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Antoni Chronowski

Ternary sem igroups of Linear mappings 
and m atrices

Dedicated to Professor Zenon Moszner 
on his 70th birthday

Abstract. Following the classical Green’s equivalences we examine, by 
means of some equivalence relations, the structure of the ternary semig
roup of linear mappings. The suitable results for the ternary semigroup of 
matrices are consequences of the considerations for the linear mappings.

1. Introduction

In this paper we introduce the notion of a ternary semigroup of linear 
mappings of two vector spaces. The ternary semigroup of linear mappings 
is a counterpart of the semigroup of endomorphisms of a vector space. By 
means of the ternary semigroup of linear mappings we can define a ternary 
(linear) algebra of linear mappings. The last one is isomorphic to a ternary 
(linear) algebra of matrices. The purpose of the present paper is to examine the 
structure of the ternary semigroup of linear mappings. To this end, we shall use 
the relations constructed after the pattern of Green’s equivalences in the theory 
of semigroups. We shall show that the structure of the ternary semigroup of 
linear mappings is similar to that of the semigroup of endomorphisms of a 
vector space, but it is more varied. Moreover, we shall give a certain clear 
characterization of the structure of the inverses in the ternary semigroup of 
linear mappings.

The results concerning a ternary semigroup of matrices will be immediate 
consequences of those obtained for the ternary semigroup of linear mappings.

2. Some definitions and results on ternary semigroups

A ternary semigroup is a particular case of the m-semigroup (cf. [5], [6]). 
We will list some basic definitions and results concerning ternary semigroups 
which will be needed in this paper.

AMS (2000) Subject Classification: 20N15, 15A04.



D efin ition  2.1
A ternary semigroup is an algebraic structure (A ,/)  such that A is a 

nonempty set and /  : A3 — > A is a ternary operation satisfying the following 
associativity law:

f ( f ( x 1,X2,X3),Xi ,X5) =  f ( x 1,f(X 2,X3,Xi),X5) ^  ^

=  f ( x i ,x 2, f ( x 3,x 4,x 5))

for all x i , . . . ,  x3 £ A.

Because of (2.1) we may write f ( x i , . . .  ,£ 5) for x i , . . .  ,x 3 £ A. If 7Q C A 
for * =  1, 2,3 , then we set

f(X x ,X 2,X 3) =  { f ( x i , x 2,x 3) £ A :  e  1 ;  for j  =  1 ,2 ,3 } .

For simplicity we will write / (A 2, a, A2) =  f  (A, A, a, A, A). Throughout this 
paper the letter /  will be reserved to denote the ternary operation in a ternary 
semigroup.

D efin ition  2.2
Let (A, / )  be a ternary semigroup. A nonempty subset 7 C A is called:

(a) a left ideal if /(A , A, I)  C 7,

(b) a right ideal if / (7 , A, A) C 7,

(c) a lateral ideal if /(A , 7, A) C 7,

(d) a two-sided ideal if 7 is both a left and right ideal,

(e) an ideal if 7 is a left, right, and lateral ideal.

Let a £ A be an arbitrary fixed element of a ternary semigroup (A ,/) . 
The symbols 7 ;(a), I r (a), I c(a), Ij(a ), 1(a) denote the principal left ideal, 
right ideal, lateral ideal, two-sided ideal, and ideal generated by the element a, 
respectively.

A straightforward reasoning yields the following 

P ropo sitio n  2.3
Let (A, / )  be a ternary semigroup. Let a be an arbitrarily fixed element of 

A. Then

(a) Ifia) =  aU  f(A ,A ,a ) ,

(b) I r (a) =  a l)  f(a ,A ,A ) ,

(c) 7c(a) =  a U / (A ,a , A) U / (A 2,a , A2),

(d) Ij(a ) =  a  U /(A , A ,a) U / (a ,  A, A) U / (A 2,a , A2),

(e) 7(a) =  a l)  f(A ,A ,a )  U / (a ,  A, A) U / (A ,a , A) U / (A 2,a , A2).



D efin ition  2.4
Let (A , f )  be a ternary semigroup. We define the following relations on 

the set A:
(a) aLb <=>■  I t (a) =  R(b),

(b) aRb 4=>- I r (a) =  I r (b),

(c) aCb •<=>• I c(a) =  I c(b),

(d) a Jb  4=>- Ij(a ) =  I  jib),

(e) aTb ^  1(a) =  1(b),

(f) H  =  L n R ,

(g) D =  L  o R.

Applying a similar argument as in the theory of semigroups we can prove 
that L  o R =  R  o L  and L  C J, R C  J, H  C J, D C J .  Thus, all the above 
relations are equivalences.

D efin ition  2.5 (cf. [6])
A ternary semigruop (A, f )  is said to be regular if

V a g i  3 x ,y  £ A [ f ( a ,x ,a ,y ,a ) = a ] .

Let X  and Y  be nonempty sets. Let T (X ,Y )  be the set of all mappings 
of X  into Y. Put T[X ,Y] =  T (X ,Y )  x T (Y ,X ). Define the ternary operation 
/  : T [X ,Y }3 — ► T [X ,Y } by the rule:

f ( (p i ,q i) ,(P 2,q2),(P3,q3)) =  (pi ° P 3,<a  op2 oq3) ( *)

for all (pi,qi) € T [X ,Y ], where i =  1 ,2 ,3 .
The algebraic structure (T [X ,Y ],f)  is a ternary semigroup.

D efin ition  2.6
The ternary semigroup (T[X, Y], f )  is called the ternary semigroup of 

mappings o f sets X  and Y. If X  n Y =  0, then (T [X ,Y ],f)  is called the 
disjoint ternary semigroup of mappings of sets X  and Y.

It is easy to check that the ternary semigroups (T[X, T], / )  and (T[Y, X], f )  
are isomorphic.

A slightly modified argument applied in the proof of Theorem 3 in [5] yields 
the following theorem.

T heorem  2 .7
Every ternary semigroup (A, f )  is embeddable into a disjoint ternary 

semigroup (T [X ,Y ],f)  o f mappings o f sets X  an dY .

In many areas of mathematics mutual connections between algebraic, orde
red, topological structures and semigroups (groups) of some morphisms of these



structures are studied. For characterizing two structures Si and S2 by means of 
their morphisms we should consider morphisms from Si into S2, and conversely. 
The ternary semigroups of morphisms of the structures Si and S2 meet above 
requirements, and they are useful to achieve the desirable aim. For many 
structures (e.g. ordered sets, lattices, affine spaces, topological spaces) using 
ternary semigroups of morphisms we can obtain some clear information about 
a degree of characterization of these structures by means of their morphisms 
(cf. [1], [2], [3]). Taking into account the above justification and the remarks 
contained in the Introduction, it is well-founded to investigate the ternary 
semigroups of morphisms of various structures.

3. A ternary semigroup of linear mappings

The following two theorems concerning the linear mappings will be needed 
in this paper:

T heorem  3.1
Let X  and Y be vector spaces over a field K . Let p  : X  — > Y be a linear 

mapping. Then there exists a subspace X 0 o f X  such that:

(i) Ker (p) (B X 0 =  X ,

(ii) p\x0 ■ X 0 — >■ Im (p) is an isomorphism o f the vector spaces X 0 and 
Im (p) .

T heorem  3.2 (cf. [4], Th. 2, p. 83)
Let X  and Y  be vector spaces over a field K . Let X 0 be a subspace of the 

space X . Then every linear mapping po : X 0 — > Y can be extended to a linear 
mapping p  : X  — ► Y , i.e. p\Xo =  Po-

Let X  and Y  be vector spaces over a field K .  Let L(X , Y) be the set of 
all linear mappings of the space X  into the space Y. Let us put L[X ,Y] =  
L (X ,Y )  x L{Y ,X ). Define the ternary operation /  : L [X ,Y ]3 — >L[X,Y\ by 
the formula (*) for all (P i,qi) G L[X ,Y], where i =  1 ,2 ,3 .

The algebraic structure (L [X ,Y ],f)  is a ternary semigroup.

D efin ition  3.3
The ternary semigroup (L[X ,Y], f )  is called the ternary semigroup of 

linear mappings o f vector spaces X  and Y over a field K .

Throughout this paper we shall consider vector spaces over a field K .  Sup
pose that p G L (X ,Y ). Put r(p) =  dimlm (p).

L emma 3.4
Let X  and Y be vector spaces. For arbitrary p,p' G L (X ,Y ), q G L(Y ,X ) 

the following conditions are satisfied:



(a) Im (p) C Im (p') <=>  3 pi € L(X , Y) 3 f t  € L(Y, X ) \p =  p1 о qx о p x];

(b) Ker (p) C Ker {p’) 3 pi G L(X , Y )3 qx  € L(Y, X ) [p' =  Pi ° ft ° p];

(c) r(p) r(p') <=^- 3 p i,p 2 € L (X ,Y )  3 f t , f t  € L (Y ,X )  [p =  pi о q1 o p 'о 
f t  0 P2];

(d) r (p ) i^ r (q )< = >  3 p 1,p2 £ L (X ,Y )  \p =  p 1 o q o p 2\.

Proof. The implications (-4=) for equivalences (a)-(d) are evident. We 
shall prove the implications ( => ■ ).

(a) By Theorem 3.1 it follows that there exists a subspace X 0 of the space 
X  such that:

(i) K e r (p ')© X 0 =  X ,

(ii) p'\x0 ■ X 0 — > Im (p') is an isomorphism.

Let f t  be an extension onto Y  of the isomophism (p'|x0)_1 : Im (p') — > X 0 
(see Th. 3.2). The implication ( = >  ) for condition (a) is a direct consequence 
of the equality p =  p' о qx op .

(b) Put Ker(p) ® X 0 =  X . Let ft  e  L (Y ,X )  be an extension onto Y  
of the isomorphism (p|x0) -1 : Im (p) — > X 0. For every x £ X  we have x =  
x' +  xq, where x' G Ker(p) and xq € X 0. Let us notice that p(x) =  p(x0). 
Since Ker (p) C Ker (p'), it follows that p'(x) =  p'(x0). Then (p' о qx o p )(ж) =  
p '(Qi (p (x0))) =  p'(x0) =  p'(x), consequently p' =  p' о qx op . The implication 
( => ■ ) for condition (b) is satisfied.

(c) Since r(p) ^  r(p'), there exists a monomorphism s : Im (p) — >■ Im (p'). 
Put h =  s o p .  Notice that Ker (h) =  Ker (p) and Im (h) C Im (p'). Applying 
conditions (a) and (b) we get p =  pi о qx о h and h =  p' о q2 о p2 for some 
p i,p 2 € L (X ,Y )  and f t , f t  € L(Y ,X ). Therefore p =  pi о q1 о p' о q2 о p2 for 
some p i,P 2 € L (X ,Y )  and f t , f t  € L(Y ,X ).

(d) Put Ker (p) © X 0 =  X  and Ker (q) © Y0 =  Y. In view of the inequality 
r(p) ^  r(q) and Theorem 3.1(ii) we have dim X 0 ^  dim Y0. Consider the 
following mappings:

7Г — the projection of X  onto X 0:

•q — a monomorphism of X 0 into lb ;

p2 = r]  о tt;

a  — an extension of the isomorphism (q о p) -1 : q(r](X0)) — > X 0 onto X ;

Pi =  p о a.

Notice that p =  (p\x0) 0 7r and p i,P 2 € L (X ,Y ). Therefore we have:



P i  o q o p 2 =  p o u  o q o p o - K  =  (p| Xo ) o i r o a o q o r ) O T r

=  (p|x0) 0 (tt|x 0) o H q(n(x0))) ° (q\v(x 0)) ° ' n ° n  

=  (p|x0) o P_1 o (qUiXo) ) - 1  ° (q\r,(X0)) ° P ° 7T

=  (p\ xo) o P _1 o  id „ (x 0) °  P °  7T =  (p\X o ) O T )-1 O p  O 7T 

=  (p|x0) 0 id x 0 0 7T =  (p|X o) O 7r 

=  p .

Suppose that (p, </), ip',q') £ T [X , Y], We set:

Im(p,<?) =  (Im (p), Im (q));

Ker (p, q) =  (Ker (p), Ker (<?)); 

r(p,q) =  (r(p ),r(q ));

Im (p, ?) C Im (p',q') 4 = ^  Im (p) C Im (p') A Im (q) C Im (<?');

Ker (p, q) C Ker (p', </') Ker (p) C Ker (p') A Ker (q) C Ker (</'); 

K p >?) ^  r(p',q') 4 = ^  r(p) ^  r(p') A r(g) ^  r(g'); 

r(p,q) ^ * 7-(p',gf') 4 = ^  r(p) ^  r(g') A r(g) ^  r{p').

According to Lemma 3.4 we have the following

T heorem  3.5
Assume that (p, q), (p1, q') £ L[X ,Y]. Then:

(i) Im (p, q) C Im (p1 ,q') •<=>• 3 (p1,q 1),(p 2 ,q2) £ L[X,Y]
[(p ,q ) =  f((p ' ,q ') ,(p i,q i) ,(P 2,q2))]-,

(ii) Ker (p', q') C Ker (p, q) 4=>- 3 (pi,<?i), (p2,<?2) € L[X, Y]
[(p ,q ) =  f( (p i ,q i) ,(P 2,q2),(p',q'))];

(iii) r(p,q) ^  r(p',q') 4 = ^  3 (p;,<?;) £ L [X ,Y ] (i =  1 ,...,4 )
[(p,q) =  f ( (p i ,q i) ,  (P2,qa), (p',q'), (P3,as), (pi,qî))\;

(iv) r(p,q) ^ * r(p',q') 4==* 3 (pi,<?i), (p2,<?2) € L [X , Y]
[(p,<?) =  f((p i,q i) ,(p ' ,q ') ,(P 2,q2))]-

In view of Theorem 3.5, Proposition 2.3, and Definition 2.4 we can formu
late the following

C orollary  3.6
Assume that (p ,q), (p ',q') £ L[X ,Y ]. The following conditions are satis

fied:

(i) (p', q') e  I r (p, q) 4 = ^  Im (p',q') Ç Im (p, q);

(ii) I r (p, q) =  I r (p', q') Im (p, q) =  Im (p', q');



(iii) (p, q) R  (p q ' )  Im (p, q) =  Im (p1, q')-,

(iv) (p',q') € I t(p,q) < = ^ K er (p ,q )  C  K er(p',q');

(v) Ii (p, q) =  Ii (p1, q') Ker (p, q) =  Ker (p1 ,q');

(vi) (p , q) L  (p q ' )  Ker (p , q) =  Ker (p q ' ) ;

(vii) (p , q) H  (p q ' )  Ker (p , q) =  Ker (p q ' )  Л Im (p , q) =  Im (p q ' ) .

The following known fact concerning vector spaces will be useful in the 
proof of the next theorem.

Let X\ and X -2 be subspaces of a space X  such that X\ C I 2. Then

d im (X /X 2) <; d im (X /X i). (3.2)

T heorem  3.7
Let ip ,q),{p',q') Є L[X ,Y ], then:

(І) (p ',Q') є  I j (p ,q )  r(p',q') ^  r(p ,q);

(ii) Ij(p , q) =  Ij(p',q') r(p, q) =  r(p',q');

(iii) (p , q) J  (p q ' )  r(p, q) =  r(p', q').

Proof. First we will prove (i). Assume that (p',q') Є Ij(p ,q ). According 
to Proposition 2.3(d) we consider the following cases:

(a) If (p',q') =  (p ,q ), then r(p',q') =  r(p,q).

(b) Suppose that

(p',q') =  f( (p i ,q i) ,(P 2,q2),(p ,q))  for some (p i ,<?i ) ,(p 2,<?2) є l [x , y \.

It follows from Theorem 3.5(h) that Ker (p) C  Ker (pr) and Ker (q) C  
Ker (</'). By formula (3.2) we get

r{p') =  dim (X/K er {p')) ^  dim (X/K er (p)) =  r{p).

Similarly, r(q') ^  r(q). Hence r(p',q') ^  r(p,q).

(c) Suppose that

(p',q') =  f( (p ,q ) ,(p u q i) ,(P 2,q2)) for some (p i,q i) ,(P 2,q2) є l [x , y \. 

By Theorem 3.5(i), Im (p',q') C  Im (p, q), and therefore r(p', q') ^  r(p, q).

(d) Suppose that

(p',q') =  f((p i,q i),(P 2 ,q2 ),(p ,q ),(P 3 ,q3 ),(P i,q i))  for some
(Pi,qi) Є L[X ,Y ], і =  1, ...,4 .

By Theorem 3.5(iii), r(p',q') ^  r(p,q).



Conversely, assume that r(p',q') ^  r(p,q). In view of Theorem 3.5(iii), 
(p',q') G Ij(p ,q ).

According to (i) and Definition 2.4(d) we get (ii) and (iii).

P ropo sitio n  3.8
The relations D and J  in the ternary semigroup L[X ,Y] are identical.

Proof. It is enough to prove that J  C D . Suppose that (P ,q )J(p ',q ') for 
ip,q), ip',q') € L[X ,Y]. This means that r(p,q) =  r(p',q'). Since dim(Im (p)) 
=  dim(Im ip')), there exists an isomorphism b : Im (p) — > Im (p1 ). Put p\ =  
b o p .  Notice that Ker (p\ ) =  Ker (p) and Im (p\ ) =  Im (p1 ). Similarly one 
can construct the linear mapping qi G L(Y ,X )  such that Ker (q\ ) =  Ker (q) 
and Im (çi) =  Im (q1). Thus (p,q )L (p i,q i)  and (p i,q i) R  (p',q'), and so 
(p ,q)D (p',q').

According to Proposition 3.8 and Theorem 3.7(iii) we obtain the following 

C orollary  3.9
I f  (p,q),(p',q') e  L[X ,Y ], then (p ,q ) D (p',q') if and only if r(p,q) =  

r(p',q').

The next result is an immediate consequence of Proposition 2.3, Theorems 
3.5(iii) and 3.5(iv).

T heorem  3 .10
I f  (p,q),(p',q') e  L[X ,Y ], then ip',q') G I c(p,q) if and only if rip', q') ^  

r(p,q) or rip',q') ^ * r(p,q).

Assume that (p, q), (p',q') G L[X ,Y]. Notice that r(p,q) r(p',q') and 
r(p',q') R* r(p,q) iff r(p) =  r(q') and r(q) =  r(p'). Therefore we set

r(p,q) =  r(p',q') 4 = ^  r{p) =  r(q') A r{q) =  r{p').

L emma 3.11
If r(p,q)  ^  r(p',q') and r(p',q')  ^ * r(p,q), then r(p,q) =  r(p',q') for 

(p,q), (p',q') € L[X ,Y].

Proof. Since r(p') ^  r(q) ^  r(q') ^  r(p) and r(q') ^  rip) ^  r(p') ^  r(q), 
it follows that r(p',q') ^  r(p,q). Consequently r(p,q) =  r(p',q').

T heorem  3 .12
If ip, q), ip',q') e  L[X, Y], then I  dp, q) =  Idp', q') if and only if rip, q) =  

rip',q') or r(p,q) =  r(p/,qf).



Proof. We have I c(p,q) =  I c(p',q') iff (p,q) € I c(p',q') and (p',q') € 
I c(p,q). In view of Theorem 3.10 and Lemma 3.11, applying a straightforward 
calculation we get the desired result.

The following corollary results from Definition 2.4(c) and Theorem 3.12. 

C orollary  3.13
I f  (P,q),(p',Q') e  L[X ,Y ], then (p ,q ) C  (p',q') if and only if r(p,q) =  

r(p',q') or r(p,q) =  r(p',q').

By Proposition 2.3(e) and Theorem 3.5(iv) applying an argument similar 
to that in the proof of Theorem 3.7(i) we get the following result:

T heorem  3 .14
I f  ip ,q),ip',q') e  L[X ,Y ], then {p',q') € I(p ,q ) if and only ifr(p ',q ')  ^  

r(p,q) or r(p',q') r(p,q).

P ropo sitio n  3.15
I f  (P,Q) e  L[X ,Y ], then I(p ,q ) =  I c(p,q)■

The proof follows from Theorems 3.10 and 3.14.
By Proposition 3.15, Theorem 3.12, and Definition 2.4(e) the following 

corollaries hold.

C orollary  3.16
I f  (P,q), ip',q') e  L[X ,Y ], then

(i) I(P ,q) =  I(p',q') i f fr (p ,q )  =  r(p',q') or r(p,q) =  r(p',q'),

(ü) (P,q) T  {p',q') iff r(p, q) =  r(p',q') or r(p,q) =  r(p',q').

Corollaries 3.13 and 3.16 yield

C orollary  3 .17
The relations C and T  in the ternary semigroup L[X ,Y] are identical. 

C orollary  3.18
The relations C and D in the ternary semigroup L[X ,Y] satisfy the set- 

inclusion D C C .

This statement follows from Corollaries 3.9 and 3.13.
Let 5  be an equivalence relation. The symbol S(x) denotes the equivalence 

class of S  containing x.

T heorem  3.19
I f  (P,Q) e  L[X ,Y] and r(p) =  r(q), then C(p,q) =  D (p,q).



Proof. By Corollary 3.18, D(p, q) C C(p, q). Suppose that (p',q ') £ C(p, q). 
If r(p',q') =  r(p,q), then (p',q') £ D (p,q). If r(p',q') =  r(p,q), then r(p) =  
r(q) =  r(p') =  r(q'), and so r(p',q') =  r(p,q). This means that (p',q') £ 
D(p, q).

L emma 3 .20
Assume that (p ,q ) £ L[X ,Y] and r(p) ^  r(q). Then there exists a pair of 

linear mappings (p',q') £ L[X ,Y] such that:

(i) r(p,q) ^ r ip ' ,q ’),

(ii) r(p,q) =  rip',q').

Proof. First we will construct p' £ L (X ,Y )  such that rip') =  r(q). Con
sider Ker(</) © Y0 =  Y  and put g =  q\y0. There exists an epimorphism 
s : X  — > Im (q). Put p' =  g~x o s. Thus p' £ L(X , Y) and rip') =  riq). Si
milarly one can construct q' £ L {Y ,X )  such that riq') =  rip). Therefore the 
conditions (i) and (ii) hold.

T heorem  3.21
Assume that ip,q) £ L[X ,Y] and rip) ^  riq). Then the C-class C ip ,q) is 

the union of the two distinct D-classes D\ and D -2 defined by the formulas:

D1 =  { ip ' ,q ')£ L [X ,Y ]  : rip',q') =  r ip ,q )} , (3.3)

D2 =  { ip ' ,q ' )£ L [X ,Y } : rip',q') =  rip, q)}. (3.4)

Proof. Since rip) riq), it follows from Lemma 3.20 and C orollary 3.18 
that the C-class C ip,q) contains at least two distinct .D-classes. Suppose 
that the C-class C ip,q) contains three pairwise distinct D-classes D{p\,q\), 
DiP2,q2),D ip 3,q3). Thus r (p ,,© ) =  rip2,q2) and rip2,q2) =  rip3,q3). Con
sequently r(p i) =  riq2), r (? i)  =  r(p2), rip2) =  riq3), riq2) =  rip3), and 
so rip i) =  rip3) and riq\) =  riq3). Therefore D(p\,qf) =  D(p3,q3). This 
contradicts our assumption.

We can extend the notion of an inverse in a binary semigroup to the ter
nary semigroup L[X ,Y]. A pair ip', q') £ L[X ,Y] is called an inverse of a pair 
ip,q) £ L [X ,Y ]  if

f i ip ,q ) ,ip ' ,q ') ,ip ,q ))  =  ip,q) and fiip ',q '), ip,q), ip',q')) =  ip',q'). 

