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Rational iteration groups

Abstract. Let f be a continuous strictly increasing
function mapping a closed interval ICR onto itself.
In the paper a construction of a rational iteration group
fr, t«Q of f is presented. A necessary and sufficient
condition for this group to be continuous is also given.
It is shown, by applying these results, that every conti-
nuous rational iteration group can be extended to a conti-
nuous real iteration group. Finally Zdun's problem is in-
vestigated» Can every real iteration group ft, ttIR be
written in the form ff =f~~ | where fu, te R is a
continuous real iteration group and 4* is an additive
function. The answer is "no". A necessary and sufficient

condition for this to be possible is also given.



1. Let | be a closed interval in IR = (Ru{-<so,00} and
f: 1 —» 1 a strictly increasing continuous function such
that f(l1) =1 (if -00&l or oofcl we assume that
f(-00) = lira f(x) = -00 or f(oo) =Ilim f(x) =00 res-

X-VOO X-*-0©

pectively). By F[f} we denote the set of fixed points
of f. The set FTf) is closed (cf. [4-]) and hence | =aF][f]
consists of at most denumerably many disjoint open inter-
vals. For any fixed xel'FCf) we denote by (aCx) ,b(x))
a maximal open interval such that xe (alx) ,blx)) ¢ IsEtfL
In other words (a(x),b(x)) denotes an interval such that
xfc-(a(x) ,b(x)) , f(a(x)) = a(x), f(b(x)) = b(x) and
f(z) L z for z&(a(x),b(x)) . If xfc FCfl then we put
a(x) = blx) = x.

7le introduce the following definitions (cf O3 and C53).

DEFINITION 1. The iterates f“, not of f are defined
as follows

fe =idj , fO*1 = fofll for n=0,1,2f...,

fn"l =f”lefn for n=0,-1,-2,...,
where f denotes the function inverse to f. Throughout
this paper upper indices will denote iterates.

DEFINITION 2. A family of continuous functions
(f*s I—» 1, tTBR (P I—» I, ©Q}) is called a real
(rational) Iteration growp of T whernever e 18 - e
for T,bIR (t,seQ) ad Tl -

DEFINITION 3. A real (ratioal) Iteration group
{, o E] ((fE, to Q) is said to be continuous if for
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every x &'l the mapping W*t —» fA(x) &I
(Q$t —» f*4x) & 1) is continuous.
A real (rational) iteration group will be written shortly
as r.i.g. (q.i.g.) and a continuous real (rational) ite-
ration group as c.r.i.g. (c.q.i.g.) respectively.

2. In this section we are going to investigate a ra-
tional iteration group. At first we shall describe the
construction of a rational iteration group of f.

THEOBEM 1. Every q.i.g. of f can be obtained by

putting
(i) fl=f,
1
(U) f Cn+1)| = for n& N,

where ifn is an arbitrary continuous and strictly in

creasing solution of the equation

1/
b n)ntl . f h .

/ pT\w(n-)!
= (f*1) for ne N, me 2.

(iii) f

Proof. Every q.i.g. of f satisfies obviously the
conditions (i) - (iii) e

We are going to prove now that the construction (.i) -
(iii) dffines aq.i.g. of f. Since f(lI) =1 we have by
(ii) f~ (1) =1 for n&N (cf. [4] p.297)» which implies
/ ITNmM(n-1)!
v */ ,

that the function neN, me2 maps | onto

tfr?2.2}£«
V The general continuous strictly monotonie solution
of the equation Jn= g is given in [4].
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To show that the function fr, rt Q is "well defined”

we must prove that fr is independent of the representa-

tion of r in the form r = -, i.e. we must prove the
equality

m m
cD fil* f np for n,peN, me 2.

Making use of the properties of iterates for integer ex-

ponents we obtain from (iii)

= [fw n -]Cnp-1>IBP.

npCnp-1) ... (n+1)1 (n-D !'m
)I

But by Cii)
1 1
"npTjnp _ f(np-1)!

[fCnp-D!Inp“1 = f (np-5Ht
[fT5TIin]ntl _ £ NT<
Applying this equalities we get
[[f (npYijnpMp-D ee+Cn+1)(n-D Im
(([f*4rrlnpd 1)- ~ ] (n”"1) !'m.

