HALINA CZTERNASTEK*

Otrzymywanie i własności optyczne cienkich warstw układu ZnO-SnO,

WSTEP

Tlenki ZnO i SnO₂ są półprzewodnikami typu n z szeroką przerwą wzbronioną wynoszącą odpowiednio 3.3 eV i 3.4 eV. Domieszkowane wykazują wysokie przewodnictwo elektryczne przy zachowaniu dużej przezroczystości w całym zakresie widzialnym [1]. Związki te w postaci cienkich warstw znajdują szerokie zastosowanie w urządzeniach optoelektronicznych.

Od szeregu lat [2],[3] polikrystaliczne proszki ZnO i SnO₂ mieszane w różnych stosunkach wagowych wykorzystuje się do otrzymywania spieków ceramicznych. Spieki te posiadają nieliniowe charakterystyki prądowo-napięciowe, a opór ich można zmieniać w zakresie od 10³ do 10¹⁰ Ω cm zmieniając procentowy udział obu tlenków w spieku.

Dla układu tlenków ZnO-SnO₂ [4], [5] stwierdzono występowanie dwóch trwałych związków ZnSnO₃ i Zn₂SnO₄ o własnościach półprzewodnikowych. Ostatnio otrzymano kryształy związku Zn₂SnO₄ z fazy gazowej [6] i ciekłej [7] wykazujące własności półprzewodnikowe. Związek Zn₂SnO₄ okazał się przydatny jako materiał na czujniki do wykrywania obecności metanu [8].

Celem tej pracy jest otrzymanie cienkich warstw tlenkowych układu ZnO-SnO₂ techniką reaktywnego rozpylania katodowego, badanie ich składu, struktury i własności optycznych.

OTRZYMYWANIE, STRUKTURA I SKŁAD CIENKICH WARSTW

Szeroko rozpowszechniona obecnie technika rozpylania katodowego [9] pozwala na otrzymywanie cienkich warstw z różnych materiałów – metali, półprzewodników i dielektryków. War twy tlenków metali otrzymuje się ze spiekanych pod ciśnieniem tlenkowych katod rozpylając je w atmosferze gazu obojętnego technikę RF lub z katod metalicznych stosując rozpylanie DC w mieszaninie gazów zawierających tlen.

Warstwy tlenkowe otrzymywano w typowej aparaturze do katodowego rozpylania opisanej w pracy [10]. Katody wykonano z metalicznego cynku i cyny o czystościach 5N, ich skład podano w tabeli I. W pierwszym etapie prac wykonano szereg warstw tlenkowych prowadząc rozpylanie w atmosferze tlenargon na podłoża umieszczone na stoliku podgrzewanym do 🦂 temperatury 300°C, przy czym zmieniano takie parametry technologiczne jak skład atmosfery i napięcie rozpylania. Struktura warstw była badana metoda dyfrakcji rentgenowskiej Debye a-Scherrera. We wszystkich przypadkach otrzymywano polikrystaliczne warstwy tlenkowe, które dla katod stopowych (od Nr 2 do Nr 7 w tabeli I) były mieszaniną tlenków, najczęściej z silnymi refleksami od 🔍 -SnO i β -SnO i śladowymi refleksami pochodzącymi od Zn_oSnO₄. Ponadto warstwy te wykazywały teksturę, która uniemożliwiała prawidłową analize fazowa.

Przedstawione w dalszej części pracy wyniki dotyczyć będą badań warstw otrzymywanych w atmosferze tlenu na podłożach umieszczonych na chłodzonym wodą stoliku. Parametry rozpylania, przy których otrzymano warstwy, były następujące:

-	napięcie rozpylania	U	=	1500 V		
-	prąd	I		50 mA		
-	ciśnienie	р	=	4x10 ⁻⁴	Tr	
-	odległość katoda-podłoże	d	8	30 mm		
Ja	ako podłoża etosoweno szkła	Corn	in	g 0211	i Corning	7059
0	wymiarach 30x20x0.5 mm.					

Rentgenowskie badania strukturalne warstw otrzym**anych** przy wyżej podanych warunkach wykazały, że warstwy otrzymane z katod o Nr 1 (100% Sn) i Nr 8 (100% Zn) posiadały drobnopolikrystaliczną strukturę SnO₂ i ZnO, natomiast warstwy otrzymane z katod stopowych Sn-Zn (od Nr 2 do Nr 7 w tabeli I) o różnym składzie były amorficzne.

