JOZEF TABOR

Rational iteration groups

Abstract. Let f be a continuous strictly increasing function mapping a closed interval I \subset R onto itself. In the paper a construction of a rational iteration group f^{t} , $t \in Q$ of f is presented. A necessary and sufficient condition for this group to be continuous is also given. It is shown, by applying these results, that every continuous rational iteration group can be extended to a continuous real iteration group. Finally Zdun's problem is investigated: Can every real iteration group f^{t} , $f \in \mathbb{R}$ be written in the form $f^{t} = f^{\phi(t)}$, where f^{t} , $f \in \mathbb{R}$ is a continuous real iteration group and ϕ is an additive function. The answer is "no". A necessary and sufficient condition for this to be possible is also given.

1. Let I be a closed interval in $\mathbb{R} = \mathbb{R} \cup \{-\infty, \infty\}$ and $f: I \to I$ a strictly increasing continuous function such that f(I) = I (if $-\infty \in I$ or $\infty \in I$ we assume that $f(-\infty) = \lim_{x \to \infty} f(x) = -\infty$ or $f(\infty) = \lim_{x \to \infty} f(x) = \infty$ respectively). By F[f] we denote the set of fixed points of f. The set F[f] is closed (cf. [4]) and hence $I \to F[f]$ consists of at most denumerably many disjoint open intervals. For any fixed $x \in I \to F[f]$ we denote by (a(x),b(x)) a maximal open interval such that $x \in (a(x),b(x)) \subset I \to F[f]$. In other words (a(x),b(x)) denotes an interval such that $x \in (a(x),b(x))$, f(a(x)) = a(x), f(b(x)) = b(x) and $f(z) \neq z$ for $z \in (a(x),b(x))$. If $x \in F[f]$ then we put a(x) = b(x) = x.

We introduce the following definitions (cf [4] and [5]).

DEFINITION 1. The iterates fⁿ, n & 2 of f are defined
as follows

 $f^{\circ} = id_{I}$, $f^{n+1} = f \circ f^{n}$ for n=0,1,2,..., $f^{n-1} = f^{-1} \circ f^{n}$ for n=0,-1,-2,...,

where f⁻¹ denotes the function inverse to f. Throughout this paper upper indices will denote iterates.

DEFINITION 2. A family of continuous functions $\{f^t\colon I \longrightarrow I, t\in \mathbb{R} \mid (\{f^t\colon I \longrightarrow I, t\in \mathbb{Q}\}) \text{ is called a real (rational) iteration group of } f \text{ whenever } f^t \circ f^s = f^{t+s}$ for t,se \mathbb{R} (t,se \mathbb{Q}) and $f^1 = f$.

DEFINITION 3. A real (rational) iteration group $\{f^t, t \in \mathbb{R}\}\ (\{f^t, t \in \mathbb{Q}\})$ is said to be continuous if for

every $x \in I$ the mapping $\mathbb{R} \ni t \longrightarrow f^{t}(x) \in I$ $(Q \ni t \longrightarrow f^{t}(x) \in I)$ is continuous.

A real (rational) iteration group will be written shortly as r.i.g. (q.i.g.) and a continuous real (rational) iteration group as c.r.i.g. (c.q.i.g.) respectively.

2. In this section we are going to investigate a rational iteration group. At first we shall describe the construction of a rational iteration group of f.

THEOREM 1. Every q.i.g. of f can be obtained by putting

$$f^1 = f,$$

(ii)
$$f^{\frac{1}{(n+1)!}} = \psi_n \quad \text{for } n \in \mathbb{N},$$

where ψ_n is an arbitrary continuous and strictly increasing solution of the equation

(iii)
$$f^{\frac{m}{n}} = (f^{\frac{n!}{n!}})^{m(n-1)!}$$
 for $n \in \mathbb{N}$, $m \in \mathbb{Z}$.

Proof. Every q.i.g. of f satisfies obviously the conditions (i) - (iii).

We are going to prove now that the construction (i) - (iii) defines a q.i.g. of f. Since f(I) = I we have by (ii) $f^{\overline{n!}}(I) = I$ for $n \in \mathbb{N}$ (cf. [4] p.297), which implies

(ii) $f^{n!}(I) = I$ for $n \in \mathbb{N}$ (cf. [4] p.297), which implies that the function $(f^{n!})^{m(n-1)!}$, $n \in \mathbb{N}$, $m \in \mathbb{Z}$ maps I onto itself.

1/ The general continuous strictly monotonic solution of the equation $p^n = g$ is given in [4].

To show that the function f^r , $r \in Q$ is "well defined" we must prove that f^r is independent of the representation of r in the form $r = \frac{m}{n}$, i.e. we must prove the equality

(1)
$$f^{\frac{m}{n}} = f^{\frac{mp}{np}} \quad \text{for } n, p \in \mathbb{N}, m \in \mathbb{Z}.$$