(-1 ~P-D ** o) (D) !

m
3Ti<n) !'m _ ¢

Jlce



Time (1) is valid.

It is necessary to prove yet that fsof _ fs+t for
o, nu
s,t €rQ. W may assume that s - ~-1, t = ne N,

Then we get from (iii)

fs . t* A = (fHr)"-! Cnr 1) !

= (O ry T1+12Kn"1) ! _ f“3HN = fs+té

R e mar k. A continuous and strictly monotonie
solution of the equation wn = f in a non-trivial case
where FCf] L I depends on an arbitrary function (cf.[3],
Theorem 15«7). Hence, it follows from Theorem 1 that a
non-trivial case a q.i.g. of f depends on denumerabiy
many arbitrary functions.

THEOREM 2. If {f~, tfcQ} is a qgq.i.g. of f then the
function QJt -*» f*4x) is constant for xt FCf] .strict-
ly decreasing if f(x) <x and strictly increasing if f(x]>x.

Proof. As it is known (cf. [4], p.29S), if a

function gs —* | is continuous strictly increasing
and such that g(lI) =1, then for every strictly monotonie
and continuous solution ~ of the equation =g we have

J>¢) s x for xb F[g]
and if g(x) < x (g(x)> x) then .fez) < z C~C2n> 2
respectively) for z* (a(x),b(x)) .
Consider now the q.i.g. {ffc, tfc Q] of f. If xeF[f]

then making use of (U), in view of the above remark, we
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1
get f~(x) = x for nfeN ana consequently by (iii)

ffe(x) = x for ttQ.

Consider now an xqé IVFCf] and suppose that
f(xQ < xQ (in the other case considerations run simi-
larly) . Then making use of (ii) and the remark at the be-

ginning of the proof we obtain by induction
1

INCX) < X for x fr(a(x0) ,b(xQ) , nfrN,
whence, by applying (iii) we get
ff(x) < x  for x¢ (a(xQ ,b(x0) , tfcQ, t> O,
Let t~ < t2, t~tjS Q. We have in view of the last in-

equality,
tp -t.
f 1'*0> 4 *o
and consequently, as ffc is strictly increasing

., t.-t.
f 2(x0) =f 1(f 2 1(x0) < f 4xQ,

which means that the function Q5 t —» fA(x0) is strictly
increasing. M

3. We shall consider a c.q.i.g. of f.

THEOREM 3. Assume that f\ tfrQ is a q.i.g, of f

and
1

2 lira f~(x = X for all xfcl.
(2) lira 7 (x)

Then ffe, tfcQ is ac.q.i.g.

Pr oof. W obtain immediately from (2)
1

3 Iim f °~(x) = X for all xfr .
(3) U-+00 )
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Making use of Theorem 2, (2) and'(3) we get

lim f~ACx) = x for x el
tr 0
and consequently,

t t-t_ ot t
lim fc(x) = lim f °(f °(x)) =f °(x) ufor xei,
t-*t t-*t
o] o]
which means that the function Q9t —* fAx) is continuous.
The following corollary follows directly from Theorem 2
and Theorem 3*
COROLLARY 1. Let f\ teQ be aqg.i.g. of f.

If there exist Ilim f*4x) for all xfcl then ft, t&Q

t -»-0
is & c*c[*i«g»
Froof. Consider anj xei and suppose that the
function -i» fk(x) is decreasing (the proof in the

other case is similar).
Then we have

lim  ft(x) V f°(x) = x> lim  ffe(x) ,
t —0+ t -0«

whence, by applying the assumption we get

lim . ffe(x) = x for all xa I,
-*.0+

which, in virtue of Theorem 3» proves the assertion. OB
THEOREM 4. If PCf] ~ I, then there exists a discon-
tinuous q.i.g. of f.
Proof. Consider an. x0& 1 \ F[f] . Without loss
of generality we may assume that f(x0) < xQ. Then
f(x) < x for all xe (a(x0),b(xQ) * It follows from Lemma

15.6 of [4] (p.297) that for arbitrary x*e (a(x0),b(x0))
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with f(xQ < < x0 every continuous strictly increasing
function [x1fx0l —=m [a(xQ ,bCx04 such that

X0 > > XV y'cxl) = fCx0) and fn(x0) fcxn can

be extended £o a solution of the equation ~ = f.