Przeprowadzone na mikrosondzie badania zawartości cynku i cyny pozwoliły określić stosunek atomowy (Zn/Sn)_w w warstwach i porównać tę wartość z zawartością cynku i cyny w katodach, z których otrzymano warstwy. W tabeli I zestawiono skład procentowy i stosunek atomowy (Zn/Sn)_k katod użytych do rozpylania, stosunek atomowy (Z_n/Sn)_w dla amorficznych warstw tlenkowych oraz szybkości nanoszenia warstw.

Tabela I

	Skład kat	Charakterystyka warstw			
Nr	% wagowe	stosunek atomowy (Zn/Sn) _k w katodzie	stosunek atomowy (Zn/Sn) _W w warstwie	szybkość nanoszenia M (Å/s)	
1.	100%Sn		-	1.04	
2.	25%Zn-75%Sn	0.60	0.22	1.03	
з.	35.5%Zn-64.5%Sn	1.00	0.26	1.01	
4.	40%Zn-60%Sn	1.21	0.24	0.92	
5.	50%Zn-50%Sn	1.82	0.36	0.83	
6.	52.4%Zn-47.6%Sn	2.00	0.37	0.78	
7.	70%Zn-30%Sn	4.24.	0.58	0.63	
8.	100%Zn	-	-	0.44	

Widać, że w wyżej wymienionych warunkach rozpylania najszybciej narastają warstwy tlenkowe z katody 100% Sn. Szybkość wzrostu warstwy z katody 100%Zn jest ponad 2 razy mniejsza. Szybkości wzrostu warstw z katod stopowych zawierają się pomiędzy wartościami szybkości wzrostu warstw otrzymanych z katod cynowej i cynkowej. Szybkości te maleje ze wzrostem wartości stosunku (Zn/Sn), materiału katody. Wartość stosunku (Zn/Sn), dla warstw amorficznych jest znacznie niższa niż dla materiału katody, z której tę warstwę otrzymano. Z liniowego charakteru zależności pomiędzy stosunkiem (Zn/Sn), w warstwie a stosunkiem (Zn/Sn), w katodzie (rys. 1) można wyliczyć wartość współczynnika nachylenia krzywej 🛠 . który dla warunków otrzymywania warstw w tej pracy wynosi 0.1. Zmniejszenie wartości (Zn/Sn) jest spowodowane słabym wbudowaniem się atomów Zn w warstwę, co można uzasadnić większa prężnością par cynku niż cyny w obszarze wyładowania jarzeniowego. Najwyższy ze stosunków (Zn/Sn) = 0.58 w warstwie otrzymanej z katody, dla której (Zn/Sn), = 4.24 (katoda 70%Zn-30%Sn), jest prawie o połowę mniejszy od wartości 1 i ponad 3 razy mniejszy od wartości 2 tych stosunków dla związków ZnSnO₃ i Zn₂SnO₄. Taka obniżona wartość stosunku (Zn/Sn), niewystarczająca do utworzenia odpowiednich związków chemicznych przy niskiej temperaturze podłoża sprzyja powstawaniu struktur amorficznych.

WLASNOSCI OPTYCZNE

1. Pomiary optyczne

Pomiary transmisji i odbicia przeprowadzono w niespolarwzowanym świetle w temperaturze pokojowej na dwuzwiązkowym spektrofotometrze Zeiss UV-VIS w zakresie od 1.3x10⁻⁴ do 3x10⁴ cm⁻¹. Pomiar odbicia wykonano stosując przystawkę odbiciową przystosowaną do spektrofotometru, w której kąt padania wiązki na próbkę był mniejszy niż 4⁰, dlatego w dalszych obliczeniach przyjęto zerowy kąt padania promienia świetlnego.