Making use of the properties of iterates for integer exponents we obtain from (iii)

$$f^{\frac{mp}{np}} = \left[f^{\frac{1}{(np)!}} \right]^{(np-1)!mp} = \\ = \left\{ \left[f^{\frac{1}{np!}} \right]^{\frac{(np)!}{n!}} \right\}^{(n-1)!m} = \\ = \left\{ \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right\}^{(n-1)!m} = \\ = \left\{ \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right\}^{(n-1)!m} = \\ = \left\{ \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right\}^{(n-1)!m} = \\ = \left\{ \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right\}^{(n-1)!m} = \\ = \left\{ \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right\}^{(n-1)!m} = \\ = \left\{ \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right\}^{(n-1)!m} = \\ = \left\{ \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right\}^{(n-1)!m} = \\ = \left\{ \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right\}^{(n-1)!m} = \\ = \left\{ \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right\}^{(n-1)!m} = \\ = \left\{ \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right\}^{(n-1)!m} = \\ = \left\{ \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right\}^{(n-1)!m} = \\ = \left\{ \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right\}^{(n-1)!m} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right\}^{(n-1)!m} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right]^{(n-1)!m} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right]^{(n-1)!m} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right]^{(n-1)!m} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right]^{(n-1)!m} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} \right]^{(n-1)!m} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot (n+1)} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot \cdot (n+1)} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot \cdot (n+1)} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot \cdot (n+1)} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot \cdot (n+1)} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot \cdot \cdot (n+1)} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot \cdot \cdot (n+1)} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot \cdot \cdot (n+1)} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot \cdot \cdot (n+1)} = \\ = \left[f^{\frac{1}{(np)!}} \right]^{np(np-1) \cdot \cdot \cdot \cdot \cdot \cdot (n+$$

But by (ii)

$$\begin{bmatrix} f^{\frac{1}{np}} \end{bmatrix}^{np} = f^{\frac{1}{(np-1)!}}$$

$$\begin{bmatrix} f^{\frac{1}{(np-1)!}} \end{bmatrix}^{np-1} = f^{\frac{1}{(np-2)!}},$$

$$\begin{bmatrix} f^{\frac{1}{(n+1)!}} \end{bmatrix}^{n+1} = f^{\frac{1}{n!}}.$$

Applying this equalities we get

$$\left\{ \begin{bmatrix} \frac{1}{f(np)!} & np(np-1) & \dots & (n+1) \\ f(np)! & np(np-1) & \dots & (n+1) \end{bmatrix} & (n-1)!m \\
= \left\{ \left(\left[f(np)!} & np(np-1) & \dots & (n+1) \right] & (n-1)!m \\
= \left[f(np-1)!} & (np-1) & \dots & (n+1) \right] & (n-1)!m \\
= \dots & = \left[f^{\frac{1}{n!}} \right] & = f^{\frac{m}{n}}.$$

Thus (1) is valid.

It is necessary to prove yet that $f^S \circ f^t = f^{S+t}$ for s, t \in Q. We may assume that $s = \frac{m_1}{n}$, $t = \frac{m_2}{n}$, $n \in \mathbb{N}$, $m_1, m_2 \in \mathbb{Z}$. Then we get from (iii)

$$f^{8} \cdot f^{t} = f^{\frac{m}{n}} \circ f^{\frac{m}{2}} = (f^{\frac{1}{n!}})^{m_{1}(n-1)!} \circ (f^{\frac{1}{n!}})^{m_{2}(n-1)!} =$$

$$= (f^{\frac{1}{n!}})^{(m_{1}+m_{2})(n-1)!} = f^{\frac{m_{1}+m_{2}}{n}} = f^{s+t}.$$

Remark. A continuous and strictly monotonic solution of the equation $\phi^n = f$ in a non-trivial case where F[f] \neq I depends on an arbitrary function (cf.[3], Theorem 15.7). Hence, it follows from Theorem 1 that a non-trivial case a q.i.g. of f depends on denumerably many arbitrary functions.

THEOREM 2. If $\{f^t, t \in Q\}$ is a q.i.g. of f then the function $Q \ni t \longrightarrow f^t(x)$ is constant for $x \in F[f]$, strictly decreasing if f(x) < x and strictly increasing if f(x) > x.

Proof. As it is known (cf. [4], p.299), if a function g: I \rightarrow I is continuous strictly increasing and such that g(I) = I, then for every strictly monotonic and continuous solution φ of the equation ψ^n = g we have

$$p(x) = x$$
 for $x \in F[g]$

and if g(x) < x (g(x) > x) then $\varphi(z) < z$ $(\varphi(z) > z$ respectively) for $z \in (a(x),b(x))$.

Consider now the q.i.g. $\{f^t, t \in Q\}$ of f. If $x \in F[f]$ then making use of (ii), in view of the above remark, we

get $f^{\frac{1}{n!}}(x) = x$ for $n \in \mathbb{N}$ and consequently by (iii) $f^{t}(x) = x$ for $t \in \mathbb{Q}$.

Consider now an $x_0 \in I \setminus F[f]$ and suppose that $f(x_0) < x_0$ (in the other case considerations run similarly). Then making use of (ii) and the remark at the beginning of the proof we obtain by induction

 $f^{\frac{1}{n!}}(x) < x$ for $x \in (a(x_0), b(x_0))$, $n \in \mathbb{N}$, whence, by applying (iii) we get

 $f_1^t(x) < x$ for $x \in (a(x_0), b(x_0))$, $t \in Q$, t > 0. Let $t_1 < t_2$, $t_1, t_2 \in Q$. We have in view of the last inequality,

$$f^{t_2-t_1}(x_0) < x_0$$

and consequently, as ft is strictly increasing

$$f^{t_2}(x_0) = f^{t_1}(f^{t_2-t_1}(x_0)) < f^{t_1}(x_0),$$

which means that the function $Q \ni t \longrightarrow f^{t}(x_{0})$ is strictly increasing.

3. We shall consider a c.q.i.g. of f.

THEOREM 3. Assume that f^t , $t \in Q$ is a q.i.g. of f and

(2)
$$\lim_{n\to\infty} f^{\frac{1}{n!}}(x) = x \quad \text{for all } x \in I.$$

Then ft, teQ is a c.q.i.g.

