JANUSZ KRZYSZKOW SKI

On ordinary differential inequalities

1. Introduction. In this paper we jhall deal with the

differential inequality
DVn-1>> 1CX.J.J ...J1-11)-

In the first section we shall give some lemmas on
Dini derivatives which will be needed in the sequel.

In the second section we Sall prove some theorars
the differential inequalities using the notion of first
integral. Those theorems will be generalizations of the

results from the paper [1].

2. The Dini derivative of composed function. Let the

real functions n2****e 'fn  pe defined in fche interval
I = (a,b). Put
Ph(x) = (fyCiO ,"?22(x)».»4'fn00) for x<rl.
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Let the function f he defined in an open set D c R*, such
that LWl c D.

LEMMA 1. Let the functions he dif-
ferentiable and let he right-hand continuous at the

point xQfcl. Assume that f is differentiable at the point

y0 = (y1lf« .y n) = and * .
If If-~o05> °» then
n n-
(1) D*Cf.<M((x0) =g ] ]jC50)- »H ;CjODtVv V
| *pf
<b,+'0> < tbe”
«) D+(f =£ ffCI) = +i<v+H (JOD*V V ~
Proof. It follows from the differentiahlity of f

that there exists a function r defined in an open neigh-
bourhood U of the point CO,..., 0)ERn such that

r(o,..., 0) =0, r is continuous in (0,,.., 0) and

nihuiJ =2 |*“ (yOXyi-Ji) +/ 17+YH rCy-y0)
for j-jOs 0, y =

Hence, putting j = 4>(xQ+h) we have

(F<t>)(x +h) - (Fod)(x )
) P —— y S C— 2- =

cy0)+ sgn(*1(x0+h)-yi) »r(dpCx0+H0 -yo) ]~ ) 7%
-itlw |

for h > 0, ¢(xo+b)-yObwnu.

It is obvious that
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4 .
) Hioffe T(yorssnafiuc+h)-A )r(dnoth) ~ol — P'K lyi =

= .« Vi(V

If |8-C*0) > o, then
p\-P S (x +h)-~y
(5) +h5?0? | IfA(y™ sgn(i Cx0+h) n

=<  (yo)D+'¥nCxo) e

If 2 f-cv <0’ then

M (x h)y O
(6) limsirp[]]-Cy”*sgn~Cx0+h>-y”~* r(<Kx0+h) Yn=

* D+ W

Combining (3), (4) and (5)» (6) we have CD and C2).

A simple consequence of Lemma 1 is

COROLLARY 1. Let g: I -» K, f: K-*>R andlet I,K
be open intervals in R. Assume that gis right-hand conti-
nuous at xQ6 I ( f differentiable at ¢g(x0) and
f>Cg(x0)) 4 0.

If f'(gCxQ) > 0, then
C7) D+(f » g)Cx0) =t CgCxQ) D+ g(xQ) .

If f‘(gCx0)) < 0, then
8 D+(f ogH x0) = f’CgCx0)) D+ gCx” .

Remark 1. If f* (g(xQ) = 0, then Corollary 1

is falsef as we can see in the following example:
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Example 1. Let

YIxI' sin j for x wR NA
g(x)
N0 for xbA
where A= £x: sin ~> 0} U(o},
and f(y) = y2. Hence
IxIsin for xfe-BVA
(f cg)(x)
0 for xfc-A

The functions gt f satisfy the assumptions of Corollary 1
at the point xQ = 0 except f‘(g(x0)) 0. A simple cal-
culation shows that D+g(0) = 0, D+glO) = - oo and
D+Cfog)(0) x 1. Therefore, the functions g, f satisfy
neither (7) nor C8) at the point xQ = 0.

Remark 2. Corollary 1 is not true without the
assumption of right-hand continuity, as the following
counterexample shows.

Example 2* Let B = {x: x =j, nfcN™u {o}

and
for x B
g 00 : fly) = 2y2 +y.
for xftR\ B
Hence
2X2 + X for xtB
(fog)(i)
n for xfe RNB
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The function g is right-hand discontinuous at the point
xQ = O and D+gCO) = 1, but f4gC0)) =f(0) =1 and
D+(fog)(0) = +co. Therefore D+CfogKO) £ f’ CO)D+giO).

Now we shall prove the lemma about the Dini derivative
of composed function in the case when the internal function
is differentiable.

LEMMA 2. Let the functions g,f be defined as in Corol-
lary 1 and let g be differentiable at the point xQ6 I
and g'(x0) £ 0.

If g’'(x0) > 0 and g is continuous in a right-hand
neighbourhood of the point x0, then

D+(f 0o g)txQd S D+f(g(x0)) . g4x0).

If g'(xQ) <0 and g is continuous in a left-hand

neighbourhood of the point x0, then
D+(f 0g)(x0) = D_f(g(x0)) . gl(xQ .

