ANDRZEJ GRZĄŚLEWICZ

On the solution of the equation $[n(x+y)-n(x-y)]^2=16n(x)n(y)$

§1. In this paper X denotes an abelian group and K denotes a commutative field subjected to the following conditions

a) if
$$2x = 0$$
 then $x = 0$ for $x \in K$, (1)

b) if
$$5x = 0$$
 then $x = 0$ for $x \in K$, (2)

c) to each $x \in K$ rhere exists $y \in K$ such that $x = y^2$. (3)

We shall consider the functional equation

 $[n(x+y) - n(x-y)]^2 = 16 n(x)n(y)$ for $x,y \in X$, (4) where n is a function mapping X into K. In the case when the values of function n are real numbers equation (4) was examined in [2] and [3].

LEMMA 1. Let $n: X \longrightarrow K$ be a function satisfying (4) and let $M: X \times X \longrightarrow K$ be a function defined as follows

$$M(x,y) := n(x+y) - n(x-y)$$
 for $x,y \in X$. (5)

Then the following conditions are satisfied

a)
$$n(0) = 0$$
, (6)

b)
$$n(x) = n(-x)$$
 for $x \in X$, (7)

c)
$$n(2x) = 4n(x)$$
 for $x \in X$, (8)

d)
$$[n(x) - n(y)]^2 = n(x+y)n(x-y)$$
 for $x,y \in X$, (9)

e)
$$n(x+y) + n(x-y) = 2n(x) + 2n(y)$$
 for $x,y \in X$, (10)

f) M is a function symmetric and additive with respect to each variable. (11)

Proof. If in (4) we set 0 instead of x, y then by (1) we obtain (6). If in (4) we set 0 instead of x then by (6) we obtain (7). Now let us put in (4) x inxtead of x and y. Using (6) we get

$$[n(2x)]^2 = 16[n(x)]^2$$
 for $x \in X$, (12)

whence

n(2x) = 4n(x) or n(2x) = -4n(x) for $x \in X$. (13) If n(x) = 0, then by (12) n(2x) = 0 and conclude that in this case (8) holds. Let us suppose now that for some $x \in X$ the following condition is fulfilled

$$n(x) \neq 0 \quad \text{and} \quad n(2x) = -4n(x). \tag{14}$$

By (14) and (13) we get

$$n(4x) = 16n(x)$$
 or $n(4x) = -16n(x)$. (15)

If in (4) we set 2x instead of x and x instead of y then, using (14) we obtain

$$[n(3x) - n(x)]^{2} = -64[n(x)]^{2}.$$
 (16)

If in (4) we replace x by 3x and y by x then, using (14),

(15) and (1) we have

$$[n(4x) + 4n(x)]^2 = 16n(3x)n(x),$$

 $16n(3x)n(x) = [20n(x)]^2$ or $16n(3x)n(x) = [-12n(x)]^2$, whence

$$n(3x) = 25n(x)$$
 or $n(3x) = 9n(x)$.

Hence and from (16) we get

$$2^7 \cdot 5[n(x)]^2 = 0$$
 or $2^7[n(x)]^2 = 0$,

which by (1) and (2) gives n(x) = 0 what contradicts to (14). From the above considerations and (13) we conclude that condition (8) is satisfied.

Putting in (4) x+y instead of x and x-y instead of y and using (8) and (1) we obtain

$$[n(2x) - n(2y)]^{2} = 16 n(x+y)n(x-y),$$

$$16[n(x) - n(y)]^{2} = 16 n(x+y)n(x-y),$$

$$[n(x) - n(y)]^{2} = n(x+y)n(x-y),$$

thus condition (9) is fulfilled.

Now we shall prove condition (10). In virtue of (4) and (9) we have

$$[n(x+y) + n(x-y)]^{2} = [n(x+y) - n(x-y)]^{2} + 4n(x+y)n(x-y) =$$

$$= 16n(x)n(y) + 4[n(x) - n(y)]^{2} =$$

$$= [2n(x) + 2n(y)]^{2},$$

whence

$$n(x+y) + n(x-y) = 2n(x) + 2n(y)$$

Or

$$n(x+y) + n(x-y) = -2n(x) - 2n(y)$$
 for $x,y \in X$. (17)

Let us suppose that there exist x,y Xe such that

$$n(x+y) + n(x-y) = -2n(x) - 2n(y)$$
. (18)

Let a, b ∈ K be such that

$$a^2 = n(x), b^2 = n(y).$$
 (19)

Using (4), (18) and (19) we get

$$[n(x+y) - n(x-y)]^2 = 16 a^2b^2$$
 (20)

and

$$n(x+y) + n(x-y) = -2a^2 - 2b^2,$$
 (21)

whence

$$n(x+y) = -(a-b)^2$$
 and $n(x-y) = -(a+b)^2$ (22)

or

$$n(x+y) = -(a+b)^2$$
 and $n(x-y) = -(a-b)^2$. (23)

Assume (22) (in the case (23) the proof is analogous and therefore is omitted). If b = 0 then using (19), (8) we have

 $4a^4 = [-a^2 - a^2]^2 = [n(x+y) - n(x)]^2 = n(2x+y)n(y) = 0.$ Hence, in virtue of (1) we get a = 0 and (10) holds.