Proof. We obtain immediately from (2)

(3)
$$\lim_{n\to\infty} f^{-\frac{1}{n!}}(x) = x \quad \text{for all } x \in I.$$

Making use of Theorem 2. (2) and (3) we get

$$\lim_{t\to 0} f^{t}(x) = x \quad \text{for} \quad x \in I$$

and consequently,

lim
$$f^{t}(x) = \lim_{t \to t_{0}} f^{t-t_{0}}(f^{t_{0}}(x)) = f^{t_{0}}(x)$$
 for $x \in I$,

which means that the function $Q \ni t \longrightarrow f^{t}(x)$ is continuous. The following corollary follows directly from Theorem 2 and Theorem 3.

COROLLARY 1. Let f^t , $t \in \mathbb{Q}$ be a q.i.g. of f.

If there exist $\lim_{t \to 0} f^t(x)$ for all $x \in I$ then f^t , $t \in \mathbb{Q}$ is a c.q.i.g.

Proof. Consider any $x \in I$ and suppose that the function $Q \ni t \longrightarrow f^{t}(x)$ is decreasing (the proof in the other case is similar).

Then we have

$$\lim_{t\to 0^+} f^t(x) \geqslant f^0(x) = x \geqslant \lim_{t\to 0^-} f^t(x),$$

whence, by applying the assumption we get

$$\lim_{t\to 0^+} f^t(x) = x \quad \text{for all } x \in I,$$

which, in virtue of Theorem 3, proves the assertion.

THEOREM 4. If $F[f] \neq I$, then there exists a discontinuous q.i.g. of f.

Proof. Consider an $x_0 \in I \setminus F(f)$. Without loss of generality we may assume that $f(x_0) < x_0$. Then f(x) < x for all $x \in (a(x_0),b(x_0))$. It follows from Lemma 15.6 of [4] (p.297) that for arbitrary $x_1 \in (a(x_0),b(x_0))$

with $f(x_0) < x_1 < x_0$ every continuous strictly increasing function $\phi: [x_1, x_0] \longrightarrow [a(x_0), b(x_0)]$ such that $x_0 > \phi(x_0) > x_1$, $\phi(x_1) = f(x_0)$ and $\phi^n(x_0) = f(x_0)$ can be extended to a solution of the equation $\phi^n = f$.

We are going to construct a q.i.g. of f. Put

$$\mathcal{E}_{1} = \frac{x_{0} - f(x_{0})}{2} \cdot \frac{1}{2^{1}}$$
 for n=1,2,...

and choose $f^{\frac{1}{n!}}$, n=2,3,... in such a manner that

$$f^{\frac{1}{(n+1)!}}(x_0) = f^{\frac{1}{n!}}(x_0) + \varepsilon_{n+1}$$
 for n=1,2,...

Then we have for $n \geqslant 2$

$$f^{\frac{1}{n!}}(x_0) = f(x_0) + \varepsilon_2 + \dots + \varepsilon_n < f(x_0) + \sum_{i=1}^{\infty} \varepsilon_i =$$

$$= f(x_0) + \frac{x_0 - f(x_0)}{2} = \frac{x_0 + f(x_0)}{2} < x_0.$$

Ey applying Theorem 1 (more precisely by (iii)) we obtain q.i.g. of f. Since

$$f^{\frac{1}{n!}}(x_0) < \frac{x_0 + f(x_0)}{2} < x_0$$

we have $\lim_{n\to\infty} f^{n!}(x_0) \neq x_0$, which proves that this group is discontinuous.

We are going to give another condition equivalent to the continuity of a q.i.g. But first we shall prove a very useful lemma.

LEMMA 1. Let f^t , teQ be a q.i.g. of f. If the set $\{f^t(x_0), teQ\}$ is dense in $[a(x_0), b(x_0)]$, then the

oscillation of the function $Q \ni t \longrightarrow f^{t}(x_{0})$ vanishes at every $t \in \mathbb{R}$.

Proof. For $x_0 \in F[f]$ the statement follows directly from Theorem 2. Assume that $x_0 \in F[f]$. Then, in virtue of Theorem 2 the function $Q \ni t \longrightarrow f^t(x_0)$ is strictly monotonic. We may assume that it is decreasing. Hence for every $t_0 \in \mathbb{R}$ there exist $\lim_{t \to t_0^+, t \in Q} f^t(x_0)$, $\lim_{t \to t_0^+, t \in Q} f^t(x_0)$ and obviously $\lim_{t \to t_0^+, t \in Q} f^t(x_0) \leqslant \lim_{t \to t_0^+, t \in Q} f^t(x_0)$.

Suppose (contrary to our assertion) that the oscillation of the function $Q > t - f^t(x_0)$ at the point $t_0 \in \mathbb{R}$ is greater then zero. Then there must be

$$\lim_{t \to t_0^+} f^t(x_0) \qquad \lim_{t \to t_0^-} f^t(x_0)$$

and

$$f^{\tau}(x_0) \leq \lim_{t \to t_0^+} f^{t}(x_0)$$
 for $\tau > t_0$, $\tau \in Q$, $f^{\tau}(x_0)$ $\lim_{t \to t_0^-} f^{\tau}(x_0)$ for $\tau < t_0$, $\tau \in Q$.

But $f^{\mathsf{T}}(x_0) \in (a(x_0), b(x_0))$ for every $\mathsf{T} \in \mathbb{Q}$. Hence the last three inequalities prove that the set $\{f^{\mathsf{T}}(x_0), \mathsf{t} \in \mathbb{Q}\}$ is not dense in $[a(x_0), b(x_0)]$, which contradicts our assumption.