2. Obliczanie stałych optycznych

Do obliczenia stałych optycznych badanych warstw zastosowano metodę opisaną w pracy [11], uwzględniającą wpływ rozpraszania światła na górnej powierzchni warstwy spowodowanego powierzchnicwą szorstkością i wpływ optycznej niejednorodności w kierunku prostopadłym do powierzchni warstwy. Równania (1):

$$R_{exp}(\lambda) - R(n_1, n_2, k, \lambda, d_w, 6) = 0$$

$$T_{exp}(\lambda) - T(n_1, n_2, k, \lambda, d_w, 6) = 0$$
(1)

gdzie: R_{exp}, T_{exp}, - eksperymentalne wartości odbicia i transmisji,

n₁ - współczynnik załamania przy górnej powierzchni warstwy,
 n₂ - współczynnik załamania przy dolnej powierzchni warstwy,
 k - współczynnik ekstynkcji warstwy,
 d_ - grubość warstwy

przedstawione w pracy [11] wyprowadzono przy założeniu:

a) słabej absorpcji warstwy, tak że k² \ll (n₂² - n²), gdzie: n – współczynnik załamania podłoża;

b) słabej optycznej niejednorodności warstwy danej przez zmianę n(z), gdzie z - kierunek prostopadły do powierzchni warstwy,tzn. wewnętrzne odbicia na niejednorodnościach można zaniedbać biorąc pod uwagę jedynie wielokrotne odbicia na powierzchniach granicznych;

c) że wysokości nierówności na górnej powierzchni warstwy mają gaussowski rozkład ze średnią kwadratową O, przy czym spełniona jest nierówność O / M . Miarą optycznej niejednorodności warstwy jest wartość różnicy n₂-n₁. W obszarze silnej absorpcji przyjęto, że współczynnik załamania warstwy jest stały i równy n₂. Wartość parametru O wzięto z obliczeń w obszarze interferencyjnym. Wartość iloczynu d_w , gdzie M jest współczynnikiem absorpcji, obliczono z równania (2):

$$(\langle \mathsf{T} \rangle - \mathsf{T}_{exp})^2 = 0 \tag{2}$$

gdzie: $\langle T \rangle = (T_{max} + T_{min})/2$, T_{max} i T_{min} - wartości z górnej i dolnej obwiedni transmisji. Zbliżona wartość stosunku (Zn/Sn), znalazła swoje odbicie w niewiele różniących się wartościach współczynników n₂, n₁ i k badanych warstw. Na rys. 2 przedstawiono zależności n_o i n. współczynników załamania, odpowiednio przy dolnej i górnej powierzchni warstwy, od energii dla warstw otrzymanych z katod o Nr 1 (100%Sn), Nr 2 (25%Zn-75%Sn), Nr 6 (52,4%Zn-47,6%Sn), Nr 7 (70%Zn-30%Sn) i Nr 8 (100%Zn). Wartości współczynników załamania przy podłożu dla warstw polikrystalicznych ZnO i Sn_oO wynoszą odpowiednio 2.0 i 1.83 i są niższe od wartości współczynników załamania dla monokryształów tych związków, które wynoszą 2.1 i 2.0. Współczynniki załamania przy podłożu n_o dla warstw amorficznych z katod stopowych zawarte są w przedziale wartości od 2.05 do 2.1, natomiast odpowiednie współczynniki n, przy górnej powierzchni warstwy są mniejsze i zmieniają się od 1.90 do 1.95. Dla obu typów warstw (polikrystaliczne i amorficzne) wystąpiła ta sama zależność współczynnika załamania n(z) w kierunku prostopadłym do powierzchni warstwy (zmniejszanie się współczynnika ze wzrostem grubości warstwy), co spowodowane jest warunkami nanoszenia warstw (oddziaływanie plazmy na powierzchnię rosnącej warstwy). Różnice n₂-n₁ są niewielkie dla wszystkich badanych warstw z wyjątkiem warstwy SnO2, dla której współczynnik n, jest mniejszy od 1.7. Parametr & związany z nierównościami na górnej powierzchni warstwy był dla warstw polikrystalicznych jak i amo ficznych prawie taki sam ze średnią wartością 12 mm. Współczynniki ekstynkcji k = k(h)) pokazano na rys. 3 dla warstw ZnO i SnO₂ - krzywe 1 i 8, otrzymanych odpowiednio z katod o Nr 1 i 8 oraz dla warstw amorficznych - krzywe 2, 6, 7, otrzymanych z katod o Nr 2, 6, 7. W obszarze poniżej krawędzi absorpcji podstawowej współczynniki k dla warstw amorficznych są o rząd wielkości mniejsze od wartości tych współczynników dla drobnopolikrystalicznych warstw ZnO i SnO₂. Wyniki analizy współczynnika absorpcji dla kilku warstw amorficznych przedstawiono na rys. 4. Dobre dopasowanie uzyskano dla zależności α h $\sqrt[3]{(h)} - E_g^{3}$ sto-