T heorem  3 .22
For every pair ip, q) £ L[X ,Y] there exists an inverse ip', q') £ L[X ,Y].

Proof. Let X 0, Y0 be such that Ker ip) CD X 0 =  X  and Ker (</) CD Y0 =  Y. 
The mappings g\ : X 0 — >■ Im ip) and g2 : Y0 — >■ Im iq) such that g\ =  p\x0 
and g2 =  q\ y0 are isomorphisms.Let Si : X  — Im (q) and s2 : Y  —  ̂Im (p)



be epimorphisms such that Si|im(9) =  idim(9) and S2|im(P) =  idim(P)- Set 
p' =  gif1 о s! and q' =  g f 1 o s2. Evidently (p',q') Є L[X ,Y]. First we 
will prove that f( (p ,q ) ,  (p',q'), (p ,q )) =  (p,q). We have f((p ,q ) ,  (p',q'), (p ,q )) 
=  (po q' op, qop' oq). Observe that (po q' op){x) =  ( p o g f1 o s2 °p)(x) =  p(x) 
for every x Є X . Similarly, (q op' o q)(y) =  q(y) for every у Є У . Next we will 
show that f((p',q'), (p ,q ), (p',q')) =  (p',q ')• We have f((p',q'), (p ,q ), (p',q')) =  
(p1 o q o p 1, q' o p o q ') .  Notice that

(p1 o q o p ')(x )  =  (p1 o q o g - 1 o Sl)(x) = p ' ( s 1(x))

=  92 і (s i (« iW ))  =  g ^ is i ix ) )
=  p'(x)

for every x Є X . Similarly, (q1 о p  o q')(y) =  q'(y) for every у Є У . Therefore 
(p',q') is an inverse of (p, q) in L[X ,Y].

From Definition 2.5 and Theorem 3.22 it follows

C orollary  3.23
The ternary semigroup L[X, Y] is regular.

P ropo sitio n  3 .24
I f  (p',q') Є L[X ,Y] is an inverse o f  (p ,q ) Є L[X ,Y ], then r(p,q) =  

r(p',q').

This fact follows immediately from Theorem 3.5(iv).
Taking into account Corollary 3.13 and Proposition 3.24 we get

C orollary  3.25
I f  (p',q') Є L[X ,Y] is an inverse o f  (p ,q ) Є L[X ,Y ], then (p ,q ) C  (p',q').

Assume that E  =  {(p ,q ) є L[X ,Y] : r{p) =  r(q)}  and E* =  L[X, Y] \ E. 
From Corollary 3.9 it follows that D (p,q) C E  for every (p,q) Є E. Therefore 
E  =  \ J { D ( p ,q ) : (p ,q )€ E } .

P ropo sitio n  3.26
For every C-class Co Q L[X ,Y] precisely one o f the following two condi

tions holds:

(i) Co C E ,

(ii) C o C E * .

Proof. Suppose that there exists a C-class Co Q L[X, Y] such that (p\ ,q\ ), 
(P2,<?2) Є C0, (p i,q i)  Є E , and (p2,<?2) Є E*  for some (pi,<?i), (Р2,<й) Є 
L[X, У]. From the foregoing and Theorem 3.19 it follows that Co =  C(p\ ,q\ ) =  
D (p i,q i)  C E. We have obtained a contradiction.

Summarizing we get the following theorem.



T heorem  3.27
Given the ternary semigroup L[X ,Y].

(A) Assume that a C-class Co C E . Then every inverse (p',q') o f (p,q) £ Co 
is an element of the C-class Co (Co a D-class).

(B) Assume that a C-class Cq C E * .  Then Co =  Di U D2, where the D- 
classes D\ and D2 are defined by the formulas (3.3) and (3.f). Every 
inverse (p',q') o f  (p ,q ) £ D\ is an element o f D2. Every inverse (p',q') 
o f (p, q) £ D i is an element of D\.

Proof. The condition (A) is an immediate consequence of Corollary 3.25. 
To prove (B), assume that Co =  C(po,qo). Therefore

Di =  { (p ,q ) € L[X ,Y] : r(p,q) =  r(p0,q0)}
and

D2 =  { (P ,q ) G L[X ,Y] : r(p,q) =  r(p0,q0)}.
Suppose that (p,q) £ D\ and (p',q') is an inverse of (p, q). In view of Propo
sition 3.24 we get r(p,q) =  r(p',q'), and so r(po,qo) =  r(p', q'). Consequently 
(p1, q') £ Di- Suppose that (p, q) £ D2 and (p',q') is an inverse of (p, q). By 
Proposition 3.24, r(p,q) =  r(p',q'), and so r(po,qo) =  r(p',q'). Consequently
(p',q') GDi .

4. A ternary semigroup of matrices

Let K  be a field. Let M  (m, n) denote the set of all m x n matrices 
over K .  Put M[m,n] =  M (m ,n) x M (n,m ). Define the ternary operation 
/  : M [m ,n ]3 — > M [m ,n] by the formula:

/ ( (A 1, B 1) , (A2, B 2) , (A3,B 3)) =  (A1B 2A3, B ^ B s )

for all (A i,B i) £ M [m,n], where i =  1,2,3.
The algebraic structure (M [m,n], f )  is a ternary semigroup.

D efin ition  4.1
The ternary semigroup (M [m,n], f )  is called the ternary semigroup of 

m  x n matrices over a field K .

Assume that A £ M (m ,n). Let 1(A) denote the subspace of the vector 
space K m spanned by all the columns of the matrix A. Consider the homogen
eous system of linear equations

A X  =  0. (4.5)

Let K (A ) denote the subspace of the vector space K n of all the solutions of 
the system (4.5). Consider the linear mapping pa G L (K n, K m) determined 
by the matrix A with respect to the canonical bases ( e i , ..., e„) and (ei, ...,e m)



in the vector spaces K n and K m, respectively. It is easy to notice that 
K (A ) =  Ker (p a ) and 1(A) =  Im (p a )- The rank r(A) of the m atrix A is 
identical with the rank of the linear mapping p a , i.e. r(A) =  r(pA)- As
sume that (A ,B )  € M [m ,n\. We set K (A ,B ) =  (K (A ) ,K (B )), I(A ,B ) =  
(1(A), 1(B)), r(A ,B ) =  (r(A ),r(B )). The pair of matrices (A ,B ) €  M [m,n\  
represents the pair of linear mappings (p a ,Qb ) €  L [K n, K m]. Consider the 
pairs of matrices (A i,B{) €  M [m ,n ], where i =  1 ,2 ,3 . Then the pair of 
matrices (A ,B )  =  f((A\,B\), (A2,-B2), (A3, B 3)) represents the pair of linear 
mappings (p a ,P b ) =  f  ((PAi, ) ,  (PA2,qB2), (pA3,qB3))-

Taking into account the foregoing considerations we can formulate all the 
results obtained for the ternary semigroup of linear mappings to get the similar 
results for the ternary semigroup of matrices.
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General continuous solution of a  nonlinear 
functional inequality

Dedicated to Professor Zenon Moszner 
on the occasion of his 70th birthday

Abstract. In this paper we present theorems on the existence of continuous 
solutions of the functional inequality (1) in the case where the continuous 
solution of the corresponding functional equation (2) is not unique.

In the present paper we shall deal with the problem of existence of con
tinuous solutions ip of the functional inequality

i>[f{x)] <  G(x,ip(x)), (1)

in the case where the continuous solution of the corresponding functional 
equation

<p[f(x)]=G (x,<p(x)) (2)

depends on an arbitrary function.
Some problems connected with continuous solutions of nonlinear functional 

inequalities have been investigated by D. Brydak in [3], [4], [5] and also by 
K. Baron in [2]. But these results concerned the case of uniqueness of continu
ous solutions of (2).

1. Let I  =  (£, a), where £ <  a  ^  oo. We assume that

(i) The function /  : I  — > R is continuous and strictly increasing in I .  More
over

£ <  f(x )  <  x, x € I.

R e m a r k  1
Hypothesis (i) implies that linijj^oo f n(x) =  £ for every x G I  (cf. [6], 

p. 21). Here / "  denotes the n-th iterate of the function / .

As to the function G we assume
AMS (2000) Subject Classification: 39B62.



(ii) G : Cl — > R is continuous, where Cl c  I  x R is an open set.

(iii) For every x £ I  the set

Clx :=  {y : (x,y) € Cl} (3)

is a nonempty open interval and

G{x,Clx) c  Clf{x). (4)

Let J  C I  be an interval such that £ € cl J .  We shall consider the solutions ip 
of inequality (1) and those ip of equation (2) such that their graphs lie in Cl,

tp(x),<p(x) £ Clx for x € J  C I.
The class of this solutions we shall denote by T '( J )  and <!>(./) respectively. 
Moreover

h  :=  [ fk+1(x0) , f k (x0)} for x0 € I ,  k £ NU { 0}.

At first we shall prove an important property of the set Cl which is implied by 
the above condition.

L emma 1
Let us assume that the open set Cl c  I  x №. is such that (iii) holds. Then 

for  two arbitrary points {xi,yf) £ Cl, i =  1 ,2  such that xi <  x-i there exists a 
continuous function <p defined in [x\,X2\ such that <p(x) £ Clx for  x £ [x\,X2\ 
and <p{xi) =  yi for  i =  1, 2 .

Proof. The lemma results from known facts from the theory of multivalued 
functions, cf. Propositions 3 and 2 on p. 81 of [1]:

The multifunction F  : I  — > n(№) (the family of all nonempty subsets of M) 
which has the open graph admits a local selection, whence so does the function 
$  : [x\,Xï ] — > n(№) defined by

' F (x ), x £ ( x1, x2),
$ (x ) =  < {V ih

. { 2/2},

X =  Xi,
X  =  x 2 .

Thus there exists a continuous selection ip : [x\,x2] — >■ M, having the properties 
stated in the lemma.

It is known (see [6], p. 68) that if the given functions /  and G fulfil hy
potheses (i)-(iii), then the continuous solution of equation (2) depends on an 
arbitrary function. It means that for an arbitrary xq £ I  and an arbitrary 
continuous function ip0 : I q — >■ M fulfilling the conditions:

ip0(x) €  Ox ,

To[f(x0)] =  G(x0,<po(x0))

(5)

(6)



there exists exactly one continuous solution ip € <!>((£, £o]) of equation (2) 
such that

<p(x) =  ipo(x) for x € I 0■ (7)
If we assume additionally that

(iv) For every x £ I  the function G is invertible with respect to the second 
variable,

(v) The function /  fulfils condition / ( / )  =  7,

(vi) For every x £ I  the following condition is fulfilled

G(x,Clx) =  Clf{x), (8)

where Clx is defined by (3),

then for an arbitrary Xq € I  every continuous function ip0 : I q — > M fulfilling 
(5) and (6) may be extended to a continuous solution <p € d>(/) of (2) (see 
Theorem 3.1 of [6]).

We are going to present corresponding results for inequality (1).

2. Let us assume (i)-(iv). Hypothesis (iv) guarantees the existence of the 
function G ~x(x, •) inverse to the function G with respect to the second variable. 

We introduce the sequence {gk}  defined on Cl by the formula

f 9o{x,y) =  y,
{ 9k+i (x, y) =  G ( fk (x),gk (x,y)), fee NU {0 }.

If we assume (v) and (vi) additionally, then we may put

9 - k - i {x ,y )  =  G ~1{ f ~ k~ 1{x ) ,g -k{x,y)), fee NU {0 }.

It is obvious (by virtue of (4) and (8)) that the above sequences are well defined. 
By induction we see that

gk(x,y) eC lfk (x), k e Z .

Moreover, if ip is a solution of equation (2) then

¥ [ f k (x)\ =  9k{x,<p(x)), fc € N U {0 } . (10)

We omit elementary proofs of the above properties.
Now, we shall prove the following:

T heorem  1
Let hypotheses (i) - (iii) be fulfilled. Then fo r  any xq € I  and for  an arbitrary 

continuous function tpo '■ I q — > R fulfilling the conditions

iM /fao)] <  G(xo,i/)o(xo)), (11)



i>o(x) £ f l x, X £ I0 (12)

there exists a continuous solution ip £ ^ ( (^ , xo]) o f inequality (1) such that

ip{x) =  ipo{x), x £ I0, (13)

This solution is given by the formula

ip[fk (x)\ =  >^k[fk (x)] +  gk (x,ip0(x)) fo r  x £ I 0, k £ NU {0 }  (14)

where Xk ■ Ik — > K are arbitrary continuous functions fulfilling the following 
conditions

Ao( a ; ) = 0 ,  x £ I0,

Xk[ f k{x)] +  gk {x,ip0{x)) £ x £ I0, k £ N U  {0 } ,

Xk [ fk (x)] +  gk(x,ip 0(x)) ^  G ( / fe_1 (x), Xk-i [ / fe_1 (»)]
+  gk- i(x ,ip 0(x))), x £ I 0, k £ N,

Afe[/fe(a;o)] + g k{x o,ipo(x0)) =  Xk- i [ f k (x0)]
+  9k - i ( f ( x 0),ip0[f(x 0)]), k £ N.

Moreover, all continuous solutions ip £ >&((£, »o]) of inequality (1) 
obtained in this manner.

Proof. Let us fix xo £ I  and an arbitrary continuous function ip0 : 10 — > R 
fulfilling the conditions (11) and (12). Moreover let us fix an arbitrarily chosen 
sequence of continuous functions \k : h  — > R fulfilling conditions (15) - (18)1. 
If we define the function ip by formula (14), then we have (13) from (15) and 
ip(x) £ Slx, for x £ (£, »o] by virtue of (16).

Now, let x £ (£, f ( x o)). If k £ N and t £ I q are such that x =  f k (t), then 
(17) implies

(15)

(16)

(17)

(18) 

may be

i>[j{x)] =  ip[fk+1(t)\ =  Xk+ i [ f k+1 (t)\ +  gk+i(t,ipo(t))
<  G ( fk(t),Xk[ f k (t)] +  gk(t,ipo(t)))
=  G(x,ip(x)).

Consequently formula (14) defines a solution of (1) in (£, »o]. Now, we shall 
prove that ip is continuous in (£,a;o].

The function ip is continuous in every interval (/*+ 1(a;o), f l (xo)), i 6  N. By 
(13), (14), (18) and the continuity of the functions / ,  G, Xk it follows that

lim ip(x) =  ip [ f(x  0)], * € N. (19)
£->■ /'(x0)

Indeed, we have

xAs to the construction of {Xk} ,  cf. the Remark 2



lim ip(x)
n f + 1 ( i o ) +

lim iP[fk (x)}
o) +

Afe[/fe+1(æo)] +  9k(f(xo),ipo[f(xo)])
Afe+i [ / fe+1 (x0)] +  gk+1(x0,ip0(x0))

<P[fk+1M ] ,

.lim , ip {x )=  lim ip[fk (x)\
x ^ fk+1(x o)- x -̂Xq

=  Afe+1 [ / fe+1 (x0)] +  gk+1(x0,ip0(x0)) 
=  <p[fk+1(x0)}.

This completes the proof of (19).
Let us now assume that ip £ >&((£, ®o]) fulfils (1). It is sufficient to put

ipo(x) :=  ip(x) for x £ I0, (20)

Ak [ fk (x ) ] := ip [ fk ( x ) ] - g k (x,ip(x)) for x £ I0, k £ N U {0 } , (21)

to see that conditions (11), (12), (15)-(18) hold and that the solution ip is 
represented by formula (14). This ends the proof of the theorem.

If we assume (iv) - (vi) additionally, then we may prove the following:

T heorem  2
Let hypotheses (i) - (vi) be fulfilled. Then for  any xq £ I  and for  an arbit

rary continuous function ipo : Jo — ► R fulfilling (11) and (12), there exists a 
continuous solution ip £ 'J ' ( J )  o f inequality (1) such that (13) holds.

This solution is given by formulas (14) and

'tP [f~k(x )\ = lk [ f~ k(x )\ + g -k(x,ip0(x)) for  x £ I0, fc € N (22)

where Xk : I k — > R , lk : I - k — > R  are arbitrarily chosen continuous functions 
fulfilling conditions (15)-(18) and moreover the conditions

lo(x) =  0 for  x £ J 0,

h [ f ~ k (x)] +  g - k(x,ip0(x)) £ Slf-h(x), x £ J 0, k £ N,

^ + i [ / _fe_1(a;)] +  9 -k - i(x ,ip 0(x))
^ G ( f ~ k(x ),lk [ f~ k ( x ) ] + g - k(x,ip0(x))), x £ J 0, k £ N,

lk+i [ / _fe_1 (®o)] +  9 - k - i  (x0, ipo(x0))
=  h if-b -H x o )]  +  g -k ( f ( x 0),ip0[f(x 0)]), k £ N.

Moreover, all continuous solutions ip £*& (I) o f inequality (1) may be obtained 
in this way.

(23)

(24)

(25)

(26)



The proof of the above theorem runs analogously to that of Theorem 1 and 
will be omitted here.

R em ark  2
Contrary to the situation with continuous solutions of equation (2) in I ,  a 

continuous function tpo fulfilling (11), (12) cannot be extended uniquely to a 
continuous solution of inequality (1) in I .  This follows from the fact that the 
sequences of continuous functions {A*,}, {Ik}  fulfilling (15)-(18) and (23)-(26) 
may be chosen in various ways.

We show a construction of a sequence of continuous functions A& : Ik — > M 
such that conditions (15)-(18) hold.

Let us take a continuous function tp0 : 10 — > R fulfilling (11) and (12). We 
put

2/i,o :=  ipo[f(xo)] ~  G(x0, tp0{x0)).
Let us fix a i/i,! ^  0 fulfilling additionally the condition

2/i,i +  G {f{xo),tjjo[f{xo)]) € f i /2(Xo).

It is possible since is a nonempty open interval and

G (f(xo),tpo[f (^o)]) G ftp(xo)-

Thus we may take (by virtue of Lemma 1) a continuous function //i : 7i —► R 
such that the conditions

A*i [ / (*o)] =  ipo[f(x0)], /ii [ f2 (®o)] =  2/1,1 +  G (f(xo),ipo [f(x0)]),

in[f(x)\ € x e l o
hold. For the function

A[/(a;)] :=  Hi[f(x)] -  G{x,i/i0(x)), x € I 0

we now put

M (x) :=  ^ (A(x) -  |A(m)|), x € h  .

It is obvious that Ai : I\ — > R is a continuous function such that the conditions

Ai[/(®o)] =  2/i,o, A i[/2(a;0)] =  2/1,1, A i ( a ; ) < 0 , x € h ,

^ i[ f{x ) ]+ G {x ,ip 0{x)) x e l 0

hold. If we assume that we have continuous functions Ao,. . . ,  \k-\ defined on 
I j ,  j  =  0 , . . . ,  k — 1, respectively, and fulfilling

Ai[/^a;)] +  gi(x,i/}0(x)) ^  G ( / i_1 (x), A i-i [ / i_1 (»)] +  g i-i(x ,ip 0(x))),
x G I0,i  =  1, . . . ,  k — 1

H f ( x)] +  gi(x,ip0(x)) G R / q x), x G I 0 , i =  1 , . . . ,  k -  1



A* [/* (x0)] + g i(x  0, tp o M ) =  A j- if / ’ fao)] +  gi- i ( f ( x 0),'ip0[f(x 0)]),
i =  1, . . . ,  k — 1

then it is sufficient to put

Vk,o ■ = Afe_ i [ / fe(a;o)] +  g k - i ( f ( x 0),tpo[f(x0)]) ~  gk(x0,tpo(x0)) 

and fix a yk> i ,

Vk,i ^  G { fk {x0) ,X k - i[ fk {x0)] +  gk- i { f { x 0),'ipo[f{x0)])) -  g k { f{x 0),'ipo[f{x0)])

fulfilling the condition

Vk,i +  g k ( f(x 0),tpo[f(xo)]) e  0 /fc+i (xo).

It is possible because of the relations

G { fk {x0) ,X k - i[ fk {x0)] +  gk- i { f { x 0),'ipo[f{x0)])) € Clf k+i{xo), 

gk( f (x0),ipo[f(xo)]) e  flf k+i(xo).

Thus we may take, again by Lemma 1, a continuous function nk : I k — >■ M 
such that the condition

l ik [ fk (x o)] =  Vk,o+gk(xo,ipo(x0)), g k[ f k+1(x 0)] =  yk, i+ g k( f(x 0),tpo[f(x0)]),

g k [ fk {x)\ € x G l 0

Now, for the functions 7 , H  defined by formulas:

7 [ fk (a;)] :=  g-k[fk(*)] -  gk(x, ipoix)), X € I 0,

H [fk(x)] :=  G ( fk~ 1(x),Xk- 1[ f k~ 1(x)]+gk- 1(x,'tpo(x)))-gk (x,'tpo(x)), x € I0, 

we put

A*,(a;) :=  -  (7 (2;) +  H (x) -  |7 (m) - H ( x )\), x € I k.

It is easy to notice that Xk : I k — > R  is a continuous function such that the 
conditions

Xk[fk (x0)] =  yk, 0, Xk [ fk+1(x0)] =  yk> 1,

Ak [ fk (x)] ^  G ( fk~ 1(x),Xk- 1[ fk~ 1(x)]+gk- 1(x,'tp0(x ) ) ) -g k (x,'tpo(x)), x € I0, 

Xk[fk (x)] +  gk(x,tp0(x)) e  x € I 0.

hold. This ends the inductive construction of the sequence {A*,}. In a similar 
way we may construct a sequence { lk}  fulfilling (23)-(26).

3. Let us assume (i) - (iii) again. We will consider the following assumption 
stronger than (iv):



(vii) For every x £ I  the function G is strictly increasing with respect to the 
second variable.

In this section we shall characterize continuous solutions ip of inequality (1) 
which fulfil additionaly the following condition

L t [ f ( x )\ e  G(x, Ctx), x £ I , k £ N.

where the sequence { L f }  is defined by the reccurence formula

L q(x) =  tp(x),

L i+ 1( x ) = G - ' ( x ,L i [ f ( x ) } ) ,  k £  N.

It is easy to notice that (cf. (vii)) the sequence { L f }  is decreasing and if p  
is a solution of (2), then L%(x) =  <p(x), k £ N.

Moreover if ip is a solution of inequality (1) then we obtain by induction 
that

ip[fk (x)\ <  9k(x, ip(x)), k £ N. (29)

and that the function gk(x, •) is also strictly increasing.
Now, we may formulate the following

T heorem  3
Let hypotheses (i) - (iii), (vii) be fulfilled. Then for  any xq £ I  and for  an 

arbitrary continuous function tpo ■ Io — > R fulfilling (11), (12) and, moreover,
the condition

ip0[f(x 0)] £ G(x0,n xo) (30)

there exists a continuous solution ip £ >&((£, ®o]) of inequality (1) fulfilling (13) 
and such that

L i [ f ( x )] e  G(x,Clx), I E ( ( , 4  f e N U { 0 } .  (31)

This solution is given by the formula

i/>[fk (x)] =  gk(x ,7 k(x) +ipo(x)) for  x £ I0, k £ N U {0 } , (32)

where 7k are arbitrary continuous functions defined in I q and fulfilling the con
ditions:

7o(x) = 0  for  x £ I 0, (33)

the sequence { j k }  is decreasing in I q, (34)

7h{x) +  ip0{x) £ ü x for  x £ ( f (x 0) ,x 0\, k £ NU {0 } , (35)

Tk[f(x0)] + ip 0[ f(x 0)] £ G{xO, 0 xo), k £ N, (36)

9k{xo,Tk{xo) +  ipo(xo)) =  f fk - i( f (x o ) ,7 k - i [ f ( x 0)]+tpo[f(xo)]), k £ N. (37)

Moreover, all continuous solutions ip £ >&((£,®o]) o f inequality (1), fulfilling 
(31) may be obtained in this manner.