THEOREM 5. A q.i.g. of f is continuous iff for every $x \in I$ the set $\{f^t(x), t \in Q\}$ is dense in [a(x),b(x)].

Proof. Consider an $x_0 \in I$ and assume that the set $\{f^t(x_0), t \in Q\}$ is dense in $[a(x_0), b(x_0)]$. By Lemma 1 the oscillation of the function $Q \ni t \longrightarrow f^t(x_0)$ vanishes at every $t \in \mathbb{R}$, which proves that it is continuous (cf.[2] p.52).

Assume now that f^t , $t \in Q$ is a c.q.i.g. of f. It means by definition that for every $x \in I$ the function $Q \ni t \longrightarrow f^t(x)$ is continuous. Consider an $x_0 \in I \setminus F[f]$. We may assume that $f(x_0) < x_0$. Suppose, to argue by contradiction, that the set $\{f^t(x_0), t \in Q\}$ is not dense in $[a(x_0),b(x_0)]$. It means that there exist $c,d \in [a(x_0),b(x_0)]$, $a(x_0) \leqslant c \leqslant d \leqslant b(x_0)$ such that $f^t(x_0) \leqslant c$ or $f^t(x_0) \geqslant d$ for every $t \in Q$. The function $Q \ni t \longrightarrow f^t(x_0)$ is strictly decreasing. Moreover, $\lim_{n \to \infty} f^n(x_0) = a(x_0)$ and $\lim_{n \to \infty} f^{-n}(x_0) = b(x_0)$ (cf. [4], $\lim_{n \to \infty} f^n(x_0) = a(x_0) \leqslant c$, $d \leqslant b(x_0)$ and so there exist $t_1, t_2 \in Q$ such that $f^{-1}(x_0) \leqslant c$ and $f^{-2}(x_0) \geqslant d$. Put $t_0 = \sup\{t \in Q: f^t(x_0) \leqslant c$,

where the supremum is taken in R.

Making use of the monotonicity of the function $Q \Rightarrow t \longrightarrow f^{t}(x_{0})$ we get

(4) $f^{t}(x_{0}) < c$ for $t > t_{0}$, $f^{t}(x_{0}) > d$ for $t < t_{0}$.

Consider two rational sequences $\{t_{n}\} \longrightarrow t_{0}$, $t_{n} < t_{0}$ and $\{T_{n}\} \longrightarrow t_{0}$, $T_{n} > t_{0}$. Then we have by (4) $f^{t_{n}}(x_{0}) > d$, $f^{T_{n}}(x_{0}) < c$

and consequently, as every function f^{t} , $t \in Q$ is strictly increasing.

(5)
$$f^{\tau_n - t_n}(d) = f^{\tau_n}(f^{-t_n}(d)) < f^{\tau_n}(x_0) \le c.$$

But $\tau_n - t_n \rightarrow 0$ and so there must be

$$\lim_{n\to\infty} f^{-t_n}(d) = d,$$

which contradicts (5).

4. In this section we shall prove that a c.q.i.g. of f defines uniquely a c.r.i.g. of f.

THEOREM 6. Every c.q.i.g. of f can be extended to a c.r.i.g. of f. This extension is unique.

Proof. Let f^t , $t \in Q$ be c.q.i.g. of f and let $x \in I$. Then, in view of Theorem 5, the set $\{f^t(x) : t \in Q\}$ is dense in [a(x),b(x)] and so by Lemma 1 the oscillation of the function $Q \ni t \longrightarrow f^t(x)$ vanishes at every $t_0 \in \mathbb{R}$. But it proves that this function can be, in unique way, extended onto the set \mathbb{R} (cf. [2], p.54). We put

(6)
$$f^{t_0}(x) := \lim_{t \to t_0, t \in Q} f^{t}(x)$$
 for $t_0 \in \mathbb{R}, x \in I$.

We are going to prove that the function fo, toeR is continuous.

Consider first an $x_0 \in I \setminus F[f]$.

The function f is increasing as a limit of increasing. functions. Hence there exist

$$\lim_{x \to x_0^-} f^{t_0}(x) =: f^{t_0}(x_0^-), \lim_{x \to x_0^+} f^{t_0}(x) =: f^{t_0}(x_0^+)$$

and

(7)
$$f^{t_0}(x_0^-) \leqslant f^{t_0}(x_0) \leqslant f^{t_0}(x_0^+).$$

Suppose to prove by contradiction that

$$f^{t_0}(x_0^-) < f^{t_0}(x_0^+).$$

Assume that $f(x_0) < x_0$ (the considerations in the case $f(x_0) > x_0$ are analogous). The function $Q : t \longrightarrow f^t(x)$ is decreasing for $x \in [a(x_0), b(x_0)]$ and so, in view of (6) $f^t(x) \le f^0(x) \le f^t(x)$ for $x \in [a(x_0), b(x_0)]$, $t, T \in Q$, $t > t_0$, $T < t_0$.

These inequalities yield the following

(8)
$$f^{t}(x_{0}^{-}) \leq f^{t_{0}}(x_{0}^{-}) \leq f^{t_{0}}(x_{0}^{-})$$
 for $t, t \in Q, t > t_{0}, t < t_{0}$

(9) $f^{t}(x_{0}^{+}) \leq f^{t_{0}}(x_{0}^{+}) \leq f^{t}(x_{0}^{+})$ for t, $t \in Q$, $t > t_{0}$, $t < t_{0}$.

Making use of the continuity of the function f^{t} , $t \in Q$.