We are going to construct a qgq.i.g. of f. Put
xn - f(x)

N =__ 9. -"4 for =i 2,...

1
and choose fP\I‘, n=2 in such a manner that
1 1
f(@+tl>1uU0) =~ (x 0> + £n+l for n=1»2, ...

Then we have for n > 2
ao

f(XQ)+ﬂ>+ --«+£n<f(XQ>-.E1
1 =

X, - f((x > xn + f(x1
_ £ 1X0) + 2 = 5 A XO*

Ey applying Theorem 1 (more precisely by (iii)) we obtain

q.i.g. of f. Since

! I+ ftxj
fn-(x0) < -2-2-— - < x0,
we have lia_fn'(xQ £ xQ, which proves that this group

n*0Q

is discontinuous, CD

We are going to give another condition equivalent to
the continuity of a q.i.g. But first we shall prove a very
useful lemma.

LEMMA 1. Let f , teQ be a q.i.g. of f. If the set

(frix~ , tfeQ} is dense in  [a(x0>,b(x0)] , then the

160



oscillation of the function Qat N(x 0) vanishes et
every tQe E.

Proof. For xQe F[f] the statement follows di-
rectly from Theorem 2. Assume that x0&F[f]. Then, in
virtue of Theorem 2 the function Q Jt-* ffc(x0) is

strictly monotonie. We mey assume that it is decreasing.

Hence for every t fcE there exist Ilim ffe(x >,
° t t+.taQ 0
lim ffe(xJ and obviously
t-H £ ,t*Q 0
lim 4 lim f*4xj
t-t 0+ 0 t-t o 0

Suppose (contrary to our assertion) that the oscillation
of the function Qwt —mffe(xQ at the point tct IR is

greater then zero. Then there must be

lim fb(x ) lim f fo(x
_* o * " o
t t0+ t*t 0
fl(x ) 4 lim frx) for r > tc, ~<=Q,
° t-*-t_+ °
o
f (x) lim frCx) for X < t0, TfeQ.
0 t-*- °

£ Cx0) « (a(x0) ,b(x0) for every TEQr
Hence the last three inequalities prove that the set
(f*4 x0) , t cQ} is not dense in La(x0),b(x0Y , which
contradicts our assumption.

THEOREM 5. A q.i.g. of f is continuous iff for every
xfrl the set {ffc(x), 11Q} is dense in [a(x),btx)].
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Proof. Consider an xQ6 1 and assume that the
set {~(x0), t&Q] is dense in J[a(x0) ,b(x0)]. By Lemma 1
the oscillation of the function Q3t —* f*4 xQ vanishes
at every tt B, which proves that it is continuous (cf.[2]
P-52),
Assume now that ffc, 11 Q is a c.q.i.g. of f. It means
by definition that for every x&1 the function
Q9t —»fMCx) is continuous. Consider an xQfe 1~ F[f] ,
We may assume that f(x0) < xQ. Suppose, to argue by con-
tradiction, that the set {f*Cx”, tfc-Q} is not dense
in [aCx”™ ,b(x0)I . It means that there exist
c,d tf[atxQ ,b(xQ] , a(x0) £ c < d 4 b(xQ such that
ft(xQ 4 ¢ or f,t(x0) > d for every t6 Q. The function
Qst —» ft(x0) is strictly decreasing. Moreover,

IFLT—a)f“(X ) = a(x ) and H_’n;oof“n(x) =b(x ) (cf, f4l1,

p.21). Hence a(x_) < ¢, d < b(xo.) and so there exist
such that f CxQ 4 c¢ and ftz(xQ)V d. Put
tQ = sup (teQ : fACxQ <}c ,
where the supremum is taken in B.
Making use of the monotonicity of the function
t—» "~ (x0) we get
(4 ~Cx0) < c¢c for t >tc, ~(x0 > d for t< tQ,

Consider two rational sequences (tn) —»t0, tQ < tQ

and IM"ni % tQ, C©Q> tQ. Then we have by (4)

ftn(x0) > d, A (x0) < ¢
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4
and consequently, as every function f , teQ is strictly

increasing.