(27)

(28)



Proof. Let us fix xq € I  and an arbitrary continuous function ip0 : 10 — > R 
fulfilling (11), (12) and (30). Moreover let us fix an arbitrarily chosen sequence 
of continuous functions { 7 fc} defined in I 0 and fulfilling conditions (33)-(37) 2 

If we define the function ip by formula (32) then we have (13) from (33) and 
we obtain (31) from (30), (32), (35), (36). Indeed, let x £ (£,a;o]. If k £ NU{ 0}  
and t £ I q are such that x =  f k (t), then formulas (28), (32) imply

L t i f ( x)\ =i>[f{x)\ = i p [ f k+1(t)\ =gk+ i(t,'Y k+ i(t)+ ipo(t)) £ g k+i ( t , f l t)
=  G ( fk (t),gk (t,Slt))
c G ( f k (t ) ,n fHt))
-- G (x, Ha; ) .

Thus (31) holds for k =  0. Now, we introduce the sequence {h k}  defined by 
the formula

h0(x,y) =  y,
hk+ i{x ,y ) = G ~ 1{ f {x ) ,h k {f{x ) ,y )) , k £ N.

(38)

It is easy to prove (by induction) that

L t [ f ( x)\ =  hk (x ,tp[fk+1(x)]), x £ (£,xo], k £ NU {0 }  (39)

and (9) with (38) imply

hk(x ,gk+1(x,Q,x)) =  G (x ,(lx), x £ (£,a;0], k £ NU {0 } . (40)

Let us fix a k £ N. From (39) and (40) we have 

L f[ f(x )]  =  hk{x ,ip [fk+1{x)]) £ hk {x ,gk+1{x ,ttx)) =  G {x ,ttx), x £ (£,a;0]. 

Consequently condition (31) holds.
Now, let x £ (£ ,f (x o)). If k £ N and t £ I q are such that x =  f k (t) then 

the monotonicity of gk (x, ■ ) and (34) imply

i>[f{x)] =  ip[fk+1(t)\ = g k+i(t,'yk+ i(t)+ ip o (t))
<  g k + i{ t ,ik {t) +  ipo(t))
=  G ( fk(t),gk ( t , j k (t) + ip 0(t)))
=  G(x, tp(x)).

Consequently, formula (32) defines the solution of (1) in (£,a;o]. The function 
ip is continuous in every interval (/*+ 1(a;o), f l (xo)), i £ N, and it is sufficient to 
show that (19) holds. The proof of (19) runs analogously as that in the proof 
of Theorem 1 and it will be omitted here.

Now, let us assume that ip £ lP((£, ®o]) is a continuous solution of (1) 
fulfilling (31). It is sufficient to define ipo by (20) and to put

2 see Remark 3



1k{x) ■ ■ = L f(x )  -  ip0(x) for X £ I0, k £ N U {0 }. (41)

Let us notice that (33), (35)-(37) hold. Inequality (1) implies also condition 
(34). We may prove by induction on p  that:

Lt-p[fP(x)] =  9P(x, L f  (x)), f o r  x £ I0, p =  0 , 1 , . . . ,  k, k £ N.

This implies that ip may be represented by formula (32) and ends the proof of 
the theorem.

We have also the following theorem corresponding to Theorem 2. Its simple 
proof is omitted.

T heorem  4
Let hypotheses (i)-(iii), (v)-(vii) be fulfilled. Then for  any xq € I  and for  

an arbitrary continuous function ipo ■ I  a — > K. fulfilling (11) and (12), there 
exists a continuous solution ip £ 'f'(I) o f inequality (1) such that (13) and (27) 
holds. This solution is given by formula (32) and

'>l1[ f ~ k ( x ) ] =  g -k(x ,r]k(x )+ ipo(x)), x £ l 0, k £  N

where 7k , rik are arbitrary chosen sequences o f continuous functions defined in 
fi) such that (33)-(37) and, moreover, the conditions

T]O(x) = 0  for  x € I 0, 

the sequence {rjk} is decreasing in I q,

T]k(x) +  ipo(x) € for  x € I0, k € N, 

g - k ( f ( x 0) ,Vk[f (x0)] + ip o [f(x 0)]) =  g -k + i(x 0,Vk(x0) +tpo(x0)), k £ N,

are satisfied. Moreover, all continuous solutions ip £ 'ft(I) o f inequality (1) 
fulfilling (27) may be obtained in this manner.

R em ark  3
We may construct a sequence { 7 *,} fulfilling conditions (33)-(37) in a simi

lar way as in Remark 2. However, having taken a solution ip £ ^ ( (^ ,  xo]) of
(1) defined by formula (14) and fulfilling (31) we may also define a sequence 
{7fc} by (41), cf. (28).
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D'Alembert's functional equation 
and Chebyshev polynomials

Abstract. We consider D’Alembert’s functional equation (1) where the 
domain of the function /  is the additive group of the integers and the 
codomain is an arbitrary commutative ring with identity. We show that 
if /(0 )  =  1 then f(n )  is the value of the Chebyshev polynomial Tjrt 
evaluated at /(1 ).

1. Introduction

In 1750 d’Alembert introduced the functional equation

f ( x  +  y) +  f ( x - y ) = 2 f ( x ) f ( y ) .  (1)

This arose in modelling the motion of a stretched string and in the foundations 
of mechanics. See Aczel & Dhombres [1; Chs. 1 & 8] for more details. This 
equation is also called the cosine equation since the cosine certainly satisfies it.

To see how one can “find” the cosine in (1) assume that the not identically 
zero solution /  is twice continuously differentiable. Then from

f ( x  +  V) +  f ( x  ~ y ) ~  2 f(x )  =  . . .  f ( y ) +  f ( - y )  -  2/ ( 0)
y l  y l

using / ( —y) =  f(y )  and / ( 0) =  1 which follow from (1), and taking the limit 
as y tends to 0 , one obtains

/ " ( * ) = / ( * ) / " (  0). (3)

Hence
f(  \ -  f  c o s (c x ) i f  f" ( ° )  <  0

Icosh  (car) i f / " ( 0 ) > 0 (4)

where c :=  y j| / " ( 0) |.
It is worth remarking that d’Alembert was among those calling for a theory 

of limits that would justify the argument just given. It is also worth remarking 
that the technique of reducing a functional equation (such as (l))to  a differential

AMS (2000) Subject Classification: 39B52, 13A99.



equation (such as (3)) has been a mainstay for the past 250 years. Indeed 
Hilbert [1; p. 375], in proposing his fifth problem at the beginning of the 20th 
century, said

Specifically, we come to the broad and not uninteresting field of functional 
equations, hitherto largely investigated by assuming differentiability of 
the occurring functions. Equations treated in the literature, particularly 
the functional equations treated by Abel with such incisiveness, show no 
intrinsic characteristics that require the assumption of differentiability of 
the occurring functions...

Indeed Kannappan [3] solved (1) in great generality, in particular where 
x, y are elements of an additive abelian group and f(x )  is a complex number, 
without assuming any regularity (e.g. continuity) in the function. Kannappan 
proved that given a solution of d’Alembert’s functional equation with /(0 )  =  1 
there is a function e : dom ( / )  —> C such that e(0) =  1 and e(x +  y) =  e(x)e(y) 
and 2f(x )  =  e(x) +  e (—x) for all x £ dom ( / ) .  In the classical cases e(x) =  elcx 
for cos(ca;) and e(x) =  e cx for cosh(ca;).

In this paper equation (1) (d’Alembert’s equation) is solved when the do
main of /  is the additive group of the integers and the codomain of /  is a 
commutative ring R. It is here that, perhaps surprisingly, the Chebyshev poly
nomials show up.

T heorem

Let f  :Z  —)■ R with / (0 )  =  1. Then

f(m  +  n) +  f (m  — n) =  2 /(m )/(n ) ; ( m , n ) e Z 2, (5)

if, and only if
/ (n )  =  T|„| ( / ( ! ) ) ;  n £ Z .  (6)

D efinition  1
Tm £ Z[X\ is given by, for m Є N0,

Tm(X) =  £  (™k) x m ~2k {X 2 ~  1)" , (7)
k=o ^ 7

where q is the largest integer with 2q ^  m. For equation (7) see Temme [4] eq. 
(6.39).

If p  Є Z[X\, say

p ( X ) = p 0 + PlX  +  - - - + p dX d 

and if r £ R  then, as usual,

p(r) := p o + p !r -\ ------- VPd,rd-

The general reference for Chebyshev polynomials (Tchebycheff — hence T) is



Rivlin [3]. The occurrence of Tn here is really as a polynomial not a polynomial 
function as in Rivlin generally.

The necessity ((5) implies (6)) is proved in Proposition 2. The sufficiency 
is proved in Proposition 3. Both use Proposition 1 that reduces the d’Alembert 
equation to a second order linear difference equation.

The identically zero function satisfies (5) but is not of the form T („ )(/( l))  : 
this is why / ( 0) =  1 is a constant assumption.

It is important to note that the domain of an equation must always be 
made clear: the equations

f ( x  +  y) +  f ( x  - y )  =  2f (x ) f(y )  (x, y) € M2

and

f { x  +  y) +  f ( x  - y ) =  2 f (x ) f (y )  (x, y) € M + ( l +  =  { i e l : i )  0 } )  

are different even though for both of them dom ( / )  =  M.

2. Reduction to a difference equation

The result below shows that the two variables m, n in (5) can, over Z, be 
replaced by a single variable equation.

P ropo sitio n  1
Let f  : Z —> R with / (0 )  =  1. Then f  satisfies equation (5) if, and only if, 

f (n  +  2) +  f(n )  =  2 / ( l ) / ( n  +  1) n € Z. (8)

Proof. Assume /  satisfies equation (5). Then

f (n  +  1 +  1) +  f (n  +  1 — 1) =  2/ (n  +  1) / ( 1); 

this is equation (8).
Assume conversely that /  satisfies equation (8). Then /  is even — that is

f ( ~ n )  =  f(n )  n € Z. (9)

It clearly suffices to prove (9) for all n £ No- This is proved by induction on 
n e  No- It is trivially true for n =  0. Also / ( —1) =  / (1 )  since /(0 )  =  1. 
Assume it is true for all n £ No with 0 ^  n ^  N, where N  ^  1. Then it is true 
for n =  N  +  1: using (8)

f (N  +  l)  +  f ( N - l ) = 2 f ( l ) f ( N ) .

Since f {N  — 1) =  — 1)) and f(N )  =  f ( —N) by the induction hypothesis

f (N  +  1) +  f ( l  — N) =  2 f ( l ) f ( —N). (10)

But again using equation (8) with n =  —N  — 1



f ( —N  +  1) +  f ( —N  — 1) =  2 f ( l ) f ( —N). (11)

Comparing (10) and (11) yields f ( —N  — 1) =  f (N  +  1). Thus (9) is true for 
all n G No by induction.

To show that /  satisfies equation (5) the function F  : Z2 —> R  defined next 
must be identically zero:

F ( k , £ ) : = f ( k  +  £) +  f ( k - £ ) - 2 f ( k ) f ( £ )  ( M ) e Z 2. (12)

Now since / ,  assumed to satisfy equation (8), has been shown to be even

F {k ,£ ) =  F {£ ,k ) =  F { - k ,£ )  {k ,£ )G l? .  (13)

So iterating the involutions (k ,£ ) —> (£,k) and (k, £) —> (—k,£) it follows that 
F  is identically zero on Z2 if, and only if, F  is zero on

X  :=  {(k ,£ ) G Z2 : 0 sC £ sC k }  . (14)

Using equation (8) to express f ( k  +  £) in terms of f ( k  +  £ — 1) and f ( k  +  £ — 2) 
and similarly f ( k  — £) in terms of f ( k  — £ — 1) and f ( k  — £ — 2) it follows that

F (k ,£ ) =  2 f ( l ) F ( k - l , £ ) - F ( k - 2 , £ ) -  ( M )  € Z2. (15)

The ‘size’ of (k, £) G X  is k +  £ — the taxicab distance from (0,0) to (k ,£ ) in 
X . By induction on the ‘size’ of (k ,£ ) G X  it is easy to show, using equation
(15) that F  is zero on X . [F (0 ,0 ) =  0 is true since / (0 )  =  1, as is F (1 ,0 )  =  0. 
F ( l ,  1) =  / ( 2) +  / ( 0) -  2/ ( l ) / ( l )  =  0 , since /  satisfies (8)].

This completes the proof that (8) implies (5).

C orollary  1
Let f  : Z R with / (0 )  =  1. Then f  satisfies equation (8) if, and only if, 

it is even (equation (9)) and

f(n  +  2) +  f(n )  =  2 / ( l ) / ( n  +  1); n € N0. (16)

Proof. Assume /  satisfies (8). Then as above /  must be even. Clearly /  
satisfies (16) as the domain of equation (8) includes the domain of equation
(16) . So this direction is proved.

Assume, conversely, that /  satisfies (16) and is even. Then

/ ( - 1) +  / ( 1) =  / ( 1) +  / ( 1) ( / ( - 1) =  / ( 1))

=  2 / ( l ) / ( 0 )  (/(0 ) =  1).

So /  satisfies equation (8) for n =  —1. Now let n G Z with n ^  —2. Then

f (n  +  2) +  /(n )  =  /(n )  +  f (n  +  2)

=  f { ~ n )  +  f  ( n -  2) ( n -  2, - n  G N0)
=  2 / ( l ) / ( —n -  1) ( n -  1 G N0)
=  2 / ( l ) / ( n + l ) .



So /  satisfies equation (8) for all integers n ^  — 1. Thus

f (n  +  2) +  f(n )  =  2 / ( l ) / ( n +  1); n € Z

as claimed.

Equation (16) is a linear difference equation of the second order: since 
/ (0 )  =  1 if / (1 )  is given then / (2 ) , and recursively / (3 ) , / ( 4 ) . . .  are determined.

3. The universal solution
D efin ition  2

T : Z —7 Z[X\ is given by T(0) =  1, T ( l )  =  X , T (—n) =  T (n ); n € No and

T(ji +  2) +  T (ti) =  2XT(n  1)5 n £ No* (IT)

It is customary to write T(n) as T„(X). Thus T2(X) =  2X 2 — 1, T3(X) =  
4X 3 — 3X, T4(X) =  8X a — 8X 2 + 1  follow immediately from equation (17). By 
Proposition 1 T : Z —> Z(X) is a solution of d’Alembert’s functional equation 
(5). Indeed more is true!

P ropo sitio n  2
Let f  : Z —7 R  with / (0 )  =  1. I f  f  satisfies equation (5) then

/ ( n ) = T „ ( / (  1)); n e  Z. (18)

where n 1— > Tn(X) is the family o f polynomials from Definition 2 above.

Proof. Since both /  and T  are even (one by virtue of satisfying equation 
(5), the other by definition), it suffices to prove (18) for all n € No- Now 
/(0 )  =  1 =  T o (/(l)) , and /(1 )  =  T i ( / ( 1)). So assume it has been shown that 
f  (n) =  T „ (/(  1)) for all n € No with n ^  N  where N  € No and N  ^  1. Then

f (N  +  1) =  2 / ( l ) / (A 0  -  f (N  -  1) ( /  satisfies (5))
=  2Ti (/(1 ))T jv(/(1 ))  -  Tjv_ i ( / ( 1)) (induction hypothesis)

=  T W + i(/(l)) (T  satisfies (17)).

Thus the result is true for n ^  N  +  1. So the result follows for all n € No-

Note that what makes the preceding proof work is that for each r € R  the 
evaluation evr of p £ Z(X) at r is a homomorphism from Z(X) to R:

evr (p +  q) =  evr (p) +  evr (q) [(p +  q)(r) =  p(r) +  q(r)]

evr (p • q) =  evr (p) +  evr (q) [(pq)(r) =  p(r)q(r)\ .
Given /  satisfying equation (5) there is a unique homomorphism (of com

mutative rings) evf(i) such that /  =  e v f ^  o T. Also e v f ^  is completely spe
cified by



ew/( i) (1) =  1 ^  evf(i)(x ) =  / ( 1) :
there is one, and only one, ring homomorphism that sends 1 (of Z) to 1 (of R), 
and X  of Z[X] to r £ R.

4. Identification of fhe universal solution

The difference equation for T  is

T(ji +  2) — 2XT(n  +  1) +  T{n) =  0; n £ No* 

The (quadratic) indicial equation for this is

A2 -  2XA + 1  =  0.

This has roots

Ai =  X  +  V x 2 -  1, A2 =  X  -  V x 2 -  1. 

These roots lie in the quadratic extension A of Z[X] where

A = P q
( X 2 -  1) q p : p ,q €  Z[X]

so that, since 0 1 '
2 X 2 - l  0

( X 2 - ! )  0 0 X 2 - 1

A i —
X  1 

X 2 -  1 X A2 —
X  - 1  

1 - X 2 X

[Note that the characteristic polynomial of Ai is t2 — 2X t +  1.] 
Hence, for some ay and o 2 £ A

(19)

(20) 

(21)

2T(n) =  a iA " +  a 2A2 ; n £ N0. (22)

From the initial conditions T(0) =  1, T ( l )  =  X  and so a.\ =  1 and a 2 =  1. 
Thus

2 T n(X )  =  ( “ )  V ” - J  [ ( v/ y > -  i ) J  +  ! - 1 ;iJ  ( v / v =  i j J ]

k = 0 ^  '

where j  =  2k since for j  odd 1 +  (—l )-7 =  0. Hence the following result has been 
proved.

P ropo sitio n  3
Suppose T  : Z —> Z [X ] is given by Definition 2 (basically equation (17). 

Then T (n )(=  T „(X )) given by Definition 1. In other words: the universal



solution to the d ’Alembert equation over Z is given by the family o f Chebyshev 
polynomials.

Since

A2 — Aj-1 X  1 
X 2 - l  X

X  - 1  
1 - X 2 X

the solution is seen to agree with Kannappan’s general description. Define 
E(n) :=  A". Then E (m  +  n) =  E (m )E (n), and E (0) =  1 and

2 T(n) =  E(n) +  E (—n). (23)

5. Concluding remarks

One direction of the Theorem in section 1 says: if /  : Z —> R  satisfies 
d’Alembert’s equation then f(n )  =  T|„|(/(l)) for all integers n. This has been 
proved: Proposition 2 gives this for the universal T, but Proposition 3 identifies 
the universal T  as the Chebyshev family.

The other direction of the Theorem is just as easy now: the Chebyshev fam
ily is given by (E(n) +  E (—n)) /2  and so satisfies d’Alembert’s equation, and 
consequently so does any homomorphic image via evaluation maps Tn(X) —>
Tn ( f (  I ) ) -

Thus the Theorem has been proved.

Finally, the well-known definition of the Chebyshev polynomial [see Rivlin 
[3; eq 1.2]] is a consequence of the Theorem: define for 0 € R the function 
/  : Z 1  by n cos(n$). Then /  satisfies d’Alembert’s functional equation 
as was noted in the introduction. Hence, by the Theorem

cos (n6) =  f(n ) =  Tn( f (  1)) =  T„(cos0). (24)

In a similar way it can be shown that

cosh(nt) =  Tn (cosh t) n €  Z, f €  1 .  (25)

Equations (22) and (23) can be subsumed under the general result

x n +  x ~ n ^  f x  +  x - 1

2 “ T n  \  2
n € Z. (26)

where the theorem has been applied to the function

y n  1 y —n
n ^ ^ -------€ Q [ X , X " 1] .

So equation (22) follows from (24) by evaluating X  at e lB, as does (23) with 
evaluation at e l .
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Hans-Heinrich Kairies

On a  Banach sp ace  automorphism
and its connections to functional equations
and continuous now here differentiable functions

Abstract. Denote by Ti the Banach space of functions <p : R —>■ R which are 
continuous, 1-periodic and even. It turns out that F  : % —¥ %, given by

OO -
F[p](x) ■ ■ = Y  ^¥>(2**)

k = o  z

is a Banach space automorphism. Important properties of F  are closely 
related to a de Rham type functional equation for F[ip],

Many continuous nowhere differentiable functions are of the form 
F[ip], A large part of them can be identified by simple properties of the 
generating function ip.

1. Introduction

The set % of functions ip : R —> R which are continuous, 1-periodic and 
even, equipped with the uniform norm on R, is a Banach space. Several prom
inent continuous but nowhere differentiable (end) functions can be generated 
from functions ip € % via the linear operator F  : % —> W, given by

OO

F[<p]( x ) := Y , l * < P Q kx)- W
k= 0 Z

As examples we mention the Takagi function T : R —> R, given by
OO

T(x) :=  Y ,  FkD (2k* ) ’ D (V) ■ ■ = dist (1/.Z) (2)
k = 0 Z

and the Weierstrass type function W : R —> R given by
OO

W(x) :=  Y  C(y) :=  cos 2?vy. (3)
k = 0 Z



The end property of W  has been proved by Hardy [4] 1916, the end property 
of T  by Takagi [11] 1903 and later by many other authors. The end property of 
functions defined by general series of type (1) has been investigated by Knopp 
[8] 1918, Behrend [1] 1949, Mikolas[9] 1956 and Girgensohn [2] 1993, [3] 1994. 
These authors stated properties of the generating function ip : R —> R which 
imply the nondifferentiability of F[<p\. We mention two results which can be 
deduced from [1] respectively [9]:

T h e o r e m  1 (Behrend)
Assume that &TL is polygonal with a finite number of vertices in [0,1] all 

o f which have rational abscissae with <£+(0) ^  0. Then F[<p\ is end.

T h e o r e m  2 (Mikolas)
Assume that £ TL is convex on [0, \] and on [|, 1] (or concave on both 

intervals) with <p(0) ^  Then F[<p\ is end.

These results show that there is an ample supply of end functions in F[TL\. 
In this note we pay special attention to the operator F  : TL —> TL given by 
(1). A detailed analysis of F  is the subject of Section 2. It turns out that 
F  : TL —> TL is a Banach space automorphism. In proving this and other 
properties of F ,  a simple functional equation for F[ip\ is very useful. It can 
be shown in a few lines: for any i f l w e  have (with ip :=  F[<^]) \ip{ 2x) =  

2x) +  4x) +  jjip(8x) +  ■ ■ ■ , hence

№ )  -  ^ ( 2 * )  =  V>{x). (4)

Equation (4) has been investigated by de Rham [10] 1957 for <p =  D, 
the distance function defined in (2). The general case and other functional 
equations for F[ip\ have been discussed by Kairies [5] 1997, [6] 1998, [7] 1999.

In Section 3 we derive the Fourier expansion of F[<p]. The Fourier coef
ficients of F[ip\ are connected to the Fourier coefficients of <p by means of a 
recursion formula which follows from (4) and can be interpreted in part as 
a discrete analog of (4). As an application we compute the Fourier series of 
Takagi’s function T.

2. The Banach space automorphism F

It is straightforward to check that

TL :=  {<p : M —> M; p  continuous, 1 — periodic and even},

equipped with the uniform norm || . . .  ||„ on M, is a real Banach space and that 
the operator F , given by (1): F[<^](a;) =  2“ *V(2fea;), is linear and maps
TL into TL.



In the following statement we describe the interaction of F  with the func
tional equation (4): tp(x) — \tp{2x) =  <p(x).

P ropo sitio n  1
Let p  G TL. Then ip =  F[p\ iff ip is a bounded solution of (4) on M.