(with respect to x) and combining together (7), (8) and

(9) we get

 $f^{t}(x_{0}) = f^{t}(x_{0}^{-}) \leqslant f^{t_{0}}(x_{0}^{-}) < f^{t_{0}}(x_{0}^{+}) \leqslant f^{t}(x_{0}^{+}) = f^{t}(x_{0}^{-})$ for $t, t \in Q$, $t > t_{0}$, $t < t_{0}$.

But this means that the set $\{f^{t}(\mathbf{x}_{0}): t \in \mathbb{Q}\}$ is not dense in $[a(\mathbf{x}_{0}),b(\mathbf{x}_{0})]$, which contradicts Theorem 5. Hence $f^{t}(\mathbf{x}_{0})=f^{t}(\mathbf{x}_{0})$ and so, in consequence of (7) the function $f^{t}(\mathbf{x}_{0})$ is continuous at \mathbf{x}_{0} .

Let now $x_0 \in F[f]$. Denote by $\langle a,b \rangle$ a closed interval whose ends are a and b (it may be as well $a \leqslant b$ as $b \leqslant a$). Consider a $t_0 \in \mathbb{R}$ and fix $t_1, t_2 \in \mathbb{Q}$, $t_1 < t_0 < t_2$.

In wirtue of Theorem 2 we have then

(10)
$$f^{t_0}(x) \in \langle f^{t_1}(x), f^{t_2}(x) \rangle$$
 for $x \in I$.

Making use of continuity of the functions f^{t} , $t \in Q$ and applying Theorem 2 we get

$$\lim_{x \to x_0} f^{t_1}(x) = f^{t_1}(x_0) = x_0$$

$$\lim_{x \to x_0} f^{t_2}(x) = f^{t_2}(x_0) = x_0.$$

These conditions together with (10) yield the relation

$$\lim_{x\to x_0} f^{t_0}(x) = x_0.$$

But $x_0 \in F[f]$ and therefore, in view of (6), $f^{t_0}(x_0) = x_0$. This completes the proof of the continuity of the function $f^{t_0}(x)$ (with respect to x). We shall prove now that $f^{t_0} = f^{t_0}$ for $t_1, t_2 \in \mathbb{R}$. We have by (6)

(11)
$$f^{t_1}(f^{t_2}(x)) = \lim_{t \to t_1, t \in Q} f^{t_1}(\lim_{\tau \to t_2, \tau \in Q} f^{\tau}(x))$$
.

Making use of the continuity of the function f^t and of the function $R \to T \longrightarrow f^T(x)$ we obtain

(12)
$$\lim_{t \to t_1, t \in Q} f^{t}(\lim_{t \to t_2, t \in Q} f^{t}(x)) = \lim_{t \to t_1, t \in Q} \lim_{t \to t_2, t \in Q} f^{t}(f^{t}(x)).$$

Since the function $\mathbb{R} \ni \mathbf{t} \longrightarrow \mathbf{f}^{\mathbf{t}}(\mathbf{x})$ is continuous we get

(13)
$$\lim_{t \to t_1, \tau + t_2, t, \tau \in Q} f^{t+\tau}(x) = f^{t_1+t_2}(x),$$

and consequently (cf. [3])

(14)
$$\lim_{t \to t_1, T \to t_2, t, T \in \mathbb{Q}} f^{t+T}(x) =$$

$$= \lim_{t \to t_1, T \to t_2, t, T \in \mathbb{Q}} f^{t}(f^{T}(x)) =$$

$$= \lim_{t \to t_1, t \in \mathbb{Q}} (\lim_{t \to t_2, T \in \mathbb{Q}} f^{t}(f^{T}(x))).$$

Gathering together (11), (12), (14) and (13) we have

$$f^{t_1}(f^{t_2}(x)) = f^{t_1+t_2}(x)$$
 for $t_1, t_2 \in \mathbb{R}, x \in I$.

5. At the XVIth International Symposium on Functional Equations (Graz 1978) C.M. Zdun posed the following question.

<u>Problem.</u> Does for every r.i.g. f^t , te R of f exist a c.r.i.g. f^t , te R of this function and an additive function $f: \mathbb{R} \to \mathbb{R}$ such that

(15)
$$f^{t} = \overline{f}^{\varphi(t)} \quad \text{for all } t \in \mathbb{R} ?$$

We are going to show that the answer is "no". We first consider a non-singular case where $F[f] \neq I$. A singular case F[f] = I will be considered next.

THEOREM 7. Let $F[f] \neq I$. Then a r.i.g. f^{t} , $t \in \mathbb{R}$ of f can be written in the form (15) iff the following conditions hold.

- (a) The q.i.g. f^t, t∈Q is continuous,
- (b) F[f] c F[ft] for all teR,
- (c) There exists $x_0 \in I \setminus F[f]$ such that for every $t_0, t_1 \in \mathbb{R}$ the equality

$$\lim_{t\to t_0, t\in \mathbb{Q}} f^t(x_0) = f^{t_1}(x_0)$$

implies the equality

$$\lim_{t\to t_0} f^{t}(x) = f^{t}(x) \quad \text{for all } x \in I.$$

Proof. We prove the sufficiency of conditions (a), (b), (c).

We show that the function $\mathbb{R} \ni t \longrightarrow f^t(x_0)$, $x_0 \in \mathbb{I} \setminus \mathbb{F}[f]$ maps \mathbb{R} into $(a(x_0),b(x_0))$. We have by (b)

 $f^{t}(a(x_{0})) = a(x_{0})$, $f^{t}(b(x_{0})) = b(x_{0})$ for all $t \in \mathbb{R}$. Moreover, as the function f^{t} , $t \in \mathbb{R}$ is invertible and continuous, it is strictly monotonic.