(5) fT“* tn(d) . < frn(*0) 4 o.

But dﬂ - th*' 0 and so there must he

lim ' fla tn(d) - d,
M*-00

which contradicts (5). L_J

4. In this section we shall prove that a c.q.i.g.

f defines uniquely a c.r.i.g. of f.

THEOREM 6. Every c.q.i.g. of f can be extended to a
c.r.i.g. of f. This extension is unique.

Proof. Let ffc, tsQ be c.q.i.g. of f and let
xfcl. Then, in view of Theorem 5» the set [fAOO0t tfe q}
is dense in [atx),b(x)3 and so by Lemma 1 the oscillation
of the function Q3t —»f*Cx) vanishes at every tQk IR
But it proves that this function can be, in unique way,

extended onto the set K (cf. [23, p.54). We put

(6) ft°(x) = lia f>5x) for tfc E, x fcl.
t~t0,tfeQ 0

We are going to prove that the function ft', tot R is
continuous.
Consider first an x.fc I''F [f],
The function ft is0 increasing as a limit of increasing,
functions. Hence there exist

lim fto(x) =: fto(x “), lim fto(x) =: /°(x 0+)

x-x0
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and
(7) fto(xg ) 4 fto(xg 4 ftoCxf+).
Suppose to prove by contradiction that
fto(xD*) < f\x 0+).
Assume that f(xQ) < xQ (the considerations in the case
f(xQ) > xQ are analogous). The function t —=*>f~"Cx)
is decreasing for xt* £a(xQ tb(x0)] and so, in view of (6)
ffax) 4 f °(x) 4 Cx) for xe- [a(xQ »bCx0)] ,
t.TfeQ, t > tQ, «£ < tO0.

These inequalities yield the following

68) ft(x0“) 4 fto(x0*) 4 £“(x0”) for t.T€Q ,t>t0ffC <tO,

9) fr(x0+) 4 f °(x0+) 4 f Cx0+) for tICbQ ,t>t0,'C<t0.
Making use of the continuity of the function f*, t~Q
(with respect to x) and combining together (7), (8) and

(9) we get

ft(x0) = ffe(x0“) 4 f °Cx0") < f °(xQ+) 4 f L(V0+) =
for ttwQ, t > t0, <t< tQ.
Eut this means that the set (ffe(x ): tfc-Q} 1is not dense

in [a(x0)tb(xQ3 » which contradicts Theorem 5. Hence

t t
f °(x “) Sf °(x +) and so, in consequence of (7) the

function f is continuous at xQ.
Let now xq€ F[f] . Denote by <a,b> a closed interval
whose ends are a and b (it may be as well a4 b as

b4 a). Consider a tQtE and fix tM,t2&Q, tM<tQ<tg.
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In virtte of Theoran 2 we haethen

((0) f %(X)&J_ 4X) ,flg(X)> for xfel.
MVeking use of antarurty of tte fuctias ), teQ ad

goplying Theorem 2 we get
lin f°®=F4x)=x .

lin faw =FdeQ =xQ.

These conditions together with (10) yield the relation

t
lim f °(x) =x .
X-»X,,
t
But xO0feFCf] and therefore, in view of (6), f (xQ = xQ.

This completes the proof of the continuity of the function

t
f (x) (with respect to x).
- t* tp
We shall prove now that f ®f = f for t"tpfc

We have by (6)

a1y f Vv  2(x)) = lim ffo( lim fACX)) .
t—t A t& Q T —t2,qifeQ

Making use of the continuity of the function fL end of

the function —» f Cx) we obtain
(12) lim A (1 - fA(x)) »
CER) O, 1R
s Li fArfAx))).

m (Iim
T tv te QX—12, Xeq
Since the function IR*t -*e f*4x) is continuous we get

((S)) lim fAO It = fV %2 (*>.
t-tA'ftg.t.T fe Q
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and consequently (cf. C33)

(14) lim ft+X bl =
t/CfcQ
= lim fAfr(x)) >
t.'twQ
= lim ( lim tb(t\x)))

t-H "t 6Q4-*t2,th ¢
Gathering together (11) f (12), (14) and (13) we have

f VvV 2(s» * ftl+t2(x) for t182eEf xfrl.O
5. At the XVIth International Symposia on Functional

Equations (Graz 1978) C.M. Zdun posed the following

question.
Problem. Does for every r.i.g. f~, tfc E of f exist
ac.r.i.g. ttJ]R of this function and an additive

function W:E-~ E such that

(15) fx = 27 (1) for all tfeffi ?

