FRANTIŠEK NEUMAN

A note on smoothness of the Stäckel transformation

Introduction. In 1892 P. Stäckel [1] proved that the most general form of pointwise transformations of the class C^n that convert the set of all solutions y of each linear homogeneous differential equation of the n-th order $(n \ge 2)$ into the set of all solutions z of an equation of the same type is given by

(1)
$$z(t) = f(t) \cdot y(h(t))$$
, see also [2].

The aim of this note is to show that if we suppose that a linear transformation of the form (1), with continuous functions f and h, transforms the set of all solutions of a linear homogeneous differential equation of the n-th order onto the set of all solutions of an equation

of the same type then the n-times differentiability of the functions f and h follows.

This is a generalization of the result for the second order equations derived in [3] to an arbitrary order.

THEOREM. Let n be an integer, n \geqslant 2, and I \subset R, J \subset R be two open intervals.

Suppose

$$y_i: I \longrightarrow \mathbb{R}; \quad y_i \in C^n(I), \quad i=1,...,n$$

and

$$z_i: J \longrightarrow \mathbb{R}; \quad z_i \in C^n(J), \quad i=1,\dots,n$$
 are two n-tuples of real functions, whose Wronskians W[y] and W[z] are different from zero on I and J, respectively. Let

(2) $z_i(t) = f(t) \cdot y_i(h(t)); t \in J; i=1,...,n;$ be satisfied for continuous functions f and h defined on J such that h(J) = I.

Then

fe $C^n(J)$, $f(t) \neq 0$ for all $t \in J$, $h \in C^n(J)$, $dh(t)/dt \neq 0$ for all $t \in J$, i.e., h is a C^n -diffeomorphism of J onto I. Proof.

First we have

(3) $z_1^2(t) + ... + z_n^2(t) = f^2(t) [y_1^2(h(t)) + ... + y_n^2(h(t))]$, where both expressions in square brackets are different from zero for each $t \in J$, otherwise $z_i(t_0) = 0$ or $y_i(h(t_0)) = 0$ at some $t_0 \in J$ and for all i=1,...,n.

Then $W[z](t_0) = 0$ or $W[y](h(t_0)) = 0$ that contradicts to our assumption.

Thus the relation (3) gives $f(t) \neq 0$ for all $t \in J$. Due to continuity of f on J, f is always positive or always negative on J:

(4)
$$f(t) = \varepsilon \left(\sum_{i=1}^{n} z_i^2(t) / \sum_{i=1}^{n} y_i^2(h(t))^{1/2}, \quad \varepsilon = \pm 1, \quad t \in J. \right)$$

Consider an arbitrary $t_0 \in J$. Since $W[y](h(t_0)) \neq 0$, there exists (not unique for n > 2) a function

$$\overline{y}(t) = \sum_{i=1}^{n} c_i y_i(t), \quad c_i = \text{const.},$$

such that

$$\overline{y}(h(t_0)) = 0$$
 and $\overline{y}'(h(t_0)) = 1$.

Furthermore, let y be a function of the form

$$\overline{y}(t) = \sum_{i=1}^{n} k_i y_i(t), \quad k_i = \text{const.},$$

such that

$$\overline{y}(h(t_0)) = 1$$
 and $\overline{y}'(h(t_0)) = 0$.

Due to continuity of \bar{y} and h, there exists a vicinity $V(t_0)$ of t_0 , where $\bar{y} \circ h$ is nonvanishing. Let $U(h(t_0))$ denote a vicinity of $h(t_0)$, where y is nonvanishing.

Evidently

$$\overline{z}(t) := f(t) \cdot \overline{y}(h(t)) = \sum_{i=1}^{n} c_i z_i(t),$$

$$\overline{\overline{z}}$$
(t) := f(t) $\overline{\overline{y}}$ (h(t)) = $\sum_{i=1}^{n} k_i z_i$ (t)

are of the class $C^{n}(J)$, $\overline{z}(t_{0}) = 0$ and $\overline{z}(t_{0}) = f(t_{0}) \neq 0$.

Consider the relation

(5)
$$\overline{z}(t)/\overline{z}(t) - \overline{y}(x)/\overline{y}(x) = 0$$

for $(t,x) \in V(t_0) \times U(h(t_0))$. Now, (5) is satisfied for $(t_0,h(t_0))$, and

 $F(t,x) := \overline{z}(t)/\overline{z}(t) - \overline{y}(x)/\overline{y}(x) \in C^{n}(V(t_{o}) \times U(h(t_{o}))),$ gives

$$F_{x}(h(t_{0})) = -\overline{y}(h(t_{0})) \cdot \overline{y}(h(t_{0})) \cdot (y(h(t_{0})))^{-2}$$

$$= -1 \neq 0.$$

Since

 $\overline{z}(t)/\overline{z}(t) - \overline{y}(h(t))/\overline{y}(h(t)) = 0 \quad \text{on} \quad V(t_0),$ the Implicit Function Theorem yields $h \in C^n(V^*(t_0))$ for some vicinity $V^*(t_0) \subset V(t_0)$ of t_0 . Because $t_0 \in J$ was arbitrarily chosen,

 $h \in C^{n}(J)$.

Due to the relation (4), also

 $f \in C^{n}(J)$.

Finally, if $h'(t_0) = 0$ for some $t_0 \in J$, then (2) implies $z_i'(t_0) = f'(t_0)y_i(h(t_0))$ for $i=1,\ldots,n$, and hence $z_i'(t_0) = [f'(t_0)/f(t_0)] \cdot z_i(t_0)$ for all i. However, this gives $W[z](t_0) = 0$, contrary to our supposition. Hence

 $dh(t)/dt \neq 0$ for all $t \in J$,

and due to continuity of dh/dt,

 Because h(J) = I was already supposed, h is a C^{n} -diffeomorphism of J onzo I. Q.E.D.

Reférences

- [1] Stäckel P., Uber Transformationen von Differentialgleichungen. J. Reine Angew. Math. (Crelle Journal) 111 (1893), 290-302.
- [2] Wilczyński E.J., Projective Differential Geometry of Curves and Ruled Surfaces. Teubner, Leipzig 1906.
- [3] Neuman F., Note on Kummer's transformation. Archivum Math. (Brno) 6 (1970), 185-188.