Thus $f^{t}(x_{0}) \in (a(x_{0}),b(x_{0}))$ for all $t \in \mathbb{R}$.

It follows from (a) and from Theorem 6 that the q.i.g. f^t , $t \in \mathbb{Q}$ can be uniquely extended to a c.r.i.g. f^t , $t \in \mathbb{R}$. This extension is of form (6). As we have shown in the proof of Theorem 6 the function $\mathbb{R} \ni t \longrightarrow \overline{f}^t(x_0)$, $x_0 \in I \setminus F[f]$ is strictly monotonic. This is immediately seen from (6). Moreover, it follows from (6) and from the density of the set $\{f^t(x_0): t \in \mathbb{Q}\}$ in $(a(x_0),b(x_0))$ for $x_0 \in I \setminus F[f]$ that the function $\mathbb{R} \ni t \longrightarrow \overline{f}^t(x_0)$, $x_0 \in I \setminus F[f]$ maps \mathbb{R} onto $(a(x_0),b(x_0))$.

Let $\mathbf{x}_0 \in I \setminus F(f)$ be an element satisfying condition (c). In view of the above considerations for every $t \in \mathbb{R}$ there exists exactly one element $\psi(t) \in \mathbb{R}$ such that

(16)
$$f^{t}(x_{0}) = \overline{f}^{\varphi(t)}(x_{0}).$$

We are going to prove that

(17)
$$f^{t}(x) = \overline{f}^{q(t)}(x) \quad \text{for } t \in \mathbb{R}, x \in I.$$

Making use of (16) and of the continuity of the function

$$\mathbb{R} \ni \mathsf{t} \longrightarrow \bar{\mathsf{f}}^{\mathsf{t}}(\mathsf{x}_0)$$

we get

$$\lim_{\tau \to \varphi(t), \tau \in Q} f(x_0) = \lim_{\tau \to \varphi(t), \tau \in Q} \overline{f}(x_0) =$$

$$= \overline{f}^{\varphi(t)}(x_0) = f^{t}(x_0),$$

whence, by (c) we obtain

$$\lim_{\tau \to \varphi(t), \tau \in Q} f^{\tau}(x) = f^{t}(x) \quad \text{for } x \in I.$$

Thus

$$\overline{f}^{q(t)}(x) = \lim_{\tau \to q(t), \tau \in Q} \overline{f}^{\tau}(x) =$$

$$= \lim_{\tau \to q(t), \tau \in Q} f^{\tau}(x) = f^{t}(x).$$

We have to prove yet that φ is additive. Applying (16) and (17) we get

$$\overline{f}^{\psi(t_1+t_2)}(x_0) = f^{t_1+t_2}(x_0) = f^{t_1}(f^{t_2}(x_0)) =$$

$$= \overline{f}^{\psi(t_1)}(\overline{f}^{\psi(t_2)}(x_0)) =$$

$$= \overline{f}^{\psi(t_1) + \psi(t_2)}(x_0),$$

which yields the equality

$$\varphi(t_1 + t_2) = \varphi(t_1) + \varphi(t_2)$$
.

Conversely, assume now that a r.i.g. f^t , $t \in \mathbb{R}$ can be written in the form (15). Consider an $x_0 \in I \setminus F[f]$. In virtue of Theorem 2 and Theorem 6 the function

 $\mathbb{R} \ni t \longrightarrow \overline{f}^{t}(x_{0})$ is strictly monotonic (see also to [1]). Moreover.

$$\bar{f}^{\phi(1)}(x_0) = f^1(x_0) = f(x_0) = \bar{f}^1(x_0)$$
.

Hence $\varphi(1) = 1$ and consequently $\varphi(t) = t$ for all $t \in \mathbb{Q}$, whence we get

(18)
$$\overline{f}^{t}(x) = f^{t}(x)$$
 for all teq, xeI.

Condition (a) results immediately from (18). Consider an $x_1 \in F[f]$. In virtue of Theorem 2 and (18) we have

$$\overline{\mathbf{f}}^{\mathbf{t}}(\mathbf{x}_1) = \mathbf{x}_1$$
 for all $\mathbf{t} \in \mathbb{Q}$.

But the function $\mathbb{R} \ni t \longrightarrow \overline{f}^{t}(x_{1})$ is continuous. Hence $\overline{f}^{t}(x_{1}) = x_{1}$ for all $t \in \mathbb{R}$,

which means that condition (b) is satisfied.

To prove (c) suppose that for given $t_0, t_1 \in \mathbb{R}$ there holds the equality

$$\lim_{t \to t_0, t \in Q} f^t(x_0) = f^{t_1}(x_0).$$

In view of (18) and (15) this equality can be rewritten as

$$\lim_{t\to t_0,\ t\in Q} f^{t}(x_0) = \overline{f}^{(t_1)}(x_0),$$

whence we get

$$\overline{\mathbf{f}}^{t_0}(\mathbf{x}_0) = \overline{\mathbf{f}}^{\psi(t_1)}(\mathbf{x}_0).$$

But the function $\mathbb{R}\ni t \to \overline{f}^t(x_0)$ is strictly monotonic. Hence

$$\varphi(t_1) = t_0.$$

Making use of (18), of the continuity of the function $\mathbb{R} \ni t \longrightarrow \overline{f}^{t}(x)$, (19) and (15), we obtain

$$\lim_{t \to t_0, t \in \mathbb{Q}} f^{t}(x) = \lim_{t \to t_0, t \in \mathbb{Q}} \overline{f}^{t}(x) =$$

$$= \overline{f}^{t_0}(x) = \overline{f}^{t_0(t_1)}(x) = f^{t_1}(x). \square$$

Condition (c) in Theorem 7 can be replaced by a more visual condition.