Rys.1.Stosunek atomowy (Zn/Sn)_W amorficznych warstw tlenkowych w funkcji stosunku atomowego (Zn/Sn)_k metalicznych katod stopowych Sn-Zn

Fig.1.The atomic ratio $(Zn/Sn)_{\rm k}$ of amorphous oxide films as a function of atomic ratio $(Zn/Sn)_{\rm k}$ for various targets $Zn_{\rm x}Sn_{1-{\rm x}}$

Рис. I. Атомное отношение $(2n/5n)_{W}$ аморфных окисных пленок как функции атомного отношения $(2n/5n)_{K}$ сплавленных катодов $2n_{*}5n_{4-x}$.

Rys.2a.Współczynnik załamania •• n₂ przy podłażu i xx n₁ przy górnej powierzchni dla polikrystalicznych warstw tlenkowych w obszerze słabej sbsorpcji

Fig.2a. (he refraction indices •• n, at the interface film-substrate and xx n, at the film surface for polyprystalline oxide films in the region of interference fringes

Рис. 28. Коэффициент преломления •• № при основе пленки и ** №4 при верхней поверхности для поликрасталлических пленок в области слабой абсорбнии

Rys.2b.Współczynnik załamania •• n. przy podłożu i xx n. przy górnej powierzchni dla tlenkowych warttw amorficznych w obszarze słabej absorpcji

Fig.2b.The refraction indices •• n. at the interface film--substrate and xx n. at the film surface for amorphous oxide films in the region of interference fringes

Рис.26. Коэффициент преломления •• n₂ при основе пленки и * × n. при верхней поверхности для аморфных пленок в области слабой абсорбщии

Rys.3.Współczynnik ekstynkcji k dla warstw polikrystalicznych ZnO ++, SnO₂ ^{oo} ,i amorficznych o różnych stosunkach (Zn/Sn) : 44 -0,22, == -0.37 •• -0.58 w funkcji energii w obszarze poniżej krawędzi absorpcji podstawowej

Fig.3.The extinction indices for polygrystelline filme: ZnO++, SnO₂[©] and amorphous films with the various atomic ratio (Zn/Sn) : AA -0.22, BB -0.37, •• -0.58, in the energy range of the absorption edge

Рис. 3. Коэффициент экстинкции для поликристаллических пленок ZnO++, $SnO_2 \cdots u$ аморфных с разными отношениями $(Zn / Sn)_w: \Delta \Delta - 0.22, = 0.37, \cdots - 0.58$.

Rys.4.Wyznaczanie wartości E z zależnościa h∨ ~/h -E /²g dla tlenkowych warstw amorficznych dla różnych stopów (Zn/Sn) : ▲▲ - 0.22 ■ E - 0.37 • • - 0.58

Fig.4.Analysis of the absorption edge for amorphous oxide films with the various atomic ratio $(Zn/Sn)_{w}$: AA = 0.22, RE = 0.37, ... = 0.58. Show is the plot of day - 1... vs. energy

Рис. 4. Определение значений F_{0} из зависимости $d^{h\nu} \sim (h\nu - E_{0})^{2}$ для окисных аморфных пленок при разных отношениях (2n/5n), 44 - 0.22, в = -0.37, •• - 0.58

Rys.5.Zmiana przerwy wzbronionej E. w funkcji wartości (Zn/Sm) w amorficznych warstwach tlenkowych

Fig.5.The optical energy gap as a function of the atomic ratio (Zn/Sn)_w for amorphous oxide films

Рис.5. Изменение запрещенного перерыва Е₃ как функции значения (2n/Sn), в случае аморф ных окисных пленок sowanej do wyznaczania przerwy energetycznej w materiałach amorficznych [12]. Wraz ze wzrostem wartości stosunku (Zn/Sn)_w położenie krawędzi absorpcji przesuwa się w kierunku malejących energii. Zależność ta jest przedstawiona na rys. 5. Wydaje się, że zmiana E ze składem warstw jest nieliniowa podobnie jak to jest obserwowane w krystalicznych roztworach stałych.