Pr oof. W shall prove the first part of the lemma
The second part one can prove analogically.

Let g4xQ > 0 and let g be continuous in a right-
hand neighbourhood of the point x0. Hence we get that
there exists a positive number hQ such that
(a) g continuous in [xQ,x0+ hQ];

(b) g(x) > g(x0) for xt (xQ,x0+hQ].
From (b) we have

s f(g (x0+h)) -f(g (x Q) g(xQth) -g(x0)
D+(feg)(x6) - “rT*-é'le gtx0+h) - g(x0) B
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Hence, from the properties of upper limit and from the
condition g\x Q) > 0 we get the inequality

O D+(f 09)(x0> A D+f(g(x0)) =« g* (x0).

On the other hand, it follows from the definition of upper
limit that there exists a sequence {yn} such that

v and
n I'I-*-oo.e(lo)+

. fcyn) “ f(gC
(10) Df(g(V ) 1 .l» ygch (9€x)
w MN*+ooO

' oa~or
It follows from (a) and (b) that there exists a number 1
such that eCCvxQ+h”) = [BOOA4]« It is obvious that
1> g(xQ) e« Without loss of generality we may assume that
{yn} ¢ (g(x0),1], hence there exists a sequence [h~"

such that h”-—-*m0+ and g”~+h”) = yn. Hence, from (10)
HMOQ
and from the definition of upper limit we get

11) g'(x ) *D¥F(g(x ) S lid" e(x0y S« scv > B(fo
M*o0 i
From (@) and (11) we obtain
DFed(x0) =D+ (g(xQ) ®g (x0).

Bemark 3. Ifeither g4xQ) =0 org isdis-
antinows ih eery rigithard (left-hard) neighbourood
of XQ, ten Lenma 2 is fails.

Example 3XLet gX) ==X ad

for y>0
oy J-°
(R7=4 for y <0
Hence (f*>g)(x) = |x]. The functions g,f satisfy the as-

sumptions od Lemma 2 at the point xQ = 0 except
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gcuU0) ™~ 0. It is obvious that D+Cfog)(0) S1,
D+f (0)

0, D_f(0) = -00. Therefore, Lemma 2 is false.

Ex ample 4. Let

] ¢ A x5 XU (kel)f * Ex]» KtN
glw -1
WO for X =0
and
"g]_(x) for xé [O, J)
g(x) X .

for x k(- j,0)
The function g is differentiable at the point xQ = 0,
g'(0) s 1, hut g is discontinuous in every right-hand

neighbourhood of xO.

Let
sin - for y ¢ 0
t(y)
0 for y =0
Hence (f®g)(x) = 0 for xfc ~). Therefore

D+Cfog)CO) = 0, but D+ fCO) = 1. Thus D+(f°g)(0) C
i D+f(g(0)) «g CO).
RemarKk 4. Similar relations hold for the other

Dini derivatives.

3. Ordinary differential inequalities. Let us con-
sider the differential equation
12 7<n) = f(x,yfy' ,..., y (n”1>) for xfel,
«here 1 is an open interval.

101



We assume that the function f fulfills the following
hypothesis
(i) f is defined and continuous in a region
DC I *R1

(ii) the initial value problem is uniquely solvable

in Don I5
(iii) there exists a first integral E(X,y,y",...»M")
of equation (12) defined and differentiable in
D and such that -p_ >0 in D.
°7n-1
K function R: D—» H will be called a first inte-

gral of equation (12), if and only if for every solution
» (n-l) .
N of equation (12) R(x,M(x), " (x),...f~» (X)JB const,

for xtl.

D. Brydak has proved in his paper QI] that the func-
tion ¢ , defined and n times differentiable in I, is a
solution of the differential inequality

~on) Cx) ** f(x,Y(x), f(x), ..., gtn“1) (x))

if and only if the function
(13) Mx) = E(aui(x)  o'(x) (x))
is an increasing function in 1.

We are going to give a generalization of that theorem.

THEOREM 1. Let hypothesis HL be fulfilled. Let
pecrn“~ (1) and let its graph lie in D.

The function ¢ is a solution of the differential
inequality

(14) D+4uI"1)(x) > f (x,v(X) ,y(x),..., do(n“1l) (x)) for xel,

102



if and only if the function on(x), defined by formula (15) ,
is an increasing function in 1.

The function @ is a solution of the inequality oppo-
site to (14), if and only if, the function T( is a de-
creasing function in 1.

Pr oof. W are going to prove the theorem for in-
equality (14). The proof for the opposite inequality is
similar.