THEOREM 8. Let $F[f] \neq I$. Then a r.i.g. f^t , to R of f can be written in the form (15) iff conditions (a) and (b) are satisfied and

(d) For every x,y & I \ F[f], t₁,t₂ & Q, t & R the following relation holds

$$f^{t}(x) \in \langle f^{t}(x), f^{t}(x) \rangle \text{ iff } f^{t}(y) \in \langle f^{t}(y), f^{t}(y) \rangle^{2/2}$$

Proof. Assume that conditions (a), (b) and (d) are valid. We shall prove condition (c). Suppose that for some $x_0 \in I \setminus F[f]$

(20)
$$\lim_{t \to t_0, t \in Q} f^t(x_0) = f^{t_1}(x_0).$$

Since the function $Q > t \rightarrow f^{t}(x_{0})$ is monotonic we get from (20)

 $f^{t_1}(x_0) \in \langle f^t(x_0), f^t(x_0) \rangle$ for t, T \in Q, t \le t_0 \le T, and hence, in consequence of condition (d)

 $f^{t_1}(x) \in \langle f^t(x), f^t(x) \rangle$ for t,TeQ, $t \leq t_0 \leq T$, xeI.

On the other hand we obtain from (a) by applying Theorem 5 and Lemma 1

^{2/ &}lt;a,b> denotes as in the proof of Theorem 6 a closed onterval whose ends are a and b.

$$\lim_{t\to t_0^-, t\in Q} f^t(x) = \lim_{\tau\to t_0^+, \tau\in Q} f^\tau(x) \text{ for } x\in I.$$

Thus we have

$$\lim_{t\to t_0^-, t\in Q} f^t(x) = f^{t_1}(x) = \lim_{\tau\to t_0^+, \tau\in Q} f^{\tau}(x) \text{ for } x\in I,$$
which proves (c).

Assume now that a r.i.g. f^t , teR can be represented in the form (15). Consider $x,y \in I \setminus F[f]$ and suppose that

 $f^{t}(x) \in \langle f^{1}(x), f^{2}(x) \rangle$ for some $t_{1}, t_{2} \in \mathbb{Q}$, $t \in \mathbb{R}$.

Making use of (15) we obtain

$$f^{\varphi(t)}(x) \in \langle f^{(t_1)}(x), f^{\varphi(t_2)}(x) \rangle$$

and consequently, as the function $\mathbb{R} \ni t \longrightarrow \overline{f}^t(x)$ is monotonic, we obtain

Applying once more the monotonicity of the function

$$\mathbb{R} \ni t \longrightarrow \overline{f}^{t}(y) \text{ we get}$$

$$\overline{f}^{f(t)}(y) \in \langle \overline{f}^{q(t_1)}(y), \overline{f}^{q(t_2)}(y) \rangle$$

i.e., in view of (15)

Now we are going to prove a theorem which is a generalization of Theorems 7 and 8. It contains also the singular case F[f] = I.

Let f^t , teR be a r.i.g. of f. Then every function f^t , teR is a monotonic bijection of I onto itself. Let us fix a $t_0 \in \mathbb{R}$ and put

(21) $g^{t}(x) = f^{t_0 t}(x)$ for $x \in I$, $t \in \mathbb{R}$.

It is clear that then the family g^t , $t \in \mathbb{R}$ is a r.i.g. of the function $g = f^{to}$. The r.i.g. g^t , $t \in \mathbb{R}$ is continuous iff the r.i.g. f^t , $t \in \mathbb{R}$ is continuous.

THEOREM 9. A r.i.g. f^t, teR of f can be written in the form (15) iff

(22) $f^{t}(x) = x$ for all $t \in \mathbb{R}$, $x \in \mathbb{I}$, or there exists $t_{0} \in \mathbb{R}$ such that $F[f^{t_{0}}] \neq I$ and a r.i.g. g^{t} , $t \in \mathbb{R}$ defined by (21) satisfies conditions (a),(b),(c).

Proof. The case (22) is trivial. Assume that $F[f^{to}] \neq I$ and a r.i.g. g^t , to R defined by (21) satisfies conditions (a), (b), (c). Then, in virtue of Theorem 7 there exist a c.r.i.g. g^t of g and an additive function $\psi_1: \mathbb{R} \to \mathbb{R}$ such that

(23)
$$g^{\dagger}(x) = \overline{g}^{\dagger_{\uparrow}(t)}(x)$$
 for all $t \in \mathbb{R}$, $x \in I$.

Put

(24)
$$\vec{f} = \vec{g}^{t}$$
, $\varphi(t) = \varphi_1(\frac{t}{t_0})t_0$ for $t \in \mathbb{R}$.

Gathering together (21), (23) and (24) we obtain for te R,

$$f^{t}(x) = g^{0}(x) = \overline{g}^{(t)}(x) = \overline{g}^{(t)}(x) = \overline{g}^{(t)}(x) = \overline{g}^{(t)}(x) = \overline{g}^{(t)}(x).$$

Conversely, let us suppose that a r.i.g. f^t , $t \in \mathbb{R}$ can be written in the form (15) and there exists $t_0 \in \mathbb{R}$ such that $F[f^{t_0}] = I$. Substituting relations (21) and (24) into (15) w. get equality (23). Hence, in virtue of

Theorem 7 the r.i.g. f^t, teR satisfies conditions (a), (b), (c).