Proof. tp(x) =  p(x) +  \p{2x) +  \p(4:x)-\-----and <p € TL imply the bounded
ness of ip and because of

^tp(2x) =  \p{ 2x) +  ^p ( 4x) +  ^ (8 a :)  +  • • •,

we get tp(x) — \tp{2x) =  <p(x) for every i f l .
On the other hand, <p(x) =  tp(x) — \ip(2x) implies

tP(x) =  ^tp(2x) +  p(x)

=  +  t (2x)} +  t (x)

=  ^ { ^ ( 8a;) +  v(4a:)} +  ^ p (  2x) +  p(x)

■ m- 1

=  for every x e  M> m e  N-
k = 0

As ip is bounded,

oo 1

i>(x) =  lim i>(x ) =  FkT(2kx) =  f [t Kx)-m —too z ^ z*'
k = 0

Now we shall list some important properties of the operator F . As usual, 
|| F  ||:= sup{11 F[p] ||u; p  € TL, || <p ||„ ^  1} denotes the operator norm of F .

T heorem  3
F  : TL —> TL is a continuous Banach space automorphism with || F  ||= 2. 

The inverse operator F -1 is given by

F _ 1[^](a;) =  ip(x) -  ^ip(2x)

and is continuous as well with || F -1 || =  f  •

Proof. The linearity of F  was already stated. As we shall see, the bijectiv- 
ity is an immediate consequence of Proposition 1.

Namely, to prove injectivity, observe that if <p € TL and F[p] =  o (the zero 
function) then, by Proposition 1, necessarily p  =  o.



To prove surjectivity, let ip G F .  Define p(x) :=  ip(x) — \ip{2x) for i E l .  
Then clearly p  G F .  By Proposition 1, ip(x) =  J2kL0 2_ *V(2fe2;) =  
hence ip =  F[p] for some p  G F .

For ip G F  with || ip ||„ ^  1 we obtain
OO OO

|| F[ip\ ||„ =  sup {| £  2“ V ( 2fez)|; r 6 l K ^ 2- fe. l  =  2,
k = 0  k = 0

hence || F  ||̂  2. On the other hand, for the constant function 1 (l(x ) =  1) we
OO

have 1 G F ,  || 1 ||„= 1 and || F [ l]  ||„ =  2~k -1 =  2, hence || F  ||̂  2.
fe=0

The inverse operator F _1 can be explicitely given: By Proposition 1 it 
follows that ip =  F[ip\  iff p(x) =  F _ 1[^)](a;) =  tp(x) — \ip{2x) for every i E l  

Consequently, for || ip ||„  ̂ 1 we have || F _1[fd ||„= sup{|^)(a;) — \ip(2x)\, 
x G M} ^  3/2. On the other hand, let ipo(x) :=  4D(x) — 1, i.e., ipo G F  
with ipo(x) =  4x — 1 for 0 ^  x ^  Then || tp0 ||„= 1 and || F _1[fM ||«=
supdtf’o(x) -  \ipo (2x)|; i E l } )  ipo ( l /2 )  -  \ipo{ 1) =  3/2.

R em ark  1
a) Let A  :=  {ip G F  ; p  real analytic on M}.
Clearly A  and F  [.4] =  {F[p\: p  G A } are subspaces of F .
The examples l e d  and C G A (C(x) =  cos 27ra;) show that F  does not 

preserve this kind of regularity: F [1] =  2-1 is again analytic whereas F[C] =  W  
is end (this is in our context the worst possible regularity property which can 
occur).

In severe contrast, the operator F _1 obviously maps A  into A  and preserves 
similar types of regularity as well, e.g., differentiability of order n G N.

b) Let B :=  {p  G F ] p  nowhere differentiable}. The last observation in a) 
shows that F  does not map any p  G B  to some F[p\ G F  PI C"(M) with n G N 
or even to some F[p\ G F  fl BV  [0,1].

c) The operator equation F [p ] =  ip has for any given ip G F  exactly one 
solution: p  =  F ~ 1[ip\,p(x) =  ip(x) — \ip{2x).

Similarly, F 2[p\ =  ip if and only if p(x) =  ip(x) — ip(2x) +  \ip{4x).
In this manner, F n[p] =  ip can be explicitely solved in terms of the given 

ip G F  for every n G N.

3. Fourier series of F[<p]

First we fix some notations. The Fourier series of a function g G L' [0,1] 
will be denoted by S[g]. Throughout this section we assume p  G F  and write

OO }
s [ v iw  =  f + E  «fe cos 2irkx, a,k =  2 p(t) cos 2nkt dt

k= 1



and

S[F[<^]](a;)
OOUq v—̂

—  +  2_^ uk COS 2wkx, Uk 
k= 1

1

2 J F[p](t) 
0

cos 2irkt dt, k € N0.

R em ark  2
a) For p  G TL the Fourier coefficients au and Uk exist and we hâve

Uk =
/ OO OO 1 ç

y ]  — <p(2nt) cos 2irkt dt =  2 ^  —  /  ip(2nt) cos 2irkt dt,
g U= 0 Z U= 0  Z g

in particular,

OO -| n OO ~\ P ~l

2 ^  /  ^ ( 2"*) dt =  2 '52^h  /  dr« (r« =  2" * ) ’rw,-n J nr.-n J
Uo =

n= 0 n = 0

OO -J p OO -|

2 E ^  /  ^ ( r ) =
ro=0 n n = o

• no

— 2 • «o-

b) In general it is not true that p  £ TL coincides with its Fourier series 
S[<^]: Fejer’s famous example of a continuous function 7  whose Fourier series 
is divergent at the point zero can be modified in such a way that the new 
function 7  belongs to TL and S[t ](0) diverges. However, if (c&) € £' and p(x) :=

OO

Ck cos 2nkx, then clearly p  € TL and =  p.
k=i

T heorem  4
a) Let <p € TL. Then

U2k ~  ^ uk =  a2k and u2k+ 1 =  «2^+1 fo r  every k € N0. (5)

b) The recursive system, (5) has, for  any given sequence (a*,) o f real num
bers, a unique solution (Uk), namely

Proof.
implies

lit ^
Uo =  2a0, uk =  u2m(2j_|_i) =  ^ 2  ^ T T :a2^(2j+ i)  for  k € N.

A =0 Z

a) By Proposition 1 we have F[<^](a;) =  \F[p]{2x) +  p(x).

(6)

This



1 1

! J F[<p](x) cos2irkx dx =  2 J \^F[ip\(2x) cos 2-kUx +  <p(x) cos 27rfca;} dx,

hence (2x =  t)

2

Uk = \ J  cos7r kt dt +  au (k £ No).
o

In particular,

« 2fc

A

\ j  F № ) cos 2irkt dt +  a,2k

cos 2irkt dt +  a,2k

1
-Uk +  a 2k,

because the integrand has period 1 and

2

U2 k+i =  \ j  F[v\(t)co8Tr(2k +  l)td t +  a2 k+i =  a2k+u
0

because the integrand is odd with respect to 1/2 in [0 , 1] and odd with respect 
to 3/2  in [1,2].

b) uq =  2ao follows immediately from (5).
Every k £ N has a unique representation 2m(2j +  1) with some m ,j  £ No- 
For m  =  0, the second equation of (5) gives 14-2.7+ i =  «2.7+1 for every j  € No- 
For m  ^  1, by repeated use of the first equation of (5), we get

1
U k  —  U 2 ™ ( 2 j + 1 )  —  - M 2 ™ - 1 (2 .7 + 1 ) + « 2 - ( 2 j + l )

1 1
-  - U 2 ™ -:2 ( 2 j + l )  +  2  “ S™ “ 1 (2 .7 + 1 ) + « 2 ™  (2 .7 + 1 )

1
2™« 2 0 (2 .7 + 1 )  +  y

A=1
«2* (2.7+ 1)

m

= E
1

«2* (2.7+ 1)-



On the other hand, any sequence (uu) given by (6) satisfies in fact (5): 
The case k =  0 is trivial. For k =  2m(2j  +  1) and m =  0 we get immediately 
w-2j+ i  =  a-2j + i , whereas for m  ^  1 we obtain

1 1
U2k ~  -jUk — U2r»+i(2j+ l)  -  2 U2™(2.7+1)

_  1 ^  1 1 ^ 1
“  2 2 ^  a2X(2j+ l)  “  2 2™ ^  a2X(2f+!)

A =0 A =0

1 1
— 2 2-1 a2T"+1(2f + 1) — a2fe-

As a first useful consequence of Theorem 2 we note

P ropo sitio n  2
Assume that (c&) € and that

OO

T(®) :=  2 Co +  E c*, cos 27rfca;.
k= i

Then ip £% , and with
OO

S[f[*) = jH + E Ufe cos 27rfca;
k= i

we hawe (nfe) € and 5[F[<^]] =  F[ip\.

Proof. Clearly <p is continuous, 1-periodic and even, hence <p £ %. The 
uniform convergence of the series representing <p implies that ip coincides with 
its Fourier series S[<^]. By Theorem 2 we have

m
|n0| =  2|c0| and |n2- ( 2j+i)| ^  ^  2X~m\c2*(2j+i)I for m ,j  £ N0.

A =0

Consequently, for every j  e  No,

E K-(2,7+1) I  ̂E E 2* m|C2x(2j+l)l
m = 0 m = 0 A =0

= |C2j+l| + (2 lC2j+l I + lC2(2j+l)|)

+  ( ^ | C 2 j+ l |  +  2  lC2 ( 2 j + l )  I +  |C22 ( 2 j + l ) | )  H--------

OO
= 2 E lC2’»(2j+l)|-

m = 0



Moreover,

E E  |l>2™(2j+l)| <E E  |2c2»n(2j+l) I — 2 ^  ' |cfe| <  00
1 = 0  m = 0 1 = 0  ro= 0 k= 1

because of (cfe) G £ '. By the main rearrangement theorem, ^  |i>fc| <  oo, i.e.,
fe=i

(vk) G £1 as well.

This implies the convergence of S[F[<^]](a;) for every i e l ,  thus by Fejer’s 
theorem F[ip] coincides with its Fourier series S[F[<^]].

As a second consequence of Theorem 2 we derive the Fourier series of 
Takagi’s function T =  F[D].

P ropo sitio n  3
I f T  is given by (2), then

S № )  =  j  +  E  Uk cos 2irhx 
k= 1

with

Uk =  «2™ (21+1) =  2ro- l 7r2(2i  +  l)2 f ° r  e  N0-

This series is absolutely and uniformly convergent on R  and 5[T] =  T.

Proof. It is well known that the distance function D has the Fourier series

5[D](a;) =  ^ cos27ra; +  ^  cos(3 • 27rx) +  ^  cos(5 • 27rx) H----- } .
32 52

-2
for j  € N0. Clearly 

- 2
By Theorem 2 we have Un =  2«n =  1, ü2,-+i =  U2,+ i =  „ .--- —= for

7t2 ( 2 j  +  1 ) 2

Hence a0 =  - ,  a2k =  0 for k G N and a2,+ i =
2 7t2(2j  +  l )2

(a„) G l 1.

j  G No and, because of a2k =  0,

«2*» (2.7+ 1)
m

=  Fih(l2j+ 1 +  E a2X(2 j
- 1

(2 .7 + 1 )  O r?l-l™ -2
A=1

2 ™ - 1 7T2 ( 2 j  +  1 )2
for j  G No, m G N.

By Proposition 2, T  coincides with its Fourier series S[T] and (u+) G l 1.
Therefore we have the following representation of Takagi’s function by an 

absolutely and uniformly (on R) convergent trigonometric series:



1 1 ( 2  1 2
T(x) =  2 _  ^2 1 Ï 2 C0S(1 ' 27ra;) +  J 2 C0S(2 ' 27ra;) +  32 C0S(3 ' 27ra;)

1 2  1
+  -  cos(4 • 27rx) +  —̂ cos(5 • 27rx) +  cos(6 • 27rx)

Z D o
2 1 2

+  ^  cos(7 • 27rx) +  ^  cos(8 • 27rx) +  ^  cos(9 • 27rx)

1 2  1
H— -  cosflO • 27rx) H----- - cosfll • 2ttx) H------- - cos(12 • 2wx)

5J I P  2 • 3J
2 1 2  

+  cos(13 • 27rx) +  — cos(14 • 27rx) +  cos(15 • 27rx)

+  ^  cos(16 • 27rx) +  • •
■ } '

Note that in our approach we did not need an explicit calculation of the
OO 1

rather unpleasant series Uk =  2 ^  f  D(2nx) cos2-Kkx dx, k € No-
n = 0 0
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On the stability of the generalized cosine  
functional equations

Abstract. The aim of this paper is to study the stability problem of the 
generalized cosine functional equations for complex and vector valued 
functions.

1. Introduction

One of the trigonometric functional equations studied extensively is the 
equation

f ( x  +  y) + f ( x - y )  =  2 f(x ) f(y ) ,  for x ,y  £ G (C )
(Wilson [8], Kannappan [6], Dacic [3]) known as the cosine or d ’Alembert’s 
functional equation where /  : G —> C, G, a group (not necessarily Abelian) and 
C, the set of complex numbers. It is known (see [6]) that if /  satisfies (C) and 
the condition

f ( x  +  y +  z) =  f ( x  +  z +  y), for X, y, z € G, (K)

then there is a homomorphism m : G —)■ C* (C* =  C\{0})

m (x +  y) =  m (x)m (y), for x ,y & G ,  (1)

such that /  has the form

f(x )  =  +  m (—x)), for x £ G. (2)

Ever since Ulam [7] in 1940 raised the stability problem of the Cauchy 
equation f ( x  +  y) =  f(x )  +  f(y ) ,  many authors (see Hyers [5], Ger [4], etc.) 
treated the stability problem for many other functional equations. Baker [2] 
proved the result:

Let £ ^  0 be a given number and let G (+)  be an Abelian group. Let 
/  : G —> C be such that

I f ( x  +  y ) +  f ( x  - y ) ~  2f(x)f(y)\  <  e, for x ,y  G G.

AMS (2000) Subject Classification: 39B82, 39B52.



Then either |/(a;)| ^  |(1 +  \/l +  2e) for all x £ G or /  is a solution of the 
cosine equation (C).

Badora [1] presented a new, short proof of Baker’s result.
The aim of this paper is to investigate the stability problem of the functional 

equations
f ( x  +  y) +  f ( x - y )  =  2g(x)f(y), x ,y  £ G (3)

and
f ( x  +  y) +  f ( x - y )  =  2 f(x)g(y), x ,y  £ G (4)

in the next two sections modelled after [1], where G is a group.

2. Stability of ( 3 )  and ( 4 )  for complex functions

In this section we will consider the stability of (3) and (4) and their variants. 
First we will take up (3) and prove the following theorem.

T heorem  1
Let £ ^  0 and f , g : G —> C satisfy the inequality

\f(x +  y ) + f ( x - y ) - 2 g ( x ) f ( y ) \ ^ e  (3)'

with f  satisfying the (K) condition, where G (+ ) is a group. Then either f  and 
g are bounded or g satisfies (C) and f  and g satisfy (3) and (4). Further, in 
the latter case there exists a homomorphism, m : G —> C* satisfying (1) such 
that ^

f(x )  =  +  m ( ~ x )) and 9(x ) =  + m (-a ;))> (5)

for  x £ G, where b is a constant.

Proof. We will consider only the nontrivial /  (that is, f  ^  0). Put y =  0 
in (3)' to get

\f(x ) ~  9(x ) f ( 0)1 <  for x £ G. (6)

If g is bounded, then using (6), we have

l/(* ) l  =  \f(x) ~  9(x)f(0 ) +  9(x)f(0)\

^ f  +  l<?(*)/(0)|,

which shows that /  is also bounded. On the other hand if /  is bounded, choose 
2/o such that f(yo)  0 and then use (3)',

|P(*)I
f ( x +  Vo) +  f ( x  -  y0) 

2 f(Vo)
€ f ( x +  Vo) +  f ( x  -  y0) 

2 / ( 2 / o)
■ 9{x)

2|/(ift>)|

to get that g is also bounded on G.



It follows easily now that if /  (or g) is unbounded, then so is g (or / ) .  Let 
/  and g be unbounded. Then there are sequences {x n} and {yn} in G such 
that g(xn) ^  0 , \g(xn)\ ->  oo as n ->  oo and f (y n) ^  0 , lim \f(yn)\ =  oo.n

First we will show that g indeed satisfies (C).
From (3)' with y =  yn we obtain

f i x  +  y„) +  f ( x  -  yn) _
2 f(V n )  9 [  } 2| / W I ’

that is,
f i x  +  yn) +  f i x  -  yn) 

"  2fiVn)
Using (3)' again and (K) we have

9(x)- (7)

I f i x  +  iy +  yn)) +  f i x  ~ i y  +  yn)) -  2 gix ) f (y  +  yn)

+  f i x  +  i y -  Vn)) +  f i x  - i y -  yn)) -  2 g ix )f(y  -  2 /„ )K  2e

so that

f i i x  +  y) +  Un) +  f  Hx +  y ) ~  yn) f j j x - y )  +  yn) +  f i i x  - y ) ~  yn)

-2gix)

2fiVn)
f iy  +  yn) +  f i y  -  yn)

\fiVn)\

2fiVn) 

for x ,y  £ G,
2fiVn)

which with the use of (7) implies that

I gix +  y ) +  gix  - y ) ~  2g(x)g(y)\ ^  0 , 

that is g is a solution of (C).
As before applying (3)' twice and the (K) condition, first we have 

"  2g[xn) (8)

and then

I f i i x n + x )  +  y) +  f ( ( x n +  x) -  y) -  2g{xn +  x )f(y )
+  f i ix n  - x ) + y )  +  f ( ( x n -  x) -  y) -  2 g{xn -  x)f(y)\ ^  2e

so that

f i x n +  ix +  y)) +  f i x n -  jx +  y)) f ( x n +  (x -  y)) +  f ( x n - ( x -  y))

- 2 -

2 gix„)
gjx„  +  x) +  gjx„ -  x) 

2gixn)

2gix„)

f iy) \gixn)\'

From (8) and g satisfying (C), it follows that



I f ( x  +  v) +  f ( x  - y ) -  2g(x)f(y)\ ^  0 ,

that is, /  and g are solutions of (3).
Choose 2/o such that f(yo)  ^  0. Then (3) gives

f ( x +  Vo) +  f ( x  -  yo)
9{ ) ~  V iv o)

so that g also satisfies the condition (K). Since g satisfies (K), from [6] we see 
that there exists a homomorphism m : G C* satisfying the second part of 
(5).

Finally, applying (3)', (7) and (K), we get

I / ( ( i n +  y) +  x) +  f ( ( x n +  y) -  x) -  2g(xn +  y) f (x)  +  f ( ( x n - y )  +  x) 
+  f ( ( x n - y ) - x ) ~  2g(xn -  y ) f { x ) I ^  2e

and that

f ( x n +  (x +  y)) +  f ( x n ~ ( x  +  y)) } { x n +  {x -  y)) +  f ( x n -  (x -  y))
2 g(xn) 2 g(xn)

_ 2f (  x g(xn +  y) +  g(xn -  y) e 
I {X>' 2g(xn) "  \g(xn)\

resulting to (4). From (3) and (4), it is easy to see that f(x )  =  bg(x), for some 
constant b.

This proves the theorem.

We now consider a slight variation of (3)'.

C orollary  2
Let e ^  0. Let f n : G —> C ( where G is a group) be a sequence o f functions 

converging uniformly to f  on G. Suppose f , g , f n : G —> C  be such that

\f(x +  y) +  f ( x  — y) — 2g(x)fn(y)\ ^  e, for  x ,y  £ G, (3)"

with f  satisfying (K). Then either f  is bounded or g satisfies (C) and f  and g 
satisfy (3) and (4).

Proof. Since { / „ }  is uniformly convergent to / ,  taking the limit with re
spect to n in (3)", we obtain (3)'. The result now follows from Theorem 1.

Now we take up the stability of (4). We prove the following theorems

T heorem  3
Let e  ^  0 and G be a group. Suppose f ,g  : G C satisfy the inequality

\f(x +  y) +  f ( x - y ) - 2 f ( x ) g ( y ) \  ^ e ,  for x,y £ G (4)'



with f  even ( that is, f ( —x) =  f ( x ) )  and f  satisfies (K). Then either f  and 
g are bounded or f  and g are unbounded and g satisfies (C) and f  and g are 
solutions o f  (4) and (3).

Proof. We consider only nontrivial / ,  that is, f  ^  0, When /  is bounded, 
choose xq such that f ( x o) ^  0 and use (4)' to get

|5 (y)| _  If ( x 0 + y )  + f ( x 0 - y )| ^
2l/(*o)|

/(* o  +V)  +  f { x o -  y)
2f ( x 0) ■ g(y)

£
2 | /M | ’

which shows that g is also bounded.
Suppose /  is unbounded. Choose x =  0 in (4)' to have \ f (y)  +  f ( —y) — 

2f(0)g(y)\ ^  e, that is, \f(y) — f(0)g(y)\ ^  | (this is the only place we use that 
/  is even). Since /  is unbounded, /(0 )  ^  0. Hence g is also unbounded.

Let /  and so g be unbounded. Then there exist sequences {x n}  and {yn} 
in G such that f ( x n) ^  0, \f(xn)\ ->  oo, g(yn) ^  0, \g(yn)\ ->  oo.

Applying twice the inequality (4) and using (K) for /  twice, first we get

f{x „  +  y) +  f { x n -  y)

that is,

limn
and then we obtain

2f(x „ )

f ( x n +  y) +  f ( x n ~  y)
2f(x „ )

■ g(y) £
2|/(*n)|

=  g(y), for y G G, (9)

I f((x „  +  x ) + y )  +  f { { x n + x ) - y ) ~  2f ( x n +  x)g(y) +  f { { x n - x )  +  y) 
+  f ( ( x n -  x) -  y) -  2f ( x n -  x)g{y)I <  2e,

that is,

f ( x n +  (x +  y)) +  f ( x n - ( x  +  y) f ( x n +  (x -  y)) +  f ( x n -  (x -  y))

-  2g(y)

2 f{x „ )  
f ( x n +  x) +  f ( x n -  x)

2 f{x „ )

2f ( x n) €
\f(Xn)\

which by (9) leads to \g(x +  y) +  g(x — y) — 2g(y)g(x)\ ^  0, so that g satisfies
(C).

Again applying the inequality (4)' twice and using (K) condition for /  
twice, first we have

f ( x  +  yn) +  f ( x  -  yn)
2g (V n )

f ( x ) £
2|p(j/n)|

(10)

and then we get



\f(x +  (yn +  V)) +  f ( x  ~  (Vn +  V)) ~  2f(x )g (yn +  y) +  f ( x  +  (yn ~  y)) 
+  f ( x  ~  (Vn - y ) ~  2f{x)g{y„ - y ) K  2e

that is,

f ( ( x  +  y) +  yn) +  f ( ( x  +  y ) ~  yn) f ( ( x  - y )  +  yn) +  f ( ( x  -  y) -  yn) 
2g(yn) 2g(yn)

o t , ^ 9(yn +  y) +  g ( y n - y )  ,  £
’ 29 (yn) "  \g(yn)\

which by (10) and (C) yields

I f ( x  +  y ) +  f ( x  - y ) -  2f(x)g(y)\ ^  0 ,

so that /  and g are solutions of (4).
Consider the inequality

I/((Vn +  x ) + y )  +  f (y n +  x) -  y) -  2g(yn +  x) f (y)  +  f ( y n -  x) +  y) 
+  f((yn  -  X) -  y) -  2g(yn -  x ) f ( y ) I ^  2e.