If a = 0 then using (22), (19), (8) we obtain

 $4b^4 = (-b^2-b^2)^2 = [n(x+y - n(y))]^2 = n(x+2y)n(x) = 0,$ whence now b = 0 and (10) again holds.

Now let us consider the case $a \cdot b \neq 0$. By (19), (4), (8), (7) we get

16
$$n(x+2y) \cdot a^2 = 16 n(x+2y) n(x) = [n(2x+2y) - n(2y)]^2 =$$

= $16[n(x+y) - n(y)]^2 = 16[(a-b)^2 + b^2]^2$,
16 $n(x-2y) \cdot a^2 = 16 n(x-2y) n(x) = [n(2x-2y)^2 - n(2y)]^2 =$
= $16[n(x-y) - n(y)]^2 = 16[(a+b)^2 + b^2]^2$.

Hence in virtue of (19), (8), (1), (4) we have

$$16^{2} \cdot 64 \ a^{6} \cdot b^{2} = 16^{2} \cdot 64 \ a^{4} \ n(x)n(y) = 16^{2} \cdot a^{4} \cdot 16n(x)n(2y) = 16^{2} \cdot a^{4} \left[n(x+2y) - n(x-2y)\right]^{2} = \left[16 \ a^{2}n(x+2y) - 16 \ a^{2} \cdot n(x-2y)\right]^{2} = \left[16 \cdot (a-b)^{2} + b^{2}\right]^{2} - 16 \cdot (a+b)^{2} + b^{2}\right]^{2} = 16^{2} \left[(-2b)(2a)(2a^{2} + 4b^{2})\right]^{2} = 16^{2} \cdot 16 \cdot 4 \ a^{2}b^{2}(a^{2} + 2b^{2})^{2}.$$

whence

$$a^4 = (a^2 + 2b^2)^2$$
, i.e. $a^2 + b^2 = 0$.

Hence and from (22) we get

$$n(x+y) + n(x-y) = -(a-b)^2 - (a+b)^2 = -2(a^2 + b^2) = 0 = 2(a^2 + b^2) = 2a^2 + 2b^2 = 2n(x) + 2n(y),$$

which means that in this case condition (10) is also fulfilled. The proof of (10) is completed.

Condition (11) was proved by S. Kurepa in [1] in the case when K is the set of real numbers. In our case the proof is analogical and therefore we omit it.

THEOREM 1. A function n: $X \longrightarrow K$ satisfies (4) iff there exist and additive function g: $X \longrightarrow K$ and a constant a $\in K$ such that

16
$$n(x) = a[g(x)]^2$$
 for $x \in X$. (24)

Proof. Using (1) it is easy to verify that (24) implies (4). If n = 0 then (24) holds, of course. If there exists $y \in X$ such that $n(y) \neq 0$ then we put $a = [n(y)]^{-1}$,

$$g(x) = M(x,y)$$
 for $x \in X$,

where M is a function defined in (5). Using (4) and (11) we get

16 $n(x)n(y) = [n(x+y) - n(x-y)]^2 = [M(x,y)]^2 = [g(x)]^2$, whence

16
$$n(x) = a[g(x)]^2$$
,

which completes the proof.

§2. Now we shall consider the case where X is the additive group of the set of complex numbers and K is the set of complex numbers. It is well known, that the continuous additive functions f: C -> C are of the form

$$f(z) = a \cdot rez + b \cdot imz$$
 for $z \in C$, (25)
where $a,b \in C$ are arbitrary constants.

The following lemma is well known (see for instance [3], p.217).

LEMMA 2. An additive function $f: C \longrightarrow C$ is continuous iff there exist $p,q \in C$ such that

$$f(z) = pz + q\overline{z}$$
 for $z \in C$. (26)

In virtue of theorem 1, and lemma 2 we obtain the following theorem.

THEOREM 2. A function n: C -> C is a continuous solution of equation (4) iff it is of the form

$$n(z) = (az + b\overline{z})^2$$
 for $z \in C$.

where a, b are arbitrary complex constants.

References

- [1] Kurepa S., The Cauchy functional equation and scalar product in vector space, Glasnik Mat-Fiz-Astr., Zagreb 1964, 23-36.
- [2] Kurepa S., On a nonlinear functional equation, Glasnik Mat-Fiz, Zagreb 1965, 243-250.
- [3] Aczel J., Lectures on functional equations and their applications, New York and London, 1966.
- [4] Grząślewicz A., On the solution of the system of functional equations related to quadratic functionals, Glasnik Mat-Fiz, Zagreb, 1979, 77-82.