It follows from Theorems 7 and 8 that conditions (a), (b), (c) and conditions (a), (b), (d) are equivalent.

Hence conditon (c) in Theorem 9 may be replaced by condition (d).

As a corollary from Theorems 4 and 7 we obtain the following statement.

THEOREM 10. If card I > 1 then there exists a r.i.g. f^{t} , teR of the function f, which cannot be expressed in the form (15).

Proof. Consider first the case where $F[f] \neq I$. Then, in virtue of Theorem 4 there exists a discontinuous q.i.g. f^t , teQ. Making use of Hamel basis we define an additive function $\psi: \mathbb{R} \longrightarrow \mathbb{Q}$ such that $\psi(1) = 1$. We put $f^t = f^{\psi(t)}$ for te \mathbb{R} .

It is clear that \tilde{f}^t , $t \in \mathbb{R}$ forms a r.i.g. of the function f and $\tilde{f}^t = f^t$ for $t \in \mathbb{Q}$.

Since the q.i.g. \tilde{f}^{t} , $t \in Q$ is discontinuous, the r.i.g. f^{t} , $t \in \mathbb{R}$ cannot be written in the form (15).

Suppose now that F[f] = I, i.e. f(x) = x for all $x \in I$. Consider a strictly monotonic and continuous function $g: I \longrightarrow I$, g(I) = I such that $F[g] \neq I$. In view of Theorem 4 there exists a discontinuous q.i.g. g^t , to R of the function g. Fix a $t_0 \in R \setminus Q$. By applying Hamel basis one can define an additive function $\varphi: R \longrightarrow Q$ such

that $\psi(1) = 1$, $\psi(\frac{1}{t_0}) = 0$. Then a family ξ^t , teR defined as follows

$$\tilde{g}^t = g^{\varphi(t)}$$
 for $t \in \mathbb{R}$

is a r.i.g. of g which cannot be written in the form (15). It follows from Theorems 7 and 9 that a r.i.g. f^{t} , to R defined by (21) cannot be expressed in the form (15).

In the case where f has exactly two fixed points
Theorems 7 and 8 can be essentially simplified, namely,
conditions (b), (c), (d) may be omitted.

THEOREM 11. Assume that I = [a,b] and $f(x) \neq x$ for $x \in (a,b)$. Then, a r.i.g. f^{t} teR of the function f can be written in the form (15) iff the q.i.g. f^{t} , teQ is continuous.

Proof. As we know every function ft, teR is continuous, strictly increasing and it maps [a,b] onto itself. Hence

 $f^{t}(a) = a$, $f^{t}(b) = b$ for all $t \in \mathbb{R}$, which proves that condition (b) is satisfied. We are going to prove that condition (d) is satisfied. Suppose, for the proof by contradiction, that there exist $x_1, x_2 \in (a, b)$, $t_0 \in \mathbb{R}$, $t_1, t_2 \in \mathbb{Q}$ such that

$$f^{t_0}(x_1) \in \langle f^{t_1}(x_1), f^{t_2}(x_1) \rangle$$

but

$$f^{t_0}(x_2) \in \langle f^{t_1}(x_2), f^{t_2}(x_2) \rangle$$
.

Since the functions ft, teR are continuous, there

exists $x_3 \in (x_1, x_2)$ such that $f^{t_0}(x_3) = f^{t_1}(x_3)$ or $f^{t_0}(x_3) = f^{t_2}(x_3)$.

Assume that $f^{t_0}(x_3) = f^{t_1}(x_3)$. Then we have for all $t \in \mathbb{R}$ $f^{t_0}(f^t(x_3)) = f^t(f^{t_0}(x_3)) = f^t(f^{t_1}(x_3)) = f^{t_1}(f^t(x_3))$. The set $\{f^t(x_3): t \in \mathbb{Q}\}$ is dense in [a,b] (see Theorem 5). Hence we get from the last equality

 $f^{t_0}(x) = f^{t_1}(x)$ for all $x \in [a,b]$. Thus $f^{t_0}(x_2) = f^{t_1}(x_2)$, which contradicts to (25). Theorem 8 completes now the proof.

6. Theorems 7 and 8 can be applied to prove sufficient conditions for a r.i.g. to be continuous.

THEOREM 12. Assume that a r.i.g. f^t , teR of the function f satisfies conditions (a), (b) and (c) or (d), and that there exists $x_0 \in I \setminus F[f]$ such that the function $f^t = f^t(x_0)$ is measurable. Then $f^t = f^t$ is a c.r.i.g.

Proof. A r.i.g. f^t , teR can be written in the form (15). We are going to prove that the function f occurring in (15) is measurable. We may assume that the function $R \ni t \longrightarrow \overline{f}^{(t)}(x)$ is strictly decreasing. Consider a $t \in R$. We have

The last set is measurable. It proves that φ is measurable and hence continuous (cf. [1]). But $\varphi(t) = t$ for $t \in \mathbb{Q}$

(see (18)). Thus $\psi(t) = t$ for all $t \in Q$. This equality and (15) prove the assertion.

References

- [1] Aczel J., Lectures on functional equations and their applications, New York, London 1966.
- [2] Dieudonné J., Foundations of modern analysis, New York, London 1960.
- [3] Fichtenholtz G.M., Foundations of Mathematical Analysis (Polish edition), vol. I, Warszawa 1962.
- [4] Kuczma M., Functional equations in a single variable, Warszawa 1968.
- [5] Zdun M.C., Continuous it ration semigroups, Bolletino U.M.I. 14 A (1977), 65-70.