As before using (K), (10), evenness of /  and (C) and the division by 2g(yn) 
yields

f ( ( x  +  y) +  yn) +  f ( ( x  +  y ) ~  yn)
2g(yn)

,g(yn +  x ) + g ( y n - x )  
~  -----------29\Un)

+  f ( ( x  - y )  +  yn) +  f ( ( x  - y ) -  yn) 
2g(yn)

— > 0 as n —> oo

so that /  and g are solutions of (3).
This completes the proof of this theorem.

Note that the evenness of /  is used to prove that g is unbounded when /  
is and nowhere else.

C orollary  4
Let e ^  0. Let f n : G —> C ( where G is a group) be a sequence o f functions 

converging uniformly to f  on G. Suppose f , f n, g : G —> C  be such that

\f(x +  y) + f ( x - y ) - 2 f n(x)g(y)\ ^ e ,  for  x, y € G, n € N, (4)"

where f  is even and it satisfies (K). Then either f  is bounded or g satisfies (C) 
and f  and g are solutions o f  (4) and (3).

Proof. Since { / „ }  is uniformly convergent to / ,  taking the limit with re
spect to n in (4)", we get (4)'. The result now follows from Theorem 3.



3. Stability of ( 3 )  and ( 4 )  for vector valued functions

In [1] Badora gave a counter-example to illustrate the failure of the super
stability of the cosine functional equation (C) in the case of the vector valued 
mappings. Here consider the following example. Let /  and g be unbounded 
solution of (3) (or (4)) where f ,g  : G —> C. Define / 1,51 : G —> M2(C) (2 x 2 
matrices over C) by

for x £ G where ci ^  0, c-2 ^  1. Then

9i(x)
g(x) 0 \ 

0 c2 j

\\fi(x +  y) + f i ( x - y )  -  2 f1(y)g1(x)\\ =  constant > 0

(or 11/1 (a? +  y) +  f i (x  -  y) -  2fi(x)gi(y)\\ =  constant >  0) for x ,y  € G. This 
/1 and g\ are neither bounded nor satisfy (C).

Therefore there is a need to consider the vector valued functions separately. 
We prove the following two theorems in this section. Let G be a group and A 
be a complex normed algebra with identity.

T heorem  5
Suppose f , g : G —> A satisfy the inequality

II f ( x  +  y) +  f { x  - y ) -  2g{x)f{y)\\ ^  £, (3)'"

for  x ,y  £ G with f  satisfying (K) and

\\f(x) ~  f{-x)\\ ^  T), fo r  x £ G, (11)

for  some e ,g  ^  0. Suppose there is a zq £ G such that g(zo)~' exists and 
||/(a;)5'(̂ o)|| is bounded for  x £ G. Then there is an m : G —> A such that

\\m(x +  y) -m(x)m(y)\\ ^  a1; for  x ,y  £ G (12)

and

f (x)  ~  ~(m (x) +  m (-x ) )

for  some constants asi and a2.

^  a2, fo r  x £ G (13)

Proof. Let M :=  supx6G ||/(a;)5'(̂ o)||- Then using (3)'" and (11), we get 
by using (K)

ll/(*)p(-^o)|| ^  \\f(-x)g(z0)\\ +  \\f(x)g(-z0) -  f ( - x ) g ( z 0)\\
^  M +  ±\\f(z0 - x )  +  f ( z 0 +  x) -  2g(z0) f ( - x )

~  ( f ( - Z o  +  x) +  f  ( Zq - x ) -  2 g (-z 0)f(x ))
-  ( f ( z0 + x ) ~  f  ( Z q - x ) +  f ( z 0 -  x) -  f  ( Z q +  x))||

^  M +  6 +  T}.



Define a function h : G —> A by the formula

h(x) =  for x £ G .

Then h is even, that is, h(—x) =  h(x),

\\h(x) ~  f ( x)\\ <  |  for x £ G, \\h(x)g(z0)\\ ^  M. (14)

Define a function m  : G —> A by

m(x) =  h(x) +  ig(zo), for x £ G.

Utilizing (14), we get (using first commutativity in A)

IIm (x +  y ) ~  m (x)m (y)|| =  ||h(x +  y) +  ig(z0) -  h(x)h(y)
+  i(h(x) +  h(y))g(z0) +  g(zo)2\\

<  \\Kx +  y)\\ +  \\h(x)h(y)\\
+  IKMx) +  % M *b )| |  +  I l f f M  +  l l ^ o )||2

<  \\Hx +  y) -  f ( x +  y )II +  \\f(x +  y)II
+  \\Hx )H y)y(zo)2 • g(zo)~2\\ +  \\h(x)g(z0)\\
+  \\h(y)g(zo)\\ +  \\g(z0)\\ +  \\g(zo)\\2 

^ 1l  +  M\\g(zo)\\-1 + M 2\\g(z0)\\-2 

+  2M +  \\g(z0)\\ +  \\g(zo)\\2
=  ai

(say) which is (12). Finally by (14), we have

f ( x ) ~  \ {m{x ) +  m {~ x)) f (x)  — h(x) +  h(x)

~ ^ (h (x) +  h ( -x ) )  - ig (z o )  

^  |  +  llfl^o)!! =  0,2

(say), which is (13). This proves the theorem.

Lastly we prove the following theorem.

T heorem  6
Let f , g : G —> A satisfy the inequality

\\f(x +  y ) + f ( x - y ) - 2 f ( x ) g ( y ) \ \  ^ e ,  x,y  € G, 

with f  satisfying (K) and

\\f(x ) ~  f ( ~ x)\\^V, for  x £ G,



for  some nonnegative e and rj. Suppose there exists a zq € G such that g(zo)~' 
exists and ||/(a;)fl,(-2o)|| bounded over G. Then there exists a mapping m : 
G A such that

\m(x +  y )-m (x )m (y )\ \ ^ a 1, f o r x , y & G

and
f (x)  -  \ {m{x) +  m (-x ) ) ^  a2, for  x G G,

for  some constants a\ and a2.

The proof runs parallel to that of Theorem 5.
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Generalized Hosszu functional equations

Dedicated to Professor Zenon Moszner 
on the occasion of his 70th birthday

Abstract. Pexiderizations of the Hosszu functional equation 

f(xy ) +  f (x  +  y -  xy) =  f (x )  +  f(y ) 

are considered on a variety of domains.

1. Introduction

The functional equation

f {xy)  +  f ( x  +  y -  xy) =  f (x)  +  f (y)  (H)

was first considered by M. Hosszu.
The general solution for real functions was given by Blanusa [1] and Daro- 

czy [3]. They proved the following

T h e o r e m  B-D
The function f  : M —> M satisfies the functional equation (H) for  all i , j £ l  

if  and only if
f (x )  =  A(x) +  C, i f l ,  (1)

where A is an additive function on M2 and C e l  is an arbitrary constant.

Equation (H) was also studied on other structures (see [2], [5], [6], [7], [9], 
[10], [14], [15], [16]).

In [12] and [13] we studied the functional equation

f (xy)  +  g(x +  y -  xy) =  f (x)  +  f (y)  (GH1)

and we proved the following theorems.

AMS (2000) Subject Classification: 39B22.
Research supported by the Hungarian National Foundation for Scientific Research 

(O TK A ), Grant No. T-030082 and by the Hungarian High Educational Research and Devel
opment Found (FK F P ) Grant No. 0310/1997.



T h e o r e m  L I
I f  the functions f ,g  : M —> M satisfy the functional equation (GH1) for  all 

x, y £ 1  then
f (x)  =  g(x) =  A(x) + C ,  i £ l ,

where A : M —> M is an additive function on M2 and C £ M is an arbitrary 
constant.

T h e o r e m  L2
The functions f  : M0 —)• M (M0 =  M \ {0 })  and g : M —>■ M satisfy the equa

tion (GH1) fo r  all x, y £ 1 0 i f  and only if

f (x)  =  Ax(x) +  A2(log\x\) +  C, i £ l 0, (2)
g(x) =  A i{x) + C ,  i £ l ,  (3)

where A i , A2 : M —> M are additive functions on M2 and C is a real constant.

In this paper we shall deal with the following problems.

P r o b l e m  A
Let / ,  g : (0,1) —> M be real functions which satisfy the functional equation 

(GH1) for all x, y e  (0,1). What is the general solution of (GH1) on the interval 
(0 , 1) ?

P r o b l e m  B
Let / ,  h : M0 (or Mi =  M \ {1 })  —»• M and g : M —)• M be real functions satis

fying the functional equation

f {xy)  +  g(x +  y — xy) =  h{x) +  h{y) (GH2)

for all x, y € M0 or x, y £ Mi respectively. Find the general solution of (GH2).

P r o b l e m  C
Let f , g , h  : (0,1) —)■ M be real functions satisfying (GH2) for all x,y £ (0,1). 

Find the general measurable solution of (GH2).

2. Problem A

Here we shall use the following result by Z. Daroczy and L. Losonczi (see
[4])-

T h e o r e m  D-L
I f  f  is additive on an open connected domain of M2, then f  has one and 

only one quasi-extension.

T h e o r e m  1
The functions f ,  g : (0,1) —> M satisfy the generalized Hosszu, equation 

(GH1) for  all x, y £ (0,1) i f  and only if



f (x )  =  Ax(x) +  A2(\ ogx)+C , x e ( 0 , l ) ,  (4)
g(x) =  Ax(x) +  C, £ 6 ( 0 , 1 ) ,  (5)

where Ai and A2 are additive functions on M2 and C is an arbitrary real con
stant.

Proof. First we follow the idea used in [14] for the proof of Lemma 2. 
The function

F (x , y) =  f (x)  +  f {y)  -  f (xy)
satisfies the equation

F(xy , z) +  F (x , y) =  F (x , yz) +  F(y,  z) (6)

for all x, y , z  6 (0 ,1). On the other hand we have

F(x,y)  = g ( x  +  y - x y ) .

Putting this into (6), we obtain the equation

g(xy +  z -  xyz) + g ( x  +  y -  xy) =  g(x +  y z -  xyz) +  g(y +  z -  yz) (7)

for all x, y , z  6 (0 , 1).
By the substitution

xy +  z — xyz =  t +  -  

1
x +  y - x y  =  s +  -  

1
y +  z -  yz =  -

we obtain from (7) the functional equation

D =

Thus the function

j( * . s)

( 1 \
g \ t  +  s +

2 )  + f f

on

1 1 1
<  s <  -

2 ' 2t -  1 2

: A*(t) — g ( t  +  -  g

+  t  i

(8)

(9)

is additive on the open connected domain D. So, by Theorem D-L, A* has one 
and only one quasi-extension A\ with A*(x) =  A\{x) for all x 6 (— |). Now,
using (9), we have

9 {x) =  A!  0  + g  , £ 6 ( 0 , 1 ) .



This implies (5) with an arbitrary real constant C  =  g {\ )  — A\ (1 ). 
Substituting (5) in (GH1), we get that the function ip  defined by

<p(x) =  f(x )  -  A1 (x ) -  C, x £ (0,1) (10)

satisfies the functional equation

<fi(xy) =  <p(x) +  <p(y), x ,y  £ (0 , 1).

On setting
x =  e~ t , y  =  e~ s ( t , s >  0), B(t) =  <^(e_ t), 

this is transformed into

B (t +  s) =  B (t) +  B (s), t , s >  0.

(11)

So, using again Theorem D-L, B  has one and only one quasi-extension A with 
B(t) =  Aft) for all t £ M+ . This, together with (11) implies

<p(x) =  M (logx), x £ (0 , 1), (12)

where A2 =  —A is an additive function on M2.
Finally, from (10) and (12), (4) follows for the function / .
It is easy to see that (4) and (5) indeed satisfy (GH1).

3. Problem B
T heorem  2

The functions f ,g ,h :№ .—>№. satisfy the functional equation (GH2) fo r  all 
x, y £ 1  if  and only if

f(x )  =  A{x) + C 2, i £ l , (13)

g( x) =  A{x) +  C3, i £ l , (14)

h(x) =  A(x) +  C i, i e l , (15)

where A is an additive function on M2 and Ci e  8  (i = 1 ,2 ,3 ) are arbitrary
constants with 2C\ =  C2 +  C3.

Proof. Putting into (GH2) y =  0 or y =  1, one gets

and
g(x) =  h(x) +  /i(0) — / ( 0), i f l (16)

f(x )  =  h(x) +  /i(l) — 5 (1), i £ l (17)

respectively. Substituting these into (GH2) we have

h(xy) +  h(x +  y — xy) =  h(x) +  h(y), x, y £ I .

This is the Hosszu functional equation. So, by Theorem B-D h is of the form 
(15). Taking (16), (17) and (15) into consideration also, we have proved (13) 
and (14).



One can easily to see that (13), (14) and (15) satisfy (GH2) if 2Ci =  C2+ C 3. 

T heorem  3
The functions f ,  h : M0 —> M and g : M —> M satisfy the functional equation 

(GH2) fo r  all x, y £ 1 0 i f  and only if

f(x )  =  A ^x) +  A2(\og\x\) +  C3, x £ M0, (18)
g(x) =  A i(x) +  C2, x £ M, (19)

h(x) =  A i(x) +  A2(\og\x\) +  C\, i £ l 0, (20)

where A\, A2 are additive functions on M2 and Ci e  1  (i =  1 ,2 ,3 ) are arbitrary
constants with 2C\ =  C2 +  C3.

Proof. Setting y =  1 in (GH2) we obtain the identity

f(x )  =  h(x) +  /i(l) — 5 (1), x £ M0 (21)

and putting this into (GH2) we get

h(xy) +  g(x +  y -  xy) +  H 1) ~  fl'W =  h(x) +  h(y),

where x, y £ M0. This is an instance of the generalized Hosszu equation (GH1). 
Thus, by Theorem L I, h and g are of the forms (20) and (19) respectively, 
where C2 =  C\ + 5 (1) — h( 1) is arbitrary constant. Finally, by (19), (20) and 
(21), we get (18) for / .

An easy calculation shows that the functions (18), (19) and (20) satisfy 
(GH2) if 2Gi = C 2 + C 3.

T heorem  4
The functions f  : M —> M and g, h : Mi —> M satisfy the functional equation

(GH2) for  all x, y £ Mi if  and only if

f ( x ) = A i ( x )  +  C3, i £ l ,  (22)
g(x) =  Ax(x) +  A2(log|l — a;|) +  C2, a; € Mi, (23)
h(x) =  A i(x) +  A2(log |1 -  a;|) +  Ci, a; € Mi, (24)

where A\ and A2 are additive functions on M2 and Ci £ M (i =  1 ,2 ,3 ) are
arbitrary constants with 2C\ =  C2 +  C3.

Proof. Letting y =  0 in (GH2), we obtain

g(x) =  h(x) +  /i(0) — / (0 ) , a; € Mi. (25)

Using (25) in (GH2), we get

/(an/) +  h(x +  y -  xy) +  /i(0) -  / (0 )  =  h(x) +  h(y), x, y £ M. 

Replacing here x, y by 1 — x, 1 — y respectively, we have

f { l - { x  +  y -  xy)) +  /i(0) -  / (0 )  +  /i(l -  xy) =  /i(l -  x) +  /i(l -  y)



for all i , y e l o ,  which implies that the functions / *  and h* defined by

f * ( x) =  / ( l  —z) +  /i(0) - / ( 0), i £ l ,  

h*(x) =  h( 1 — x), x € M0

satisfy the functional equation

f * {x  +  y - x y )  +  h*(xy) =  h*(x) +  h*(y), x ,y  £ K0.

This is (GH1). Now, using Theorem L2, we have

h*(x) =  A\ (x) +  A2(log |a?|) +  C*, x e l o ,  (27)
/ *  (*) =  A* (x) +  C3* , i £ l .  (28)

From (26), (27) and (28), we obtain (22) and (24) with Ai =  —A\, C\ =  
AJ(1) +  C$ and C3 =  AJ(1) +  C3* +  /(0 )  -  h(0). Finally (24) and (25) imply 
(23).

The functions (22), (23) and (24) indeed satisfy (GH2).

4. Problem C

We need the following result of A. Jarai ([11] Theorem 2.7.2).

T h e o r e m  J
Let T  be a locally compact metric space, let Z0 be a metric space, and let Zi 

(i =  1 , 2 , . . .  ,n) be separable metric spaces. Suppose that D is an open subset 
o f T  x ! fe and X{ C  fo r  i =  1 , 2 ,n . Let fo  ■ T  —> Z0, f i  : X{ —> Zi,
gi : D —> X i, H  : D x Z\ x Z2 x . . .  x Zn —> Z0 be functions. Suppose, that the
following conditions hold:

(1) For every (t ,y ) e  D

fo(t) =  # ( f , y , / i ( p i ( f , y ) ) , . . . , / n(p„(f,2/))).

(2) f i  is Lebesgue measurable over Xi for  i =  1 ,2 , . . .  ,n.

(3) H  is continuous on compact sets.

(4) For i =  1 ,2 , . . .  ,n , gi is continuous, and for  every fixed t £ T  the map
ping y —> gi (t , y) is differentiable with the derivative D-2gi (t , y) and with 
the Jacobian J 2gi(t,y ); moreover, the mapping (t ,y ) —> D2gi(t,y) is con
tinuous on D and fo r  every t € T  there exists a (t , y) £ D so that

J 29i(t ,y ) ^ 0  for  i =  1, 2, . . . ,  n.

Then /o is continuous on T .



L emma 1
I f  the measurable functions f ,g ,h  : (0,1) —> R satisfy the functional equa

tion (GH2) for  all x, y £ (0,1) then the functions f ,g ,h  : (0 ,1) —> R  are con
tinuous.

Proof. First we prove the continuity of / .  From (GH2), with t =  xy, we 
obtain

f( t )  =  h ( ^ )  +  h(y) - g  ( l. -  ^  - y  +  t'j , (0 < t  < y  < 1 ) .  (29)

Let T  =  (0 ,1), n =  3, Zq =  Z\ =  Z2 =  Z3 =  K, X i,X 2,X 3 =  (0,1), 
D =  {{t,y ) £ M2 | 0 <  t <  y <  1}. Define the functions gi on D by gi{t,y ) =  
92{t,y) =  y, g3(t,y) =  1 -  l  - y  +  t and let H (t,y ,z 1,z 2,z 3) = z 1 + z 2 - z 3. It 
follows from (29) that the functions f i  (i =  0 , 1 , 2 , 3)  given by

/0 =  / ,  /1 =  /2 =  h, f 3 = g

satisfy the functional equation occurring in (1) of Theorem J  for all (t, y) £ D 
and f i  (i =  0 , 1, 2,3 ) is measurable by the conditions of our lemma. H  is clearly 
continuous and condition (4) of Theorem J  holds too, since calculating D2gi 
one can see that for every t £ T  =  (0 , 1)

D2gi(t,y) ^  0 for i =  1 , 2 , 3  if y ^  Vt.

Thus, by Theorem J , /  =  /0 is continuous on (0,1).
The continuity of g can be proved by making the substitutions x —> 1 — x, 

y —> 1 — y in (GH2) and repeating the above argument.
Substituting y =  \ in (GH2) and solving the equation obtained for h we 

get

K x )  =  9 +  f  ( ^ )  -  h  Q )  ’ (30)

whence, by the continuity of / ,  g it follows that h is continuous as well. 

L emma 2
I f  the measurable functions f ,g ,h  : (0,1) —> M satisfy the functional equa

tion (GH2) then they are differentiable infinitely many times on (0,1).

Proof. Write (GH2) in the form (29) and let [a, /3] C (0,1) be arbitrary 
and choose the interval [A, g] such that \[5 <  A <  g <  1 (then [a, (3\ x [A, g] C 
D =  { ( t ,y ) | 0 <  t <  y <  1} holds). Integrating (29) with respect to y on [A,//] 
we obtain

M M M
(g -  A) f( t )  =  j  h dy +  J h(y) dy -  J g ( l  -  ^ -  y +  t'j dy.

X X X



We use the substitutions g\ (t,y) =  | =  u and 53 (t, y) =  1 — | — y + t =  u in 
the first and third integral respectively. It is easy to check that these equations 
can uniquely be solved for y if t £ [a, ff\. In the case of | =  u this is clear. 
In the case o f l  — | — y +  t =  u this uniqueness is ensured by the assumption 
\[0 <  A, namely, by this condition, the derivative of the function y —> g% (t, y):

D29z{t,y) =  4 - 1  
V1

is negative on [a, ff\ x [A, y] hence our function is strictly decreasing. The solu
tions

V =  ~  =  7 i (t, u) and y u
1 +  t — u +  -v/(l + 1 — u)2 — 4t
----------------- --------------------------  =  72 (t , u)

are infinitely many times differentiable functions of t and u. Performing the 
substitutions we have for t £ [a, /3]

m =y — A

l - i - n + t

J h(u)D2/yi(t, u)du -  J  5 (u)D272(f,w) du +  C
1 — T  — A+t

where C  =  h(y) dy. The functions h, g are at least continuous. Hence, by 
repeated application of the theorem concerning the differentiation of parametric 
integrals (see e.g. Dieudonné [8]), the sum on the right hand side is differen
tiable infinitely many times on [a ,/3]. Since [a, /3] is an arbitrary subinterval 
of (0 ,1), we have that /  is differentiable infinitely many times on (0,1). The 
differentiability of g can be obtained similarly. Finally, from (30), we can 
deduce that h is also differentiable infinitely many times on (0,1).

L emma 3
I f  the functions f ,g ,h  : (0,1) —> M satisfy the functional equation (GH2) 

and they are twice differentiable in (0 ,1 ), then there exist constants /y ,C i,6i £ M 
(i =  1,2) such that

f(x )  =  C\ lna; +  7 a; +  £1, a; € (0 ,1), (31)

g(x) =  C2 ln (l -  a;) +  7 a; +  S2, x £ (0 , 1), (32)

h(x) =  C\ Inx +  C2 ln (l — a;) +  7a; +  —— x £ (0,1). (33)

Proof. Differentiating (GH2) with respect to x, then the resulting equation 
with respect to y, we have

f' (x y )+  xyf"(xy) -  g'(x +  y -x y )  +  (1 -  x )( l-y )g " (x  +  y - x y )  =  0,

x ,y  £ (0,1).

This can hold if and only if



+  f'(t)  = 7  =  ( s ~  1 )g”(s) +  g'(s), t , s £  (0 , 1)

for some constant 7 .
The general solutions of the differential equations 

t f ”{t) +  f'{t)  = 7 , f e ( 0 , l )
and

( s - l ) p " ( s ) + p ' ( s )  = 7 ,  s G ( 0 , l )

have the following forms

/(f)  =  C iln t +  7t +  <Si, t € (0,1), 
g(s) =  C2 ln (l -  s) +  7 s +  <J2, s € (0 , 1).

Then, from (30), (31) and (32), we get (33) for h.
Thus we have proved our lemma.

We may sum up the results of Lemmas 1, 2 and 3 in the following theorem. 

T heorem  5
I f  the measurable functions f ,g ,h  : (0,1) —> R satisfy the functional equa

tion (GH2) for  all x, y € (0 ,1 ), then there exist constants 7 , Ci, i5; €  1  (i =  1,2) 
such that f ,  g, h have the forms (31), (32) and (33) respectively.
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Abstract. This text deals with the domain of existence of the solution of 
Schroder’s equation, related to a two-dimensional real iteration process, 
defined by functions which do not satisfy the Cauchy-Riemann condi
tions. Its purpose is limited to the identification of the difficulties gen
erated by the determination of this domain. When the Cauchy-Riemann 
conditions are verified the answer to this problem was given by Fatou at 
the beginning of the 20th century. The qualitative theory of dynamical 
systems permits to identity the difficulties which may be met, from the 
notion of immediate basin of an attractor (stable fixed point in our case), 
and the singular set generated by the iteration associated with Schroder’s 
equation.