Let de- () and xtl, In view of hypothesis

(ii) , there exists a unique solution V of equation (12)
satisfying the conditions
(15) ~M(x) = p(x), N (x) = opW(x) for i=1,2,...,n-1.
Denote
Z = (x,0(x), ¢'(x) (x)) .
From H. (iii), (13) and from Lemma 1 we get

DA(x) =~ 1(20) + R0y (x)+ ... + R (zovV" D+
D+Atn" 1) (x)
and
+5(V ¥ + % 48 A U0), A X)) =0

because R is a first integral of equation (12).

Hence

D+TI(X) =~ ~-jU O)[D+fOn 1) (x) - fblX] .

I f is a solution of (14), then from (14), (19 and

from definition of ~ we get
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D+1t<x )> ce«. f ~1<s)>] * A
Thus ~ is an increasing function in 1.

Conversely, if *»£ is an increasing function in 1,
then

n D] X) _ ") (X)I, D+ (x) N o.

Hence, from (.15) and from the definition of Y we have
Df~(n-1) (x) ™~ ~(n) (x) OGN (X)) e, ~antl) (X)) =

f(x, (/) ..., (x7) .

This ends the proof of the theorem*

Now let us consider the second order differential inequality
(16) D+ ux) > f(x,y(x), 4'(x)) for zei,

We assume the following hypothesis H2

(i) f is defined and continuous in a region
DC IxB2!

(ii) the initial value problem, as well as the
boundary value problem for the differential
equation

(17) y" = f(x»y,y") for xel
is uniquely solvable in D on If
(iii) there exists a first integral B of equation (17)
defined and diifferentiable in D such that

NR >0 in D.

Let F be the family of all solutions of equation (17).
The function ¢ will be called a convex (concave)

function with respect to the fanily.F if



ijHx) $ vfCx) (b(x V -f(x))
for all x1tx2,x 61 with x, < x <x” where ™ s
such a solution of the equation (17), that ~(x~ = ~(Xj)
i =1,2.

In paper [13 there was proved the following

THEOREM 2. Let Ly < Cl(l). and hypothesis H2 be ful-
filled. Denote
(18) N(x) = R(x,q/(x>, h*(x)) for xfc I.

The function 4 is covex (concave) with respect to
the family F if and only if the function ~ is increasii®
(decreasing) in 1.

From Theorems 1 and 2 we get the following

THEOREM 3. Let the hypothesis be fulfilled and
®fc (), such that its graph lies in D.

The function ¢ is a solution of inequality (16) if
and only if it is convex with respect to the family F.

The function ¢ is a solution of the inequality op-
posite to (16)-if end only if it is concave with respect
to the family F.

Let us consider the differential inequality
(19) D+f(x) "5 f(x,iy(x)) for x61.

We assume the following hypothesis
(i) f is defined and continuous in a region
D C I XR;
(i) the initial value problem for the differen-

tial equation
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(20) yls f(x,y) for x el
in uniquely solvable in D on Ij
(iii) there exists a first integral R of equation
(20), defined and strictly increasing with re-
spect to second variable in D.

THEOREM 4. Let ty€C(l) be such that its graph lies
in D and let hypothesis be fulfilled.

The function ¢ is a solution of inequality (19) if
and only if the function
(21) Mx) = R(x,Y(x))
is increasing in |I.

Proof. Let ¢ C(l) be a solution of (19) and
let x~Xgfcl be such that x" < From hypothesis Hj
there exists a unique solution of equation C20) satisfying
the condition
(22) d(xN) *f(x,).

Hence, by a basic theorem on ordinary differential inqua-
lities [2t Theorem 9.5] h(x) > dp((x) for x Xj#
consequently ~CXg) > wf(Xg)

Whence, from (22), from the definition of first integral,
hypothesis H* (iii) and (21) we have

<ijxd) = R(x1,M(x1) = RMXx1,yvjpxl) =R~A~Xg)) $

§ R(x2,J;(x2)) =Tj(x2).

Now let ~ be increasing in I and xQ6 I. We have to
show that D+ty(xQ) f(x0<]/(x0)) . Let ™~ be a solution of
(20) such that "~(xQ = Ip(xQ ¢ Since ~ is an increasing
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function, thus
N(x) = R(xf(x)) V H(xO0,l)(x0) =7(x0) for x> x0
by virtue of (21), and
R(x0,4Cx0)) = R(x0,vf(x0)) = R(x,vf(x)) for x &I,
because ~(xQ = ®(x0) and R is a first integral.
Therefore
R(x,4>(X)) V R(x,vf(x)) for x > xQ.
It follows from hypothesis (iii) that
P (x) V »f(x) for xV xQ.
This implies
B+ (x0> v
and
AN(x0) = f(x0,«¢(x0)) = f(x 0,4 (x0))
because Y is a solution of (20) and 4>(xQ) ="(xc).
Thus
D+4>(x0) V f(x 0,]4x0)) .
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