WNIOSKI

W procesie reaktywnego rozpylania katodowego metalicznych katod ze stopów Zn-Sn nie otrzymano cienkich warstw związków ZnSnO₃ i Zn₂SnO₄. Przyczyną był znaczny niedobór atomów cynku w stosunku do atomów cyny w otrzymanych warstwach tlenkowych. W celu zwiększenia stosunku (Zn/Sn)_w w warstwach do wartości 1 lub 2 obniżono temperaturę podłoży podczas nakładania warstwy. W tych warunkach największa wartość (Zn/Sn)_w wynosiła 0.58 dla warstwy otrzymanej z katody 70%Zn-30%Sn. Otrzymane warstwy tlenkowe były amorficzne i charakteryzowały się małym współczynnikiem absorpcji poniżej krawędzi absorpcji podstawowej.

Wydaje się, że w celu otrzymania związku $ZnSnO_3$ lub Zn_2SnO_4 konieczne jest uzyskanie znacznego przesycenia plazmy atomami cynku przez dalsze zwiększenie jego zawartości w katodzie Zn-Sn. Zakładając, że liniowa zależność przedstawiona na rys. 1, jest słuszna dla większych wartości (Zn/Sn)_w i (Zn/Sn)_k udział cynku w katodach powinien wynosić 85% i 92% odpowiednio dla wartości (Zn/Sn)_w = 1 i (Zn/Sn)_w = 2.

Pragnę podziękować prof. dr hab. A. Kisielowi za zainteresowanie pracą i dyskusję jej wyników.

Wpłynęło do Redakcji 30 września 1985r.

Literatura

[1] Chopra K.L., Major S., Pandys D.K., Thin Solid Films 102. 1 (1983).

- [2] Valejev H.S., Knjazev V.A., Elektrichestvo 4, 72 (1964).
- [3] Paria M.K., Mati H.S., J.Mater.Sci. <u>18</u>, 2101 (1983).
- [4] Coffen W.W., J.Am.Ceram.Soc. 36, 207 (1953).
- [5] Filippova N.A., Savina E.V., Korosteleva V.A., Zh.Neorg. Chim. 5, 1423 (1960).
- [6 Yoshida R., Yoshida Y., Yamai I., Kodaira K., Matsushita T., J.Cryst.Growth <u>36</u>, 181 (1976).
- [7] Shimada S., Kodaira K., Matsushida T., J.Cryst. Growth. 59, 662 (1982).
- [8] Jpn. Kokai Tokkyo Koho JP 8170,45 (Cl.GO1 N27/12).
- [9] Maisse L.L., Gland R., Handbook of Thin Films Technology, Mc.Graw Hill Book Company 1970.
- [10] Jachimowski M., Leja E., Szczeklik J., Zesz.Nauk.AGH 207,71 (1969).
- [11] Szczyrbowski J., Czapla A., J.Phys. D<u>12</u>, 1737 (1979).
- [12] Mott N.F., Davis E.A., Electronic Processes in Non-Cryslline Materials, Calrendon Press, Oxford 1971.

or a support of the provide of the

south and the second second the second

H. Czternastek

Preparation and optical properties of SnO₂-ZnO thin films. ABSTRACT

The amorphous SnO₂-ZnO thin films were obtained by dc reactive sputtering of alloy targets Zn_xSn_{1-x}. The atomic ratio (Zn/Sn)_w was determinated for films prepared from various targets. Optical constants n and k were calculated from the optical transmission and reflection spectra in visible region. Using the McLean method of analysis the absorption curves the optical energy gap have been estimated.

Г. Чтернастек

Приготовление и оптические свойства тонких пленок

PESIOME

Методом реактивного распыления сплавных катодов $Zn_x Sn_{4-x} dh-$ ли получены аморфные окисные пленки системы $SnO_2 - ZnO$ ABтором определено атомное отношение $(Zn/Sn)_w$ пленок, полученных с разных катодов. На основе спектров отражения и трансмиссии в видимой области были вычислены также оптические постоянные n и k как функции длины волны λ . Методом Mc Leana оценено значение оптического энергетического перехода.