1. Introduction

An evident link exists between autonomous recurrences (equivalent denom
inations depending on the mathematical field: iterations, maps), and some 
functional equations like those of Schröder, or Böttcher, or Abel, or Perron- 
Frobenius in some special case, or the equation of automorphic functions. This 
paper is essentially devoted to Schroder’s functional equation. It is well known 
that the first set of studies on this equation appeared from the end of the 
19th century in n-dimensional problems. The fundamental contributions are 
those of Grevy, Leau, Koenigs, Lattes whose papers concern a “local” study 
of the solution, i.e. its determination inside a sufficiently small neighborhood 
of a fixed point, or a cycle. A first “global” study is due to Julia (1918) [1], 
and Fatou (1919) [2] [3]. It concerns one-dimensional “rational” iterations 
with a complex variable, i.e. equivalently, two-dimensional iterations defined 
by functions with real variables satisfying the Cauchy-Riemann conditions. In 
particular Fatou’s results suppose the existence of a stable fixed point with a 
non-zero multiplier, the boundary of its basin (domain of convergence toward

AMS (2000) Subject Classification: 39B52, 37E30, 37C29.



this point) being what is called now a “ Julia set". In this case it was stated that 
the fundamental solution of the Schroder’s equation is a holomorphic function 
inside the immediate basin of the fixed point, the basin boundary belonging to 
the set of the essential singular points of this solution. As far as I know, this 
question has remained unexplored after these results for Schroder’s equations 
related to classes of two-dimensional real iterations which do not satisfy the 
Cauchy-Riemann conditions. In this last more general case, it is a question of 
knowing if the notion of immediate basin can play the same role. In fact for 
noninvertible maps, and maps with canceling denominators, it appears that it 
is prudent to consider only a part of the immediate basin as domain of existence 
of the solution of the Schroder’s equation associated with a stable fixed point 
of the iteration.

This paper does not pretend to deal with a close mathematical presentation 
of an extension of the Fatou’s results in the case of two-dimensional iterations 
with real variables. Such a presentation would imply very long developments 
related to the convergence of series expansions, or infinite products, with the 
inherent difficulties induced by the boundaries of the domains of convergence. 
The aim is more modest. Indeed this text only tries to show how the dynam
ical approach permits to outline an extension of the Fatou’s results. For the 
mathematicians specialists of functional equations this might give some first 
indications about the “landscape” of this question and its difficulties, from a 
point of view external to their field of study. For such a limited purpose, in 
the framework of the qualitative theory o f Dynamics, it is sufficient to expose 
with commentaries a summarized presentation of certain results, obtained since 
some 30 years, on the basins structure generated by two-dimensional iterations 
with real variables. About the qualitative methods, it is well known that the 
solutions of equations of nonlinear dynamic systems are in general not clas
sical transcendental functions of the Mathematical Analysis, which are very 
complex. So analytical methods generally failing, the “qualitative strategy” is 
of the same type as the one used for the characterization of a function of the 
complex variable by its singularities: zeros, poles, essential singularities. Here, 
for two-dimensional maps with real variables (topic of the paper) the com
plex transcendental functions are defined by the singularities of continuous (or 
discrete) dynamic systems such as:

— stationary states which are equilibrium points (fixed points), or periodical 
solutions (cycles); which can be stable, or unstable;

— trajectories (invariant curves) passing through saddle singularities of two 
dimensional systems;

— stable and unstable manifold for a dimension greater than two;
— boundary, or separatrix, of the influence domain of a stable (attractive) 

stationary state, called domain of attraction, or basin-,
— homoclinic, or heteroclinic singularities-,



— or more complex singularities of fractal, or nonfractal type.

The qualitative methods consist in the identification of two spaces associ
ated with the map (iteration, recurrence relationship). The first space, called 
phase space (defined by the map variables), is related to the nature of the above 
singularities. The second space, called parameter space, characterizes the sin
gularities evolution when the system parameters vary, or in presence of a con
tinuous structure modification of the system (definition of a function space), by 
identification of the bifurcation sets, loci of points boundary between two dif
ferent qualitative changes. In the dynamics framework an iteration (equivalent 
denominations: recurrence relationship, map) is considered as a mathematical 
model of a discrete dynamical system. Since 1960, the important development 
of the computer means has given a large extension to the numerical approach 
of the problems of dynamic systems. Such an approach constitutes a power
ful tool, when it is associated with the qualitative, or analytical, methods. In 
particular such a “mixed” approach has permitted to understand the complex 
structure of basins, and their bifurcations, that is the change of their qualitative 
properties in presence of parameter variations, cf. [7].

The paper is limited to two-dimensional Schroder’s equations with real vari
ables considered in the framework of the qualitative approach. This implies to 
define different classes of problems associated with basin boundaries (singular 
sets) of different nature. So problems involving invertible iterations, noninvert- 
ible ones, iterations defined by functions with a vanishing denominator must 
be differentiated.

The first part is a reminder of the Julia-Fatou’s results. It is followed by 
the presentation of the matter related to two-dimensional maps not satisfying 
the Cauchy-Riemann conditions. The considered maps are firstly invertible, 
then noninvertible, without vanishing denominators in these two cases. The 
case of a vanishing denominator is dealt with in the last part.

2. Reminder of the Julia-Fafou's results

Let
z ' = R ( z )  (1)

be a one-dimensional iteration (or map, or recurrence relationship, or substitu
tion), R(z) being a rational function of the complex variable z, supposed not 
being of “fundamental circle” type. For simplicity sake it is assumed that the 
map has a unique attracting stable fixed point O, S =  R '(0) is its multiplier, 
|S| <  1, 5 ^ 0 .

Let E  be the set of all the unstable cycles generated by the iteration. 
Julia and Fatou [l]-[3] proved that the derived set E 1 of E  contains E  and 
is perfect. They showed that la structure de E' est la meme dans toutes ses 
parties, which means that the E 1 structure is self-similar, called fractal from



1976. The set E 1 can be either continuous, or discontinuous, it constitutes 
the set of essential singularities for any function limit of functions, extracted 
from an iterated sequence. It is also the set, the iterates of which do not form 
a normal sequence in the Montel sense. E 1 is the basin boundary of O, i.e., 
the boundary of the open domain of convergence toward O. It contains the 
whole set of the increasing rank preimages of the points of E. When it is a 
continuous set, the basin is generally disconnected, and made up of infinitely 
many disjoint parts. Then the part D0 containing O is called the immediate 
basin, it includes a critical point (image of the point at which j ß  =  0) of R(z), 
and may be multiply connected with infinitely many holes.

The Fatou’s contribution to the Schröder equation,

7  [R(z)] =  S-y(z), (2)

constitutes a particular case of more general functional equations considered in 
Chap. 7 of [3]. The main result states:

The fundamental solution of the functional Schröder equation is a holo- 
morphic function inside the immediate basin Do of O. Inside this domain 
it has infinitely many zeros having as limit points all the points of the 
immediate basin boundary dDo- In the neighborhood of each of these 
boundary points, the function is completely indeterminated and takes 
all the values except infinity. Then the points of the immediate basin 
boundary are essential singular points of 7 (2 ).

The domain of existence of the function j (z )  coincides with the connected 
domain of convergence (containing O) of the infinite product which permits 
to define 'y(z). The total basin of O may be disconnected. Then it is made 
up of the immediate basin D0 and infinitely many domains which are the 
“arborescent” infinite sequences of its increasing rank preimages. Let D\ be a 
rank-one preimage of D0, different from D0. So inside D\ a function (z) is 
defined. The variable z being in D \, R(z) is in D0 and one has:

S 7i(^ ) ='j[R (z)].

When ^ is inside D0, the function y(z) satisfies (2). A generalization of a 
process of analytic continuation would give 71 {z) as the continuation of j(z )  
inside D\. But in general D\ and D0 have no common points. So it would 
be necessary to find some lines out of the total basin, having contacts with 
the boundary, and leading along such lines to a uniform convergence of the 
expressions defining 'y(z). Until now it seems that this process has not been 
realized. So the functional equation defines infinitely many analytical functions 
having different bounded domains of existence. In the framework of the qualit
ative theory of dynamical systems, the solution y(z) of the Schröder equation is 
defined by the singular set made up of the zeros of 'y(z), which are the success
ive preimages of O in infinite number inside D0, and the points of the boundary 
dD 0 C E 1 of the immediate basin of O.



It is worth noting that the one-dimensional map (1) of the complex variable 
z =  x +  jy , j 2 =  —1, is equivalent to the two-dimensional map with real 
variables:

x' =  f (x ,y ) ,  y '= g (x ,y ) ,  (3)
the functions f (x ,y ) , g(x,y) satisfying the conditions of Cauchy-Riemann:

9f_ =  d l  df_ =  _dg_ 
dx dy ’ dy dx'

An example illustrating the properties of the complex set dD 0 is given by 
the map:

f (x,y)
3x
T

3 z - z 3
z =  ■ 

x3 — 3xy2 . . 3w y3 — 3x2y
9(x,y) =  {  +  V— r ^

(5)

The origin is an unstable fixed point. This map has two stable fixed points 
(x =  ± 1 , y =  0). The set E' made up of double points is everywhere dense. 
It is formed by the union of infinitely many closed simple Jordan curves, every 
points of one of these curves being the limit points of similar curves out of the 
one considered, their sizes tending toward zero, cf. [1]. The whole fractal set 
E 1 is symmetric with respect to the two axes. Figure 1 (see p. 74) represents 
the basin of each of the two stable fixed points from two different grey shades, 
and an enlargement of a basins part. The domain of existence of the solution of 
the Schroder equation related to one of the stable fixed point is its immediate 
basin.

3. Two-dimensional maps not satisfying the Cauchy-Riemann conditions

3.1. Difficulties generated by the problem

Consider the two-dimensional map (3) with real variables, the functions 
f (x ,y ) ,  g(x,y) being analytic, and not satisfying conditions (4). Denote this 
map by T, and put X  =  [x,y]. The map (3) can be written in the form 
X' =  T X . Let 0 (0 ; 0) be a stable fixed point of T, i.e., with multipliers 
0 <| Si |< 1, i =  1,2.  Consider the corresponding Schroder’s equation:

^ { x ' , y ' )  =  s a i {x,y)\, or r ( T X )  =  ST(X),  (6)

with T =  [71,72], S  =  [S i ,  S2]. In the case of a stable cycle of period (or order) 
k, i.e., made up of k consequent points verifying: T k(X) =  X , T m(X )^ X , 
0 < m < k ( k  =  l  gives a fixed point), the conclusions will be the same by 
considering T k in (6).

An outline of extension of the Fatou’s results would be given remarking 
that, if X  varies in the whole immediate basin D0 of the fixed point 0 (0 ; 0), it 
would seem reasonable to conjecture that the infinite products which define



Fig. 1. Map (5). Basins of the fixed points (x =  + 1 ; y =  0; clear grey) 
and (x =  — 1; y =  0; dark gray)



T (X ) are uniformly convergent inside all close domains fully interior to D0. 
Then T (X ) would be analytic inside D0 and would satisfy (6) for each of its 
points. In this case the boundary dD 0 of the immediate basin would belong 
to the singular set related to T (X ). Therefore, in the framework of a qual
itative approach, the problem boils down to study the structure of dD0 and 
its qualitative modifications in presence of parameters variations. I think that 
such a conjecture is not true for all the iteration (or map) forms. It depends 
on the nature of the map, which in particular implies the consideration of the 
following classes of problems:

(a) T  is a diffeomorphism  defined by functions without canceling denomin
ator,

(b) T  is a noninvertible map defined by functions without vanishing denom
inator,

(c) For each of the two last cases T  is defined by functions with vanishing 
denominator.

For the two-dimensional maps considered now it is important to note that 
dD 0 loses the properties of the perfect set E' mentioned in Sec. 2. Generally 
the new situations also present difficulties explained as follows. In the dynam
ics approach the knowledge of cells, giving the same qualitative behavior of 
solutions in the parameter space, is of prime importance for the analysis and 
the synthesis of continuous, or discrete mathematical models. On the bound
ary (bifurcation set) of a cell, a dynamic system is structurally unstable. In 
order to identify the difficulties, it is necessary to remind that the study of 
ordinary differential equations can be made via a Poincaré section leading to a 
map, the effective dimension of which is smaller. So a three-dimensional flow 
(vector field, or autonomous ordinary differential equation) leads to the for
mulation of a two-dimensional invertible map. In 1966 Smale showed that for  
n-dimensional vector fields, n >  2, structurally stable systems are generally not 
dense in the function space, which does not occur for n =  2. This means that 
p-dimensional maps, p ^ 2, have the same properties. So it appears that, with 
an increase of the problem dimension, one has an increase of complexity of the 
parameter (or function) space. This complexity appears for flows from the case 
n =  3, or for maps from the dimension p =  2. It results that the boundaries 
of the cells defined in the phase space (basins), as well as in the parameter 
space, have in general a complex structure which may be fractal (self-similarity 
properties) for n-dimensional vector fields, n >  2, and for p-dimensional maps 
with p~^2 .

In 1979 Newhouse stated that in any neighborhood of a Cr-smooth (r ^  2) 
dynamical system, in the space of dynamical systems, there exist regions for 
which systems with homoclinic tangencies (then with structurally unstable, 
or nonrough, homoclinic orbits) are dense. Domains having this property are 
called Newhouse regions. This result, as completed in [4], asserts that systems
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Fig. 2. Map (7). Basin of the fixed point <72 (grey), and basin of the period 
3 cycle (black), (a) a  =  0.4, b =  0.6. (b) a =  0.92, b =  0.7.



with infinitely many homoclinic orbits of any order of tangency, and with in
finitely many arbitrarily degenerate periodic orbits, are dense in the Newhouse 
regions of the space of dynamical systems. This has the important consequence 
concerning the dynamical properties:

Systems belonging to a Newhouse region are such that a complete study of 
their dynamics and bifurcations is impossible.

More particularly, many of the attractors obtained numerically contain a 
“large” hyperbolic subset in presence of a finite, or an infinite number of stable 
periodic solutions. Generally such stable solutions have large periods, and nar
row “oscillating” tangled basins, which are very difficult to display numerically. 
So it is only possible to consider some of the characteristic properties of the sys
tem, their interest depending on the nature of the problem nature, cf. [5]. The 
general problem of defining globally, and not locally, the solution of the func
tional equation (6) suffers from such limitations, due to the complex structure 
of a basin boundary. In the case of two-dimensional non-invertible maps this 
complexity increases, due to the introduction of another type of singularity: 
the critical curve, locus of points having two coincident rank-one preimages.

3.2. Diffeomorphisms without canceling denominator

Such maps, being invertible, have the important property: the basin D of 
an attractor is always simply connected, that is the immediate basin coincides 
with the total basin and contains no hole. In the simplest case, i.e., in absence 
of homoclinic and heteroclinic points, in general the boundary dD  of D belongs 
to the stable manifold of some saddle cycles of period k (k =  1 corresponding 
to a fixed point). Locally this stable manifold can be defined by the series 
expansion given by S. Lattes. Its global determination is obtained by using 
the terms of the series until a given rank as a “germ” in a numerical method, 
for constructing dD, which belongs to the singular set of the solution of (6). 
Another numerical method consists in a scanning of the phase plane (x,y), 
which checks the convergence of the iterated sequence generated by each pixel 
of this plane as an initial condition. For each of these two methods it is possible 
to control the precision of the result.

Figure 2 (see p. 76) shows a type of basin (with fractal properties) obtained 
from the map:

x' =  1 — ax2 + y ,  y' =  bx (7)

which has two fixed points, q\ (x i, bx\), and <72(2:2, 62:2), where

X 2 := i ( b ~ 1 +  ^ ) ; A : = ( 1 - fe)2 +  4«-

For a =  0.4, b =  —0.6, q\ is a saddle point, and q-2 is asymptotically stable. 
The basin D of q-2 is given by the grey marked region of Fig. 2a, the white one 
being the domain of divergence. It is bounded by the stable manifold of the



saddle </i, W s {q\) =  dD, a branch going to infinity. Such a parameter value of 
the plane (a, b) belongs to a region of the parameter plane, called Morse-Smale 
region, for which a unique attractor exists, with absence of homoclinic points, 
cf. [6]. It results a simple structure of the basin boundary, and then a “simple” 
singular set related to the solution of the Schröder equation (6).

Fig. 2b corresponds to a  =  0.92, b =  —0.7, a parameter point out of the 
Morse-Smale region, leading to the presence of homoclinic and heteroclinic 
points. The grey part is the basin of the stable fixed point q-2, the dark one 
is the basin of a stable period three cycle, the white region gives rise to diver
gence. The basins of q-2 and that of the stable period three cycle are separated 
by the stable manifold of its “satellite” period three saddle (i.e., the two period 
three cycles come from the same fold bifurcation). The two basins present in
finitely many more and more narrow oscillating parts, tangled with the domain 
of divergence. A section of such regions by a line gives a Cantor set. The stable 
manifold of the saddle q\ is a line of accumulations of the above oscillations. 
For this situation it is worth noting that the parameter point is in a Newhouse 
region. Therefore a numerically obtained image as Fig. 2b cannot make appear 
other eventual stable states having large periods, and very narrow “oscillating” 
tangled basins. This situation increases the complexity of the true “mathemat
ical” structure of the basin of q2, with its consequences on the structure of the 
singular set of the solution of the Schröder equation (6). Nevertheless the total 
basin being simply connected, an extension of results of Sec. 2 might present 
no difficulty in principle. In such a case the only “practical” difficulty lies in 
the fact that the domain of existence of the solution of (6) has a very complex 
structure. We shall say that this domain permits to define the “global” solution 
of Schroder’s equation (6).

3.3. Non-invertible maps without canceling denominator

3.3.1. Difficulties generated by 'global* solution of Schroder's equation in the simplest case

This section essentially concerns a family of two-dimensional smooth non- 
invertible maps, X  —> T (X ), X  =  [x,y\, such that the critical curve L C  is 
made up of only one branch separating the plane M2 in two open regions Z0 
and Z2, the points of which have respectively 0 and 2 preimages (or ante
cedents or backward iterates) of rank one. The two real preimages of a point 
X  belonging to Z-2 are given by the two inverses T1_ 1(X ), T2_ 1(X ) of T. Such 
noninvertible maps (which are the simplest ones) are called of (Z$-Z2) type 
(cf. [7]). Their study is indispensable before considering more complex types, 
which locally may have the (Z0-Z2) properties, plus others induced by more 
than two first rank preimages in certain regions of M2. The curve LC  is the 
locus of points having two coincident rank-one preimages, located on a curve 
L C - 1, with LC  =  T[LC-\]. If the map T  is smooth, L C - 1 is contained in the 
set on which the Jacobian J  of T  vanishes.



Denote by R i , R ‘2 the two open regions such that L C - i =  R\ r]R2, and for 
every X  £ Z2, let T^~1(X) £ R \, T2- 1(X ) £ R2 be the two first rank preimages 
of X . l i X  £ LC  then T ^ ( X )  =  T2- 1(X ) € L C - 1.

It is recalled that a closed and invariant set A is called an attracting set 
if some neighborhood U of A exists such that T(U) c  U, and T n(X) —> A as 
n —> oo, MX £ U. An attracting set A may contain one or several attractors 
coexisting with sets of repulsive points (strange repulsors) giving rise to either 
chaotic transients towards these attractors, or fuzzy boundaries of their basin, 
cf. [6], [7]. The set D =  Un^o T - n(U) is the total basin (or simply: basin 
of attraction, or influence domain) of A. That is D is the open set of points 
X  whose forward trajectories (set of images of X  with increasing rank) con
verge towards A. D is invariant under backward iteration T -1 of T, but not 
necessarily invariant by T :

T ~ 1{ D ) = D , T(D) C D. (8)

In (8), the strict inclusion holds iff D contains points of Z0, i.e., points 
without preimages. The relations in (8) hold also for the closure of D. The 
boundary (or frontier) of D is denoted by dD. The boundary dD  is defined by 
the geometrical equality dD  =  D n C'(D) where C'(D) denotes the comple
mentary set of D. This boundary satisfies:

T ~ 1(dD) =  dD, T (d D )C d D  (9)

We remark that T ~ 1(D) =  D implies that D must contain the set of 
preimages of any of its cycles, that is dD  must contain the stable set W s  of 
any cycle of T  belonging to dD, while T(dD ) C dD  means that the images of 
any of its points belongs to dD  n Z2. It is worth noting that, for unstable node 
and focus cycles, the stable set W s  is made up of the set of increasing rank 
preimages of cycle points (such a set does not exist in the case of an invertible 
map). For a saddle cycle W s  is made up of the local stable set W;s , associated 
with the determination of the inverse map which let invariant this cycle, and 
its increasing rank preimages.

Properties (8) and (9) with the strict inclusion are illustrated by the fol
lowing example, cf. [7]:

x' =  y, y ' =  O.&x +  0 .02y +  x2 +  y2, (10)

leading to a simply connected basin of the stable fixed point 0 (0 ; 0). The curve 
of coincident first rank preimages L C -1 is x =  —0.4, and the critical curve LC  
is the parabola y =  x2 + 0 .02a; — 0.16. The region i?i is defined by x >  —0.4, and 
R 2 by x <  —0.4. The fixed point 0 (0 ; 0), O £ R \, is a stable node. A second 
fixed point P(0.09; 0.09), P  £ R\, is a saddle with multipliers of opposite signs. 
Figure 3 (see p. 80) represents the boundary dD  of the simply connected basin 
D of O. This boundary consists of the stable invariant set W s  of P. The



determination of T -1 which let O and P  invariant leads to T f 1. The set W f  
is the open segment ]B ,B _ i[, where B _ i belongs to L C - i, B  =  T (B _ i) , and 
W s =  W f  U T ~ 1(Wls ) U T ~ 2(Wls ). P  has only one first rank preimage P _i 
different from P. The two first rank preimages of P _ i  are noted B '_2 and B'P2 
in Fig. 3. Finally, T _ 1(C) =  C _i € LC-\. The basin of O is simply connected, 
and satisfies: T(D) =  D n Z2 C D.

More generally a basin D may be connected, or disconnected. A connected 
basin may be simply connected, or multiply connected (which means connec
ted with holes). A disconnected basin consists of a finite or infinite number 
of connected components (which may be simply or multiply connected). The 
properties and bifurcations related to these different situations will be con
sidered in the next section. If A is a connected attractor (particular example: 
A is a fixed point), the immediate basin D0 of A, is defined as the widest 
connected component of D containing A.

Let us return to the example of the map (10), where the two fixed points 
O and P  are located in the region R\. Consider the Schroder equation related 
to the stable fixed point O and note that the following properties:

T(D  n Z0) =  D n Z2, T(D r\R 2) =  D r\R1 r\Z2

are satisfied. Using the Fatou’s arguments, the extension of Sec. 2 results might 
present no essential difficulty in the region D fl R i n Z2, where the inverse of 
T  which let O invariant is T ^ 1. Then one can conjecture that this region is at



least a sufficient domain of existence of the solution of (6). It is not the case 
in the complementary region inside the basin D. Indeed a process of analytic 
continuation is not evident in this last region.

3.3.2. Problems generated by "global* solution of Schroder’s  equation in more general ca se s

The basin boundaries, belonging to the singular set of the solution of 
Schroder’s equation, can have very complex structure with fractal properties de
scribed in [7]. From parameter variations they can undergo qualitative changes, 
related to bifurcations resulting from the contact of the basin boundary with a 
critical curve, or one of its image of a certain rank. The general case induces 
more complex situations with respect to the (10) one. This is due in particular 
to a large variety of qualitative modifications, with different types of fractaliz- 
ation, undergone by an immediate basin, and so by the domain of existence of 
the solution of the corresponding Schroder’s equation.