We are going to show that the answer is "no". We first
consider a non-singular case where F[f] 4 I» A singular
case FTfl *1 will be considered next.

THEOREM 7. Let F[f3 i I|I. Then ar.i.g. f*, t€E
of f can be written in the form (15) iff the following
conditions hold.

(a) The q.i.g. f\ t€Q is continuous,
(b) F[fl ¢ FCf*] for all t* E,
(c) There exists xoe I"FCf] such that for every

t0,t7é E the equality
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lia f~x) Cx0)
t-V t6 ~
implies the equality

lia fc(x) = f Ux) for all xel.
t-*«t0, tfc Q

Pr oof. We prove the sufficiency of conditions
(a), (b), (c).
7fe show that the function IRat -*I ft Cx0) , xQ€ 14 FCfD
maps E into (aCxQ ,b(xQ) . We have by Qb)

ffc(a(xQ) = a(x0), ffAdbCxo)) = b(xQ for all tfcE.
Moreover, as the function ffe, télR is invertible and
continuous, it is strictly monotonie.
Thus f~(xq) t (a(xQ ,b(x0)) for all tfcE.

It follows from (a) and from Theorem 6 that the
qg.i.g. f~, ttQ can be uniquely extended to a c.r.i.g.

tfe E. This extension is of form (6). As we have shon
in the proof of Theorem 6 the function E st —»7“(x0),
X0« rl4 FIf] is strictly monotonie. This is immediately
seen from C6). Moreover, it follows from (6) and from the
density of the set {ffc(x0): t*Q] in (a(xQ ,b(x0) for
X0 fcIMF[f] that the function E *t — 7fg(x0), xQe I\ Ftil
maps R onto (a CxQ ,bCxQ) .
Let xOfel>*F[fl be an element satisfying condition ic).
In view of the above considerations for every tfc E there
exists exactly one element sf(t)fr E such that

(16) A(x0) = T*(t) (x0) .
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We are going to prove that

(17) ffc(x) = ?~Ct) (x) for 11E, xfcl
Making use of (16) and of the continuity of the

function

Est —2t()

me get

e, o %9

lim ,tt q F’\de =

?*Ct)(x0> =~Cx0),

whence, by (c) we obtain

lim f4x) = ffcCx) for xfrl,
X -»") .Tfe Q
Thus
YIC () = lim TACX) =

-+ vit) X 6 Q

= lim i
T vi(t) , 'tfe Q

We have to prove yet that ~ is additive. Applying (16)

Cx)

ffo(x ).

and (17) we get

tH L
?4ttx1,+tg)()SOi' i 1*'“ ;(x >=f 4F 2(X)) =

4 (t]
T 1T 2?2 (id =
TA t1) +Act2)

Cxn) ,
which yields the equality
NEN) o+ t2) = NM(EN) + >C(t2) -
Conversely, assume now that a r.i.g. ffc, t6 IR can
be written in the form (15). Consider an x0& I™P ff],

In virtue of Theorem 2 and Theorem 6 the function
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(Rst —*7*Ux ) is strictly monotonie (see also to [11).
Moreover,
70y =TV ) = TG = 7166)-
Hence ~(1) =1 and consequently ~>(t) =t for all tt Q,
«hence we get
am 7t® =P for all teq, xel.
Condition (a) results immediately from (18). Consider an
FTf3. In virtue of Theorem 2 and (16) we have
7eQp = X for all tt Q-
But the function E 3t -*m fiCx”) is continuous. Hence
760

which means that condition (b) is satisfied.

xN for all t&IR,

To prove (c) suppose that for given tQ,t""E there holds
the equality

li e £ X) .
£y Q, tfeQ (())() > €O

In view of (18) and (15) this equality can be remitten c
lim 0D =7 X ),
et e

whence we get

t 4<t)
7 °(xn) =7 ‘CX).

