M is an n-homomorphism

if and only if there exist functions «k: | H and

h: R M such that the following consitions are fulfilled
a) [k(e)I n = k(e) for eel,’ (13)
b) ktfx)* h(x) = h(xX)«x kCex) for x eR, (14)
c) h is a homomorphism, (15)
d) g(x) = k(fx)e h(x) for xt R. (16)
Moreover, if for the triplets of functions (g,k~ ,h")f
(g.,~,~), -where g: R-*> M, kltk2: | —emH, h*"hgiR —» M,
conditions (13) - (16) hold, then hj = i".
Proof. Let gt R—» M be an n-homomorphism. Let
us put
'gCe) for ewl and g(e) * o.
K Ce} s= (17)
] for efrl and g(e) = 0,
hlIx) 1= Ke1e v gCx) for xR, (18)
1 is the unit of the group H.
easy to see that k(I) ¢ H and I~Ce) = kCe) for
etl, whence
kn“2 (e) = k””"(e) for eé6l. (19)
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By the definition of the function h we get

h(x) =0 iff g(x) s 0 for xc.R, (20)
From the equalities

g~1 -9 =g\ 1) =g =gOeeED) =

= g(x)" g~ ain ) for XxtR (21)

we conclude that the following condition

g(x) £0 implies g(fx) £ 0 and y(ex) £ 0 (22)
holds for x 6B.
Let xgR. In the case h(x) = 0 equality (14) holds, of
course. If h(x) EO, then in virtue of (20), (18), (22),
(17) we obtain

k<fx> = g(fx) and k(ex) = g(ex), (23)
whence

k(fx)* h(x)

g(x) = gn“2(fx)» g(x)* g(ex) =
k”"1(fx) s g(x)* k(ex) = h(x)e k(ex).

Thus condition (14) is satisfied.

Let now x,yeR and let the product xy be defined. Then
Xyb-R, fx * f~, ex x fy. If g(x) x0 or g(y) =0

then 0 x g(x)e gn~2(ex)*‘ g(y) = g(xy), whence, by (20),
h(xy) x 0. Thus the equality h(x)» h(y) x h(xy) in this
case holds. If g(x) ~0 and g(y) ~ 0 then g(fx) ™~ O,
g(ex) ~ 0 and we have h(x)* h(y) = k”1(fx)* g(x) *k“1(fy)»
g(y) = k"1(fx)* g(x)e gn“2(fy)* g(yX = k"1(fx)*g(xy) = h(xy)
Thus condition (15) is satisfied. The equality (16) follows

from (18)

81



Let nom for functions g: R— M, ks | —»H, hj H-+-M
conditions (13) - (16) be fulfilled and let x1,...,xntR

be such that the product x1»...»xn is defined. Then

f.sty,  dteg st,, for 1-L«*nl Wecet

by (13>-(16)

gCx”™) »...eg(x n) kK(fx ) ‘hCx?) e...ek (fx**h(xn) =

k(fx ) .kn~1(fx ) .h(x1)....«h (x Q) =

kn(fx ) eb(x1*...*xn) =

k(fx )*h(Xxl«...»xn) = 5(X1-....x n),
which means that g is an n-homomorphism.
If for the triplets of functions (g.kjjhg)
conditions (13)-tl6) are fulfilled, then

gCx) = k™ (fx) *h.jCx) = k2 (fx) «<h"~Cx) for xeR. (24)
If x&R and g(x) =0 then h*(x) = 0 = h2(x).
If xtR and g(x) ~0 then h~(fx) =1 = b2(fx), where
1 is the unit of the group H, and by (24) we get g(fx) =
= k,j(fx) = (fx). Hence, by (24) we have t*"Cx) = hgCx),

which completes the proof.

THEOREM 4. Let functions g: R—» M, k: | -» H,
hs R — be such that conditions (13)-(15) are satisfied
and let
g(x) = k(fx)* b(x) for x 6-R. (25)
Moreover let 5 c¢cB be such that E el and | 1 e I,

Then the following conditions
a) there exists a homomorphism 7iis H-» M being an ex-

tension of h,
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b) there exists an n-homoroorphism . R —*-M being an
extension of g
are equivalent.
Moreover, if an extension of the homomorphism g onto the
set 5 exists, then it is unique.
Pr oof. Let g: E—= K be an n-homomorphism which

is an extension of the n-homomorphism g¢g: R —* M, Then

there exists a function E: |I — H and a homomorphism
E: —*» M such that
o) = E(R)- B  for xtS. (26)

we dall dowv that E is an extension of h. Let XFOR. 1f
g(x) - 0 then g®) =0, ad by (25) ad (26) h(X) = 0=
= E(x). Thus in this case the equality h(x) = E(x) holds.
If gx) ~0 then gMX) ¢ 0, g(fx) t O and h(fx) =
=1 = E(fx).
Hence and from (25) and (26) be obtain k(fx) = g(fx) =
= g(®) =E(®) , whence by (D) ad (H) we hae HX) =
= k“"4fx)» g00 = h“1(fx) e g(x) = h(x). Thus condition b)
implies condition a). To prove that condition a) implies
condition b) it is enough to show (in virtue of theorem 3)
the condition

k(fx) « E(x) = E(X)« k(ex) for xc-E\R (27)
holds. Let xtisH, If E(x) = 0, then equality (27)
holds. Now let E(x) £ 0. Then we have x“1t Rc E and
fx&E. Hence and by the fact, that E is a homomorphism
we conclude that h(x“/*) = h”1(x). For functions k, h
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condition (14) is fulfilled, whence

kK(f *)e h(x*1)
X

K (ex)es h*“1(x)

h(x“1)s k(e n,
X 1

h"1(x)e k(fx>,

M(X)* K(ex) e K(fx) s H(x).

Thus condition (27) is fulfilled. By theorem 3 we conclude
that if ¢g:5 -*m M is an n-homomorphism which is an exten-
sion of g, then it is the only such extension. If the
Brandt groupoid (B,*) is a group, then fx = ex =1 for
xeB, where 1 is the unit of the group (B,*), and there-
fore from theorems 1, 2 and lemma 2 we obtain the following

COROLLARY. If the Brandt groupoid (B,*) is a group
with the unit 1, then the function gs R—» M is an n-ho-
momorphism if and only if there exist an element a &H
and a homomorphism h: R — M such that the following

conditions are fulfilled

a) all = a,
b) a * h(x) = h(x) « a for x&R,
c) g(x) = a * h(x) for x&R.

References

CD Aczél J., Baker J.A., Djokovic D.2., Kannappan P .,
Rado F,, Extension of certain homomorphisme of semi-
groups to homomorphisme of groups, Aequat. Math. 6
(1971), 263-271.

84



[2]

[3]

Grzaslewicz A., Sikorski P., On some homomorphisme in
Ehresmann groupoids, Rocz. Nauk.-Dydakt. WSP w Krako-
wie, Prace mat. VI, 41, (1970), 55-66.

Waliszewski W., Categories, groupoids, pseudogruops
and analitical structures, Rozpraw? Mat., 45, Warsza-

wa 1965»

85