The following example dealing with the map T :

x' = y ,  y' =  ( |  -  ( z 2 +  y1 -  6 |  -  Xy +  ^  +  x, (11)

illustrates such modifications, when A varies in the interval 1.05 <  A <  4.8. For 
the case A =  4.1 see Fig. 4 below.

4 1 0 0 0 0

With the map T  the fixed point 0 (0 ; 0) is always a stable node whatever 
be the parameter A. The ’’global” solution of Schroder’s equation, that is the



domain of existence of the solution of (6), is considered for this fixed point O. 
It can be deduced from the detailed study of the basin modifications related to 
O described in [7] (cf. pages 439-446). Figure 4 gives an idea of the complexity 
of the O basin (grey marked) for A =  4.1. This basin is multiply connected 
with a fractal structure.

3.4. Maps defined by functions with canceling denominator

Such maps T, invertible or non-invertible, introduce new types of singular 
sets, which has consequences on the determination of the domain of existence 
of the solution of the Schroder’s equation (6). The first singularity concerns 
the set of nondefinition Ss, locus of points in which at least one denominator 
vanishes, and the set of its successive preimages. The map is well defined 
provided that the initial condition belongs to the set E  given by:

OO

E  =  M2 \ ( J  T ~ n{5s).
n=0

Indeed the points of the singular set Ss, as well as all their preimages of 
any rank, which constitute a set of zero Lebesgue measure, must be excluded 
from the set of initial conditions in order to generate well defined sequences by 
iteration of T, so that T  : E  —»• E.

Many other types of basin bifurcations, generated by two-dimensional non- 
invertible maps, and so many other qualitative changes of the existence domain 
of the solution of (6) are possible. Some of them are described in [7].

The presence of Ss is followed by two other singular sets: focal points and 
prefocal curve. Roughly speaking a prefocal curve is a set of points for which at 
least one inverse exists, which maps (or “focalizes”) the whole set into a single 
point, called focal point, which belongs to 8S . More details on the consequences 
of such singularities on the structure of a basin, and on its bifurcations are given 
in [8]. It is evident that the domain of existence of the solutions of Schröder 
equation (6) must not contain a prefocal curve. Then when a prefocal curve 
cuts the immediate basin of a stable fixed point, separating this basin into two 
regions, the one which does not contain the fixed point must be excluded from 
the domain of existence of the solution of the Schröder equation (6). Indeed a 
process of analytic continuation might fail on the prefocal curve.

4. Conclusion

This text has the limited purpose to identify the difficulties generated by 
the determination of the domain of existence of the solution of a Schroder’s 
equation, related to a two-dimensional real iteration (map) process, defined by 
functions which do not satisfy the Cauchy-Riemann conditions. The qualitat



ive theory of dynamical systems permits to outline an answer from the notion 
of immediate basin of the stable fixed point of the considered iteration, and the 
singular sets generated by this iteration. It is worth noting that the dynamical 
approach permits to deal with another application of Schroder’s equation. It 
concerns a method of construction of a class of iterations (recurrences, maps) 
giving rise to chaotic behaviors, which can be described from elementary func
tions. This process, taken on the pages 33-45 of [7] from results published in 
1982, also leads to the definition of multi-dimensional function having proper
ties similar to those of the Chebyshev ’s polynomials.
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Sur les généralisations du wronskien

Résumé. En généralisant le wronskien on montre que l’évanouissement de 
ce wronskien est équivalent à la dépendance linéaire du système des fonc
tions. Le théorème analogue est donné pour la décomposition d’une fonc
tion h(x, y) à la forme ai(x)bi(y) +  ■ ■ ■ +  an (x)bn(y) par la généralisation 
du wronskien de h. On formule aussi un théorème lié à un problème 
ouvert concernant cette décomposition.

1. On sait bien que l’évanouissement du wronskien

W i f u - . - J n )

f l(x ) ,  •••, fn(x)
f l ix ) ,  •••, fh ix )

étant une condition nécessaire pour la dépendence linéaire des fonctions / 1, . . . ,  
n’est pas la condition suffisante (le contre-exemple est donné déjà par 

G. Peano [8] en 1889).
Il y a beaucoup des théorèmes qui donnent une liaison entre l’évanouisse

ment du wronskien et la dépendence linéaire des fonctions (voir la bibliographie 
dans [5] et [10]).

On sait aussi [9] que l’évanouissement du déterminant de Casorati

f i (x i) ,  - f n(x 1)
f i ( x 2), - f n(x2)

/ l  (Xn ), • • • , fn (Xn )

est une condition équivalente à la dépendence linéaire des fonctions / 1, . . . ,  /„ .
On peut considérer le wronskien généralisé du type de Casorati sous la 

forme suivante
f i (xi ) ,  f n (x 1)
fi(X2), fn(X2)

/ i " _1)(a;„), . . . ,  / i " _1)(a;„)

AMS (2000) Subject Classification: 26B40, 15A03, 15A15.



Il est vrai le 

T h éorèm e 1
Le fonctions / i , . . . , / n complexes d ’une variable complexe différentiables 

sur un ensemble E  connexe sont linéairement dépendantes si et seulement si le 
wronskien du type de Casorati de ces fonctions reste nul pour tous x \ ,.. . ,  x n 
dans E .

Démonstration de “seulement si”. Supposons que f i ,  - ■ ■ , f n soient linéai
rement dépendantes, c. à d. qu’ils existent des nombres complexes au, . . . ,  a„ 
pas tous nul et tels que

et pour tous x \ , . . . ,x n dans E. Puisque a i , . . . ,  a„  ne sont pas tous nul le 
wronskien du type de Casorati reste nul.

Démonstration de “si”. Nous allons faire la démonstration par l’induction 
par rapport à n.

Pour n =  1 la supposition nous donne f i(x )  =  0 pour chaque x dans E, 
donc f i  est linéairement dépendante.

Supposons que notre implication a lieu pour n et que le wronskien du type 
de Casorati de degré n +  1 pour les fonctions f i  f n+1 reste nul pour
tous x i , . . . ,  xn, xn+\ dans E.

Considérons les deux cas suivants

a) ils existent les points x-i, . . . ,  x n+\ dans E  pour lesquels la matrice

b) le rang de cette matrice est plus petit que n pour chaque x-i, ■ ■ ■ ,x n+\

Dans le cas a) en développant le wronskien du type de Casorati des fonctions 
/ i , . . . , / „ + i ,  pour xi arbitraire dans E  et x-i, . . . ,  xn+\ comme dans a), par 
rapport à la ligne première nous recevons la thèse.

Dans le cas b) d’après la supposition inductive chaques n des fonctions 
f { , . . . ,  f'n+i sont linéairement dépendantes, donc ils existent des nombres 
a i , . . . ,  a„  pas tous nul tels que

oii f i  (x) H-------\-anf n(x) =  0

pour chaque x dans E. Il en résulte que

a i/iW (Xi) ------- 1- a „ /W  (xi) =  0 pour i =  0 , . . . ,  n -  1

a le rang égal à n ou

dans E.

« i f[{x ) +  - - - + a nf n{x) = 0  

pour chaque x de E , d’où il existe c tel que



<*1/ 1(2;) H------- ha„/„(ar) =  c.
Si c =  O les fonctions / 1, . . . ,  f n sont linéairement dépendantes, donc aussi les 
fonctions f i ,  ■ ■ ■ , f n, fn + i sont les mêmes. Si c ^  0 nous pouvons supposer 

sans la restriction de la généralité, alors

( ^ - ) / i ( a ; ) +  -• +  ( ^ 7 ) /„ (x) =  i .  (1)

Aussi les fonctions / 2, . . . ,  f'n+i sont linéairement dépendantes, donc ils existent 
des nombres 02 , - ■■ ,Pn+ 1 pas tous nul pour lesquels

d’où
#2/2(2;) +  ••• +  Pn+lfn+l (2;) =  0,

/̂ 2/ 2(2;) + ----- 1- # n + i/ 71+ 1(2;) — d
pour un nombre complexe d. Si d =  0 la démonstration est terminée, si d /  0 
nous avons

( f  ) h {x )  + ' ' ' + ( ^ ï 1) fn+lix) = L (2)
En comparant les membres gauches dans (1) et (2) nous voyons que les fonctions

a i
f i , . . . ,  /„ + 1 sont linéairement dépendantes puisque —  ^  0 .

c
La démonstration du Théorème 1 est donc terminée.

2. Pour la fonction h(x, y) de deux variables l’évanouissement du wronskien 
de la forme

h(x,y), hv(x,y), . . . ,  hyn-i{x ,y )
hx(x,y), hyx(x,y), . . . ,  hyn- i x(x, y)

hxn-i {x, y'), hyXn-1 (x , y), . .  •, hyn-ixn~i {x, y') 

est une condition nécessaire pour cette fonction soit de la forme

h(x,y) =  ai(x)bi(y) H------- 1- an-i(x )b n- i(y ) ,  (3)

n’étant pas en même temps de la condition suffisante (le contre-exemple premier 
est donné par Th.M. Rassias en 1986, voir [9] ou [10] p. 32).

Si nous remplaçons le wronskien plus haut par le déterminant du type de 
Casorati de la fonction h:

h (x i,y i) , h (x i,y 2), . . . ,  h (x i,y n) 
h(x2,Vi), h(x2,y2), . . . ,  h{x2,y„)

h{xn,y i), h(xn,y2), . . . ,  h(xn,yn)

son évanouissement est équivalent à la forme (3) de la fonction h (le résultat 
de F. Neuman, voir [7] ou le Théorème 22.2.1 à la page 36 et la Remarque 2.2.2
(ii) à la page 38 dans [10]).



O n p eu t con sid érer le w ronskien de la  fon ction  h  du ty p e  de C a so ra ti

h ( x  1 , 2/1 ) ,  h v ( x 1 , y 2),  h vn - i  ( x i , y n )
h x { x 2 , y i ) ,  hyX ( x 2 , 2/2 )) •••) h y n ~ ix { x 2 , y n )

h xn - i  (x n ? 2/1 )? hyXn—i (x n , y2 ) , • • • , hyn—i x n—i (x n , 2/n)

N ous avons le 

T h éorèm e 2
P o u r  «n e  fo n c t io n  h  com plexe  de d eu x  variables com plexes, ayant les 

d érivées  ju sq u  ’à

hyn—1xn~ 1

s u r  X  x Y ,  où X  et Y  sont des ensem bles  c o n n ex es  dans  C , le w ronskien  du type 
de Casorati reste  n u l  p o u r  tous x,\, . . . ,  x n dans X  et y \ , . . . ,  yn dans Y  si et 
s e u le m e n t  si la fo n c t io n  h  est de le f o r m e  (3 ) ,  où au : X  — > C  e t b k - Y  — > C  
p o u r  k =  1 , . . .  , n  — 1 .

D é m o n stra t io n  de “s i ” . L e  w ronskien du ty p e  de C a so ra ti de h  c ’est le 
m êm e que le w ronskien du ty p e  de C a so ra ti  des fon ctions

h ( x i , P i) ,  h y ( x ! , y2) , . . . ,  h yn-i  ( x i , yn )

com m e les fon ction  de Xi avec y \ , . . . ,  y n fixés a rb itra ire m e n t d ans Y .  D ’ap rès  
le T h é o rè m e  1 il suffit donc m o n tre r que ces fon ctions son t linéairem en t dépen
d an tes dans X .  N ous avons

h ( x  1 , 2/1 ) =  a i ( æ i ) 6 i ( j / i )  H---------h a „ _ i ( x i ) 6 „ _ i ( 2/ i ) ,

h y i ( x i , y i + i )  =  a i ( æ i ) 6 ^ ( j / i + i )  H--------- 1-

p ou r i =  1 , . . . ,  n  — 1. Il en résu lte  que les n  fon ctions

K x \ , y \ ) , h y { x i , y 2) , . . . , h yn- x { x i , y n )

son t des com binaisons linéaires des n  — 1  fon ctions a i ( a q ) , . . . ,  a „ _ i ( a q )  ( y i , . . . ,  
yn son t fixés! ) ,  donc elles doivent ê tre  linéairem en t d ép en d an tes.

D é m o n stra t io n  de “s e u le m e n t  s i ”. P a r  l ’in d u ction  p ar ra p p o rt à  n .
P o u r n  =  1 la  th èse  est évid en te. Supposons l’im p lication  à  p rou vée p our  

n  — 1 e t que le w ronskien (4 ) reste  nul e t con sid éron s les d eu x cas  siuvants:

a ) ils e x iste n t x 2 , . . . , x n dans X  e t y2 , . . . ,  yn dans Y  tels que le d é term in an t

bjyX{x 2 , y 2),  • • • )  kiyn-\x {x 2l, y rf)

hyx71-1 ) y 2 ) )  • • • ) hyn — i xn — i ( x n , y n )

est différent de zéro  ou



b) ce d éte rm in a n t reste  nul p our to u s x 2 , . . . ,  x n d ans X  e t p o u r to u s  
2/2 d ans Y .

D an s de la  cas  a ) en p o san t d ans (4 ) p ou r x 2 , . . . ,  x n e t y2 , .  ■ ■  , y n les 
nom bres qui e x is te n t d ’ap rès a ) e t en d évelop pan t le w ronskien (4 ) p a r ra p p o rt  
à  la  ligne p rem ière nous p ouvons co m p te r h ( x i , y i )  sous la  form e (3 ) .

D an s le cas  b) puisque le d éte rm in a n t (5 ) c ’est le w ronskien du ty p e  de 
C a so ra ti  de la  fon ction  h yx de d egré n  — 1, d ’ap rès la  supp osition  in d uctive  
nous avons

h y x ( x , y ) =  ai (x )b i  (y)  H--------- a n - 2 (x ) b n - 2 (y) ,

d ’où
h ( x , y )  =  a i ( x ) b i ( y )  H--------- a n - 2 (x ) b n - 2 (y) +  c ( x )  +  d (y )  (6 )

p ou r certa in e s  fon ction s c  : X  — > C  e t d  : Y  — >■ C .
L e  w ronskien (4 ) c ’est le w ronskien du ty p e  de C a so ra ti  des fon ctions  

h ( x ,  y i ) ,  h v ( x , y 2 ) , . . . ,  h yn-i  (x ,  yn ) co m m e les fon ctions de x  av ec y i , - . . , y n 
fixés. P u isq u e ce w ronskien reste  nul, a lors ces fon ctions sont linéairem en t 
d ép en d an tes, d onc ils e x iste n t des fon ctions a u  : Y n — > C  p o u r k =  1 , . . . ,  n ,  
telles que ctk(yi, ■ ■ ■ , y n ) ne sont p as to u s nul p ou r chaque (2/1 , • • •, yn ) d ans Y n 
et

a i ( y i , . . . , y n ) [ni (x )  6 1  (2/ 1 ) H--------- h a n - 2 (x ) b n - 2 (y i )  +  c ( x )  +  d(yi)\

+  a 2 ( y i , . . . , y n ) [a i (x )b ' i (y 2 )-\--------- a n - 2 (x)b'n _ 2 (y2 ) +  d ' (y 2 )\

+  •••

+ a n ( y i , - - - , y n ) | a i ( a ;) ^ "  1 ) (2/ „ ) H--------- h a „ _ 2 ( x ) 6 ^ _ 21 ) (y „ ) +  d ("  ^ ( y n )

=  0 .

C onsidérons quelques ca s . S ’ils e x iste n t 2 /1 , • • • ,yn te ls  que a.\ ( y \ , . . . , y n ) ^  0 
nous p ouvons ca lcu ler c ( x )  de l ’égalité  plus h a u t com m e la  com b in aison  linéaire  
de a i  ( æ) , . . . ,  a „ _ 2  (x )  e t d ’ap rès (6 ) nous avons la  th èse . Si a i  reste  nul to u jo u rs  
nous avons

\b'i(y2)a 2 H- - - - - - - - h 6 ^ "  ai(x)

+  . . .

+  { ^ - 2 ( 2 2 2 ) 0 : 2  H- - - - - - - - h b ^ S ^ ( y n) a n }  an- 2 (x)

+  OL2d '(y 2 ) + ------ 1- a n d^n ^  (yn )

=  0

S ’ils e x is te n t y2 , - . . , y n tels que un des p aren th èses {  }  est différent de zéro  
nous calcu lon s la  fon ctions “a ” qui se tro u v e  à  cô té  de c e tte  p aren th èse  p a r les 
fon ctions “a ” re sta n te s  e t la  form ule (6 ) nous donne la  th èse.



Si toutes les parenthèses {  }  restent nul pour tous 2/2, • • - , Un dans Y ,  dans 
ce cas aussi 0 ^ ( 2 2 2 )  +  • • • +  a nS'n~ v> (yn) =  0 et puisque a ç , . . . , a n ne sont 
pas tous nul le déterminant

d'(y2), d"(y3), •■ ■ . d ^ f o n )
61(2/2), 6” (2/3), • &i"_ 1) (2/« )

'«-2(2 /2),  ^ - 2 ( 2 / 3 ) ,  •• •, b{™Z2 ] (2/„)

doit ê tre  égal à  zéro  p our to u s 2/2 , • • •, yn dans y .  Il en résu lte  de T h é o rè m e  1 
que les fon ctions b ^ y ) , . . .  ,b'n_ 1(y),d'(y) son t linéairem en t d ép en d an tes. Ils 
e x iste n t donc des nom bres /ffi, . . .  ,(dn - i  Pas to u s nul e t tels que

Pib'iiy)  H---------1- /3n -2b'n _ 2 {y) +  /3n - i d ' ( y )  =  0 .

E n  ca lcu la n t d ’ici une des fon ctions 6 1 , . . . ,  bn - 2 , d  e t en p o sa n t c e tte  fonc
tio n  co m p tée  dans (6 ) nous recevon s la  th èse . Ç a  finit la  d ém o n stra tio n  du  
T h é o rè m e  2.

R em arq u o n s qu ’on p eu t recevoir le T h é o rè m e  1 d ’a p rès  le T h éo rèm e 2. E n  
effect il suffit con sid érer d ans le T h é o rè m e  2

"  y i - l
h ( x , y )  = 2 2 f i ( x ) _  p ou r ( x , y )  G E  x  C ,

i=  1 ' '

où f i ( x ) , . . . ,  f n (x )  son t com m e d ans le T h é o rè m e  1. D an s ce  cas  le w ronskien  
(4 ) de h  du ty p e  de C a so ra ti  est égal au  w ronskien du ty p e  de C a so ra ti  du  
sy stèm e d onc si ce w ronskien d ern ier est égal à  zéro , d ’ap rès le
T h é o rè m e  2 la  fon ction  h  est de la  form e (3 ) , d ’où

V  ( x ,  y) =  a i  ( x ) b [k) (y)  H--------- h a n - 1 (æ )6 ^ 2 i (y)

p ou r k =  1 , . . . ,  n  — 1. Il en résu lte  que

f j ( x ) =  h yj- i ( æ ,0 ) =  6 ^ _ 1 ) (0 )a i (a ;)  H--------- h b ^ Z p  (0 ) a „ _ i  (x )

p ou r j  =  1 , . . . ,  n ,  a lors les fon ction s / 1 , . . . ,  é ta n te s  les com binaisons linéai
res des fon ction s a i , , a „ _ i ,  son t lin éairem en t d ép en d an tes.

L a  raison n em en t plus h a u t n ’est p as la  d é m o n stra tio n  du T h é o rè m e  1, 
puisque d ans la  d é m o n stra tio n  du T h é o rè m e  2 nous profitons le T h é o rè m e  1. 
Il se pose d onc le

P ro blèm e

D on ner la  d é m o n stra tio n  du T h é o rè m e  2 ne p ro fitan t p as du T h é o rè m e  1.

3. N ous allons con sid érer le p rob lèm e su ivan t. E s t-c e  que si le ran g  de la  
m a trice  de W ronski de la  fon ction  h ( x , y ) :



/  H x,y), hy{x,y), . . ,  hyn-i(x ,y )  \
hx(x,y), hyx . , hyn~ix (x, y)

(7)

\ h xn -i(x ,y ), hyxn-i(x ,y ) , . • ? hyn-ixn~i (x , y) j
est égal h p  <  n pour chaque (x,y), alors la fonction h doit être de la forme 
ai (m)6i (y) H------- ap(x)bp(y)?

Le problème est suggéré par les deux théorèmes suivants:

T h é o r è m e  (A)
Si le rang de la matrice de Wronski des fonctions / 1, . . . ,  /„  réelles d ’une 

variable réelle de classe C" -1 est stable et plus petit que n, alors ces fonctions 
sont linéairement dépendantes [4] ).

T h é o r è m e  (B ) (F. Neuman — [7] ou [10] p. 30)
Si pour la fonction h ayante le dérivée hy„--\ x„ --\ continue, le déterminant 

de la matrice (7) est égal à zéro pour chaque (x,y) et le déterminant de la 
matrice analogue à la matrice (7) mais de degré n — 1 est différent de zéro pour 
chaque (x,y), alors h(x,y) =  ai(æ)&i(?/) H------- \- an- i(x )b n- i ( y ) .

Le Théorème (A) sera applique chez nous pour n =  2 et n =  3.
La réponse au problème plus haut est positive pour p  <  2 pour chaque 

n >  p  et pour p  =  2 et n =  3, si la fonction h est réelle des variables réelles, 
ayante les dérivés continues jusqu’à hyn- ix«-i .

Je  donnerai les démonstrations de ces faits.
Pour p  =  0 la thèse est évidente.
Passons au cas p  =  1. D’après le théorème de M. Cadek et J .  Simsa ([1] 

ou [10] p. 99) il suffit montrer que pour chaque point (xo,yo) dans I  x J ,  
où I  et J  forment des intervalles dans M, il existe un entourage de ce point 
tel que la fonction h est de la forme f(x )g (y)  dans cet entourage avec les 
fonctions f  et g telles que chaque est localement linéairement indépendante 
(c. à d. elle est linéairement indépendante, donc pas identiquement zéro, dans 
chaque sous-ensemble ouvert d’un entourage de xq o u  î/o). Remarquons qu’il 
suffit montrer que la fonction h est de la forme f(x )g (y), puisque si /  =  0 
dans un sous-ensemble ouvert d’un entourage de xq  o u  g =  0  dans un sous- 
ensemble ouvert d’un entourage de yo, alors la matrice (7) ne peut pas avoir 
toujours le rang égal à 1. Nous allons montrer ça par l’induction par rapport 
à n. Pour n =  2 notre théorème est démontré dans [6], mais plus bas je  donne 
une autre démonstration, en outre pour la commodité du lecteur (plus facile, je 
crois). (Rappelons que l’équation hhyx — hxhy =  0 c’est bien connue l’équation 
différentielle de d’Alembert).

Si h(xo,yo) 7  ̂ 0, alors h(x,y) ^  0 sur un entourage de (a?o, î/o)- Nous pou- 
vous supposer que h(x, y) >  0 sur cet entourage puisque dans le cas h(x, y) <  0 
nous pouvons replacer h par —h. L ’équation de d’Alembert a dans ce cas la 
forme



d2 In h(x,y) 
dxdy

d’où h(x,y) =  a(x)b(y).
Soit h2 (xo,yo) +  h2x(xo,yo) 7̂  0, donc hy(x,y) ^  0 sur un entourage E  de 

(xo,Vo) ou hyx(x,y) ^  0 sur un entourage E  de (a?o,î/o)- Nous allons démontré 
que

h(x ,y i), h (x ,y2) 
hx(x ,y i), hx(x ,y2)

0 pour chaque (x ,y i), (x ,y i) de E.