But the function E st 74x0) is strictly monotonie.
Hence
(19) mift,) = t,

Making use of (18), of the continuity of the function

B>t —“m7*4x), (1¢) and (15), we obtain



lim f*(x) = lim TtCx) =
fc—tQf tt Q tfe
trt *Kta> t,,
=? °(x) =7 1(x) =f '"(x).CzJ

Condition (c) in Theorem 7 can be replaced by a more
visual condition.

THEOREM 8. Let F[f] / I. Then a r.i.g. fbt t* R
of f can be written in the form (15) iff conditions (a)
and (b) are satisfied and

v.d) For every x,y &I\F [f], *TiZ2e E fcile

following relation holds

w € t t
fAxK <f 1(x),f 2(x)> iff TUy)e<T lcy),f 2(y)>2/.

Proof. Assume that conditions (a), (b) and (d)
are valid. We shall prove condition (c). Suppose that for

seme XxX0& 14 F[f]

4 t,,

(20) lim fz(xj =f "(x1J.
t—tott&Q ° A

Since the function Q*t -*e fA(xQ@ is monotonie we get

from (20)

ftl(x0)fc <fb(xD),f\x 0)> for t'trc Q, t < t04V

and hence, in consequence of condition (d)

ftl(xX)& <ft(x),fC(x)> for tT& Q, t~ t~ , x frl
On the other hand we obtain from Ca) by applying Theorem 5

and Lemma 1

2/ <a,b> denotes as in the proof of Theorem 6
a closed onterval whose ends are a and b.
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lim ffc(x) = lin fT(x) for xc-I.

to~, t6Q
Thus we have
lim _ ffe(x) = f 1(x) = lim f*Cx) for xtl,
t-t0 , tbhQ Nt QF,C60Q

which proves (c).

Assume now that a r.i.g. f*1, tfefi can be re-pre-
sented in the form (15). Consider x,yfc I nF[f] and
suppose that

FRo0)fe<f®f(x) 1P%(x)> for some t4»t2%& O» t RE.
Making use of (15) we obtain

u ), /"2 ()
and consequently, as the function B it -*m7ifcCx) is mono-
tonic, we obtain
vf(t)t <~(fcr ,vf(t2)>.

Applying once more the monotonicity of the function

EJt 2t (y) r\//\l/?_lget /w ) H=(5]
Tte(DLr 1 Qp),T bl >

i.e., in view of (.15)

t t-i tp

Fryy>«<* 4y), f *4y)>. CD

Now we are going to prove a theorem which is a gene-

ralization of Theorems 7 and 8. It contains also the sin-
gular case FJ[f] = 1.
Let ffe tb-IR be a r.i.g. of f. Then every function ffe,
tfe B is a monotonie bisection of | onto itself. Let us

fix a tQe E and put
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(21) g*4x) = ftot(x) for xft1, ttrR.
It is clear that then the family gt, tfeE is a r.i.g.
of the function g = fto. The r.i.g. gte, te R is conti-
nuous iff the r.i.g. ffc, ttR is continuous.
THEOREM 9. A r.i.g. fc, te-R of f can be written
in the form (15) iff
(22) ffe(x) s X for all tfc R, x&lI,
or there exists tOflR such that F[fto] j¢1 and a r.i.g.
g4), tbR defined by (21) satisfies conditions (a), (b), (c).
Proof. The case (22) is trivial. Assume that

F[fto] ¢ I and ar.i.g. g*, te R defined by (21) sati-

sfies conditions (a), (b), (c). Then, in virtue of Theorem

7 there exist ac.r.i.g. g of g and an additive func-
tion IR—»E such that

(23) gr(x) =g 1 (x) for all tfc IR, xfcl.

Put t

(24) 7 =g 0, ~>C> = t0 fort ftR.

Gathering together (21), (23) and (24) we obtain for te IR,

by = g0 =g b 29 000 sT W (x)

Conversely, let us suppose that a r.i.g. ffc, tft IR

can be written in the form (15) and there exists t(® IR

t
such that F[f °] = 1. Substituting relations (21) and (24)

into (15) w. get equality (23). Hence, in virtue of
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Theorem 7 the r.i.g. f*, t6R satisfies conditions Ca),
Cb), Cc)-

It follows from Theorems 7 and 8 that conditions (a),
(b), (c) and conditions (a), Cb), (d) are equivalent.
Hence conditon Cc) in Theorem 9 may be replaced by condi-
tion (d).

As a corollary from Theorems 4 and 7 we obtein the
following statement.

THEOREM 10. If card I > 1 then there exists a r.i.g.
** ttR of the function f, which cannot be expressed in
the form (15)*

Proof. Consider first the case where F[f] t I.
Then, in virtue of Theorem 4 there exists a discontinuous
q.i.g. ffc, te Q. Making use of Hamel basis we define an
additive function ~: IR —»Q such that vf(1) = 1. We put

f*x=f f o r to R.
It is clear that f , te R forms a r.i.g, of the function
f and t* = ffe for tfrQ.
Since the q.i.g. ?f, te Q is discontinuous, the r.i.g.
fA, 16 E cannot be written in the form (15)».

Suppose now that F[f] =1, i.e. f(x) =x for all

xfel. Consider a strictly monotonie and continuous func-

tion g: I — 1, gtl) =1 such that F[g] C I. In view
of Theorem 4 there exists a discontinuous q.i.g. g, t& IR
of the function g. Fix a toe By applying Hamel

basis one can define an additive function sR— Q such



that f(1) =1, ~(* = 0. Then a family g”», tfcR
0]
defined a3 follows

~t _ g4 for te E
is ar.i.g. of g which cannot be written in the form¢(ib).
It follows from Theorems 7 and 9 that a r.i.g, f*3, ta R
defined by (21) cannot be expressed in the form (15)e

In the case where f has exactly two fixed points
Theorems 7 end 8 can be essentially simplified, namely,
conditions (b), (c¢), (d) may be omitted.

THEOREM 11. Assume that | = £a,b] and f(x) £ x
for x «r(a,b). Then, ar.i.g. f tffR of the function f
can be written in the form (15) iff the q.i.g. ffc, tfcQ
is continuous.

?r oof. As we know every function f~, tfcR s
continuous, strictly increasing and it maps Ca,b3 onto
itself. Hence

ffc(a) = a, ffe(b) =b forall to R,
which proves that condition (b) is satisfied. We are go-
ing to prove that condition (d) is satisfied. Suppose, for
the proof by contradiction, that there exist x,j,Xg e (a,b),

tQe S, tl,t2e C such that

t. t* to
f °(xDfe <f Yxn ,f &(xN)>

but
t. t. to
f °(x2)fe<f 4x3),f 2(x2» .

Since the functions f*i ttR are continuous, there
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exists t(x”~,x2) such that

t t. t
f °(x5) = f 4x3) or f °(x3) =f 2(x3).

Assume that ftO(Xj) =f (x3). Then we have for all tt-R

f °("(x3)) =~CNr°Cx3) =~ (N10CA)) = ft'i(ft (x3)) .
The set {ffgx3>: twrQ} is dense in Ca,b] (see Theorem 5).

Hence we get from the last equality

t
f °C(x) s f () for all xfe [a,b],

0 L . .
Thus f (x~ = f tx2), which contradicts to (25)»

Theorem 8 completes now the proof, d|
6. Theorems 7 and 8 can be applied to prove sufficient

conditions for a r.i.g. to be continuous.
THEOREM 12. Assume that a r.i.g. ft, t& E of the

function f satisfies conditions (a) , (b) and (c) or Cd),

and that there exists x0€I1>-F[f] such that the function

E 7t -» f*4x0) is measurable. Then fu, tsR is ac.r.i.g.
Proof. Ar.i.g. fA, t& R can be written in the

form (15)» We are going to prove that the function |

occuring in (15) is measurable. Ve may assume that the

function E ®wt —» 1 (x) is strictly decreasing. Con-

sider a t,6 R. We have
(ta Es ~(t) < tO]

[t&ET TACH (x0) > T °(x0)} =

{tfc Rs ~(x 0) > ?to(x0} .
The last set is measurable. It proves that W is measurable

and hence continuous (cf. tl1])* But ~Ct) =t for te Q
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(see (18)) . Thus =t for all t€Q. This equality

and (15) prove the assertion. k—-1
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