D ’après de Théorème 1 de [2] ils existent X(x) et r](x) tels que

h(x ,y i), h (x ,y2) 
hx{x,y{), hx(x, y2)

h (x ,y i), h(x, y2) — h(x, y\) 
hx{x ,y i), hx(x ,y2) -  hx(x, y{)

=  \{x) 

=  0

h(x ,y i), hy(x,î](x)) 
hx(x,yx), hyx (x,v(x))

d’après le Théorème 1 de cette note, puisque les fonctions y — > h(x,y) et 
y — > hx(x,y) sont linéairement dépendantes d’après le Théorème (A) plus 
haut. De plus le rang de la matrice

(  K x ,V i), h (x ,y2) \
\hx(x ,y i), hx(x,y2) J

est égal à 1, puisque dans le cas contraire il existerait un xq tel que h(xo,y i) =  
h(xo,y2) =  0 =  hx(xo,yi) =  hx (xo,y2), alors ils existeraient les x  et e tels que 
hy(xo,x)  =  0 =  hxy(xo,e),  en contradiction au choix de l’entourage E. Les 
fonctions x — >■ h(x ,y i)  et x — >■ h(x ,y2) sont donc linéairement dépendantes. 
Ils existent donc a (y i,y 2) et (3(yi,y2) tels que

a (y i,y 2)h (x ,y1) +  (3(y1,y2)h(x ,y2) = Q  et a 2(y!,y2) +  0 2(y i,y2) ±  0 .

Soit ÿ  tel que h(x, ÿ) ^  0. Dans ce cas

a(ÿ , y)h(x, ÿ) +  (3(ÿ, y)h(x, y) =  0

nous donne (3(y,y) ^  0 , puisque dans le cas contraire h(x,y) =  0 (a (y ,y ) ^  0 
dans ce cas) et ça est impossible. Nous avons donc

h(x, y) a(y ,y )
P(v, y)

h(x, y),

alors la forme exigée de la fonction h.
Dans le cas hx(xo,yo) ^  0 il suffit raisonner comme plus haut, en changeant 

x et y. Notre théorème est donc démontré pour n =  2.
Supposons maintenant que notre théorème est vrai pour la matrice de 

Wronski de la dimension n x n et que la matrice de Wronski de la fonction 
h de la dimension (n + 1 )  x (n + 1 )  a le rang égal à 1. Ils existent donc i et j  tels



que O ^  i, j  ^  n et hyixj (x0,y0) ^  0. Il existe alors un entourage de (27, y0) où 
hyixi (x, y) ^  0. Considérons tous les cas possibles.

a) Les indices i et j  sont tels que 0 ^  j  ^  n — 1. La matrice de Wronski 
de h de la dimension n x n a  donc le rang 1 sur un entourage de (xo,yo) 
et nous avons la thèse d’après la supposition inductive.

b) Soit i =  0 ou i =  1 et j  =  n. La matrice de Wronski de la dimension n x n
de la fonction hx a donc le rang égal à 1 dans un entourage de (27, 2/0), 
alors d’après la supposition inductive nous avons hx(x,y) =  f(x)g(y), 
d’où h(x,y) =  k(x)g(y) +  a(y), où k'(x) =  f(x ) .  Puisque hhyx—hxhy =  0, 
on a f(ag' — a'g) =  0. Si /  =  0 nous avons la thèse. Si /  ^  0 on a 
ag' — a'g =  0 et puisque g ^  0 dans le cas * =  0 (0 ^  hxn =  /(")</) et 
g' ^  0 pour i =  1 (0 ^  hyxn =  alors a(y) =  ag(y) pour un a
constant. Il en résulte la thèse.

c) Dans le cas * =  n et j  =  0 ou j  =  1 il suffit changer x et y dans le 
raisonnement plus haut.

d) Dans les cas 2 ^  i ^  n et j  =  n la matrice de Wronski de la fonction 
hyx de la dimension n x n a le rang égal à 1 sur un entourage de (27, 2/0), 
d’où hyx (x, y) =  f(x )g (y)  et de là hv(x,y) =  k(x)g(y) +  a(y), où k' =  f .  
Puisque

\iy%—i hyiXn hyihyi—ixn 0

nous recevons

aSi- 2\ y ) k ^ \ x ) g ^ i- 1\ y ) - a S i- 1\ y ) k ^ \ x ) g ^ i- 2\ y )  =  0 ,

d’où, puisque

0 ï  hyix„ =  V * - 1) , a ^ “ 2) (y) =  ag«-** (y)

pour un a  constant. Il en résulte que a(y) =  ag(y) +  w(y), où vu (y) est un 
polynôme de degré * — 3 (le degré du polynôme “0” est égal à —1), d’où 
hy(x,y) =  [k(x) +  a]g(y) + w (y ) .  Puisque hyhyixn —hyih yxn =  0 on a 
w{y)k^n\x)g^l~ 1\y) =  0 , d’oùw (y) =  0 , donc hy(x,y) =  [k(x)+a]g(y) =  
F(x)G (y).
Nous avons alors h(x,y) =  F (x )K (y ) +  b(x), où K ' =  G. Puisque

hxn-ihy,xn hy,xn -ih xn 0,
nous avons

b̂ n- 1\ x ) F ^ { x ) K ^ { y )  -  b̂ n\x)F^n- 1\ x )K ^ {y )  =  0 ,

d’où (x) =  (x) pour un 7  constant, alors b(x) =  7 F (x) +
p(x), où p(x) est un polynôme de degré n — 2. Il en résulte que h(x, y) =  
F (x)[K (y)  + 7 ] + p (x ) .  Puisque



h h y i x n h y i h x n  — O,

nous avons
p{x)F^n\ x )K ^ {y )  =  0, 

alors p(x) =  0, donc h(x, y) =  [K(y) +  y]F(x).

e) Le cas i =  n et 0 ^  j  ^  n est analogue.

La démonstration est donc terminée dans tous cas.
Nous allons donner la démonstration pour p  =  2 et n =  3.
D’après le Théorème 5.2.1 dans [10] p. 99 il suffit montrer que pour chaque 

point (xo,yo) de I  x J  il existe un entourage de ce point dans lequel la fonction 
h est de la forme

h{x,y) =  fi(x )g i(y ) +  Î 2{x)g2{y), (8)

où le système des fonctions f i , f 2 et le système des fonctions g\, g2 sont linéaire
ment localement indépendantes. Il suffit montrer seulement, comme plus haut, 
que h est de la forme (8), puisque si / i ,/2  sont linéairement dépendantes 
dans un sous-ensemble d’un entourage de xq ou si g\, g-2 sont linéairement 
dépendantes dans un sous-ensemble d’un entourage de yo, alors h est de la 
forme f(x)g(y)  dans un sous-ensemble ouvert d’un entourage de (a;o, j/o), donc 
la matrice (7) ne peut pas avoir toujours le rang égal à 2.

D ’après la supposition faite et d’après le théorème dans [1] ils existent des 
fonctions a \, « 2, (*3 : J  — >■ M telles que

a i(y )h v2(x,y) +  a 2(y)hv(x,y) + a 3(y)h(x,y) =  0 (9)
et

a\{y) +  a\{y) +  a\{y) ^  Q. (10)

En différentiant (9) une fois et encore une fois par rapport à x nous rece
vons les deux égalités qui avec (9) nous permettent montrer la continuité de 
a \, « 2, Q.3 par la méthode analogue à telle qui est dans la démonstration du 
lemme dans [3].

Soit (xo,yo) un point arbitraire de I  x J .

1. Si « 1(2/0) 7  ̂ 0, alors il existe un entourage du point yo dans lequel 
« i  (y) 0. Nous voyons d’après (9) que la fonction h(x, ■ ) comme la fonc
tion de la variable deuxième avec x fixé, est une solution de l’équation 
différentielle linéaire de l’ordre 2 de la forme

Y"(y] + ?77Ty '^ )  +  =  ° ’«1 (y) «1 (y)

alors la fonction h doit avoir la forme (8). Supposons donc dans la suite 
que « 1(2/0) =  0 et désignons par Mji pour i , j  =  1 , 2,3 le mineur de 
la matrice (7) avec n =  3 pour l’élément hyi- P u i s q u e  « K 2/0) +  
aliVo) 7̂  0 et



a2(yo)hy(x ,y 0) +  a 3 (y0)h ( x ,y 0) = 0 , ( 1 1 )

« 2  (yo)hvx ( x , y0) +  a 3 ( y0)hx ( x , y0) =  0 , 

a2(yo)hyx2(x ,y 0) +  a 3 (y0)hx2 (x ,y 0) =  0 ,

on a
Mji(x,yo) =  0 pour i =  3, j  =  1,2,3.  (12)

Ils existent d’après le même théorème dans [4] des fonctions 0 i ,0 2,0 3 '■ 
I  — > R continues telles que

Pi(x)hx2(x,y) +  (32(x)hx(x,y) +(33(x)h(x,y) =  0 (13)

et
0i (x) +  02 (x) +  03 (x) ±  0 . (14)

2. Si 0i (xq) ^  0 en raisonnant comme plus haut nous constatons que la 
fonction h est de la forme (8). Supposons donc que 0 i (xq) =  0, d’où 
comme plus haut

M ji(xo, y) =  0 pour i =  1 , 2 , 3  et j  =  3. (15)

3. Soit à présent M2i(xo,yo) 7̂  0 . Il existe donc un entourage du point 
(xo,yo) dans lequel M2i(x ,y )  ^  0. Puisque la dérivée dxM31 du mineur 
M31 par rapport à x est égale à M21 nous avons d’après le théorème de 
Lagrange et d’après (15) qu’il existe £ tel que

M31(x,y) =  M3i(x ,y ) -  M3i(x 0,y)
=  dxM3i(Ç ,y)(x -  x0)
=  M2i(Ç ,y)(x -  xo),

d’où M3i(x ,y )  ^  0 pour x ^  xq■ S ’il existerait x ^  xq tel que 0i(x) =  0, 
donc en posant x =  x dans

0 i(x )h x2y(x,y) +  02(x)hxy(x,y) +  P3(x)hy(x, y) =  0 

0i (x)hx2y2 (x, y) +  f32 (x)hxy2 (x, y) +  Aj (x)hy2 (x, y) =  0

(la différentiation de l’égalité (13) par rapport à y une fois et deux fois), 
nous aurions d’après M3i(x ,y ) ^  0 que 02(x) =  03(x) =  0 et ça est 
impossible d’après (14). Il doit être alors 0i(x) ^  0 pour x ^  Xq. Il en 
résulte qu’ils existent les fonctions f i(x ) , f 2(x), gi(y), 52(2/), hi(y), h2(y) 
telles que

h(x, y)
9 i{y ) îi{x )  +  g2{y )f2{x) pour x <  x0, 
hl (y )fl(x ) +  h2(y )f2(x) pour x >  x0.

(16)

Puisque / 1, /2 forment le système fondamental d’une équation différentiel
le linéaire d’ordre 2 elles sont de classe C 2 et le wronskien W (f\, f 2) ^  0, 
donc les fonctions g i,g 2,h i ,  h2 sont de classe C3.



De plus

0 ±  M21(x0,y)
M31(x,y) -  M31(x0,y)

=  lim
X —ï X q X — Xo

lim
X —> X q

M 31( x , y )  

X — Xo

=

lim
X̂ -Xq

W U 1J 2)
X — Xo

lim
W UUÎ2)

X — Xo

W(g[,g'2) 

W (h‘\,h'2)

et de l h W i g ' ^ g ^ ï O Ï W i K , ^ ) .

N ous avons p o u r x  <  xq d ’ap rès ( 16)

h y =  g ' i f i  +  5-2/2, h y2 =  g " f x +  g 2f 2 , h y3 =  g " f \  +  g 2 /2-

E n  ca lcu la n t / 1 ,  f 2 de d eu x  prem ières éq u ation s et en p o san t les dans  
l’éq uation  tro isièm e nous recevon s p our x  <  xq

W  (g[ ,g '2) h y3 =  F 1 ( y ) h y2 + F 2 ( y ) h y ( 17)

p ou r les fon ctions F i  e t F 2 co rresp o n d an tes  continues.

N ous recevon s de m êm e faço n  p ou r x  >  xq

W ( h [ , h'2) h y3 =  G i (y ) h y2 +  G 2 (y ) h y ( 18)

p ou r les fon ctions G\ e t G 2 co rresp o n d an tes  continues.

E n  fixan t d ans ( 17) e t ( 18) la  variab le y  nous recevon s d ’a p rès  le L em m e 1 
d ans [4] p. 178 que ( 11) a  lieu p ou r chaque x .  L a  fon ction  h y (x ,  —),  com m e  
la  fon ction  de la  variab le y  avec x  fixé, est une solu tion  d ’une éq u ation  
différentielle linéaire d ’ord re  2 , alors

h y (x , y)  =  ô i ( x ) h  (y)  +  â 2 (x ) b 2 (y)

p ou r les fon ctions â i , â 2 , b i ,  b2 co rresp o n d an tes . Il en résu lte  que

h ( x ,  y)  =  « i  (x )6 i  (y) +  a 2 (x ) b 2 (y)  +  c ( x )  (19)

p ou r les fon ctions « i ,  a 2 , bi,  62 co rresp o n d an tes. E n  p o san t c e tte  form e  
de la  fon ction  h  dans (1 1 ) avec y =  yo nous recevon s

0 :2 (50) [ü i(a ;)6 i(5 o ) +  ü 2 (a ;)62(50)] ^

+  0 3 (5 0 )  [«i ( x ) b i  (yo) +  a 2 ( x ) b 2 (50 ) +  c(x)\ =  0.

R em arq u o n s que 0 3 (5 0 )  0 , puisqe d ans le ca s  co n tra ire  nous avons
d ’a p rès  (1 1 ) que hy(x,yo) =  0 ,  d ’où M21(x,yo) =  0 ,  co n tra ire m e n t à 3 . Ils



existent donc d’après (20) des nombres k ,l  tels que c(x) =  k a i(x )+ lü 2(x), 
alors (19) nous donne la forme (8) de la fonction h.

4. Dans le cas M \-2 (xq, î/o) ^  0 il suffit changer x et y dans le raisonnement 
plus haut.

5. Puisque dxM32(x,y) =  M22{x,y), si M22(xo,yo) 7  ̂ 0 nous pouvons rai
sonner comme dans le cas 3.

6. Nous reste seulement le cas M n(xo,yo) 7  ̂0, donc M \t (x, y) ^  0 dans un 
entourage de (a?o, 2/o)-
Nous recevons en différentiant (13) une fois et deux fois par rapport à y 
et en posant x =  xq

(h (x 0 )h x2 y(x 0 ,y ) +  0 2 (xo)h Xy (xo,y ) +  0 3 (xo)hy(xo,y ) =  0  

(h (x 0 )h x2 y2 (x 0 ,y ) +  P2 (x 0 )h xy2 (x 0 ,y ) +  P3 (x 0 )hy2 (x 0 ,y ) =  0 .

En calculant 02 (xq) de ce système avec y =  yo comme les système des in
connues 0 i (xq) et 02(xq) nous recevons que 02(xq) =  0 (M n (x o ,2/o) ~f~ 0 
et M2i (xo, 2/o) =  0). Puisque aussi 0 i (xq) =  0 on a 03(xq) 0 (voir
(14)), d’où d’après (13) avec x =  xq nous avons h(xo,y) =  0 et de là 
hy(x0,y) =  hy2(x,y) = 0 .  Puisque M u (x0,y0) ^  0, alors hyx(x0,y0) ^  
0 ou hxy2(xo,yo) 7̂  0 , d’où il existe un entourage de (xq, î/o) tel que 
hyx(x, y) 0 dans cet entourage ou hxy2 (x, y) ^  0 dans un entourage 
de (a?o, 2/o) - Nous avons dans le cas premier qu’il existe £ tel que

hv(x,y) =  hy(x ’ V) ~  hy(xo, y) =  hyx(Ç,y)(x -  x0) ^  0 pour x ^  x0 

et dans le cas deuxième qu’il existe £ tel que

hy-2(x,y) =  hy2(x,y) -  hy2(xo,y) =  hy2x(Ç,y)(x -  x0) ^  0 pour x ^  x0.

Il en résulte que pour x fixé et différent de Xq on ne peut pas être 
h(x, y) =  0, donc dans chaque point (x, y) pour lequel x ^  xq nous devons 
avoir un des cas 1-5.  Il existe alors pour chaque tel point un entourage 
dans lequel la fonction h est de la forme (8). De là d’après le Théorème 
5.2.1 dans [10] p. 99 nous avons (16). Nous avons de plus

, (  h v ( x , y ) ,  h v2 ( x , y )
V k>yx2 (xq , y)  , Hy2x2 (Xq, y')

donc

h yx{x ,y ), hy2x {x ,y )  
hyX2 (X0 ) y) ) kjy2x2 (xq, y')

0 ^  M n (x0,y)
hv(x, y),

=  lim
h y X2 ( x 0 ,  y ) ,  h

hy2(x, y)
y2 x 2  ( X Q ,  2/ )

h y ( x 0 , y ) ,  h y2 (xo,y) 
hyX2 (^o, y)i hy2x2 (^o, 2/)

X — Xo



/ l (z ) , / 2 (2 ;)
№ ) ,  № )

x -> x 0 X — Xo
<

f l (x ) , f 2(x)
/" (* )>  № )

X — Xo

W (g[,g'2),

W (h[,h'2),

alors W(g'1, g2) ^  0 ^  W(h\, h'2). La suite est analogue que dans le cas 3. 

Nous avons donc démontré le théorème suivant:

T h éorèm e 3
Soit h : I  x J  — > M, où I  et J  sont des intervales réels, une fonction 

ayante les dérivées continues jusqu’à hyn- ix«- i ,  pour laquelle la matrice (7) a 
le rang égal à p  en chaque point de I  x J .

a) Si p  =  1 et n >  p, alors h(x,y) =  ai(x)bi(y) pour a\ : I  — > R et 
bi : J  — K.

b) Si p  =  2 et n =  3, alors h(x,y) =  ai(x)bi(y) +  Ü2(x)b2(y) pour 
« i , «2 : I  — > M et b i, &2 : J  — > M.

Remarquons enfin que la condition que la matrice (7) pour la fonction
h(x, y) =  ai(x)bi(y)-\------ \-ap(x)bp(y) a le rang toujours égal à p est équivalente
à la condition que les matrices

ont les rangs toujours égaux à p.
Pour les fonctions üi(x) et bi{y) de classe C n cette condition dernière est 

équivalente à la suivante: le système des fonctions a\ (x ) ,. . . ,  ap(x) (bi (y ),. . . ,  
bp(y)) forme des intégrales d’une équation différentielle ordinaire, linéaire et 
homogène de la forme

y(n)(t) = p n-i (t )y(n~ 1)(t) +  • • -+Po(t)y(t)  (21)

avec les coefficient pi(t) continus ([3] et aussi [5]). Cela désigne que notre 
problème de la décomposition de la fonction h à la forme a\ (x)b\ (y) +  • • • +  
ap(x)bp(y) c ’est en réalité pour la fonction h de classe Cn le problème de la 
décomposition de cette fonction à cette forme avec les fonctions ai(x) et bi(y) 
étantes des solutions de l’équation de la forme (21).

L ’exemple de la fonction

h(x,y) =  x\x\ +  1 pour (i , k) e 1 x I

montre que la supposition de classe C n de la fonction h est essentielle dans 
nos considérations dernières, même si la matrice (7) pour n =  2 a le rang égal 
à 1. On ne peut pas décomposer la fonction h à la forme a(x)b(y), où a(x)



et b(y) sont des intégrales de l’équation de la forme (21) pour n =  2, à cause 
de la régularité de a(x). Remarquons que notre fonction h n’est pas aussi une 
solution de l’équation de la forme (21) pour n =  1 puisque

(£|£| +  1 ) J _ _ !  = 2 ^ 0 =  P o { —1) • 0  =  P o { —1)(£|£| +  l ) t = - i ,

formant en même temps cette solution dans chaque intervalle qui ne contient 
pas —1 (il suffit prendre Po(t)  =  La fonction h(x, y) =  xy pour (x, y) Є
Ж X  Ж est de la forme a(x)b(y), sa matrice (7) pour n =  2 a le rang égal à 1, 
a(x) et b(y) sont des solutions de l’équation (21) d’ordre 2, n’étant pas des 
intégrales de l’équation de cette forme d’ordre 1 ((t)'t=0 =  1 ^ 0  =  Po(0) • 0).

Travaux cités

[1] M. Cadek, J. Simsa, Decomposition of smooth functions of two multidimensional 
variables, Czechoslovak Math. 41 (116) (1991), 342-358.

[2] M. Kucharzewski, Pewne uogólnienie twierdzenia o wartości średniej, Zeszyty 
Naukowe WSP w Katowicach, Sekcja Matematyki 4 (1964), 43-49.

[3] M. Malec, Sur les intégrales d’une équation différentielle, ordinaire, linéaire et 
homogène et sur une classification des fonctions de classe C°° dans l ’intervalle 
A, Arch. Math. (Brno) 3 (1967), 105-115.

[4] Z. Moszner, Sur le wronskien et la dépendance linéaire des fonctions, Bull. Sci. 
Math. (2) 85 (1961), 165-190.

[5] Z. Moszner, ш-зависимости функций и её применения, Московский 
Областной Педагогический Институт им. Н.К. Крупской, У чеб
ные Записки 166 (1966), 303-314.

[6 ] Z. Moszner, Remarks on the wronskian and on sums decompositions, Aeqationes 
Math. 58 .1-2  (1999), 125-134.

[7] F. Neuman, Functions of two variables and matrices involving factorisation, C. 
R. Math. Rep. Acad. Sci. Canada 3 (1981), 7-11.

[8 ] G. Peano, Sur le déterminant Wronskien, Mathesis 9 (1889), 75 et ПО.
[9] Th.M. Rassias, A criterion for a function to be represented as a sum of products 

of factors, Bull. Inst. Math. Acad. Sinica 14 (1986), 377-382.
[10] Th.M. Rassias, J. Simsa, Finite sums decompositions in mathematical analysis, 

John Wiley & Sons, Chichester, 1995.

Institute of Mathematics 
Pedagogical University 
ul. Podchorążych 2 
PL-30-08Ą Kraków 
Poland
E-mail: zmoszner@wsp.krakow.pl

M anuscript received: O ctober 21, 1999 and in final fo rm : Ju n e 19, 2000

mailto:zmoszner@wsp.krakow.pl




Annales Academ iae Paedagogicae Cracoviensis
Folia 4 Studia Mathematica I (2001)
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Sur quelques problèm es ouverts

Résumé. On pose les problèmes au sujet de la raréfaction des ensembles, 
des prolongements de la mesure de Jordan et des homomorphismes, de la 
stabilité de l’équation de translation, de la décomposition des fonctions 
et sur les opérateurs déterminés par les équations fonctionnelles.

Problème 1 de la raréfaction d'un ensemble de mesure nulle1

E. Borel [1] a introduit une notion de la raréfaction d’un sous-ensemble de 
R de mesure lebesguienne nulle, légèrement modifiée par M. Fréchet [2]. On dit 
que la série uv converge plus rapidement que la série Ŷ T=\ Vv si

OO

E " - '
lim inf —  >  1.
n-too

z 2 u-
ls=n

Nous comprenons par suite majorante d’un ensemble F  c l  une suite d’inter
valles ouvertes I v dont la série des longueurs Ŷ T=\ l-^l est convergente et qui 
recouvre l’ensemble E  de manières que chaque point de E  appartienne à une 
infinité d’intervalles de I v. E. Borel a démontré qu’il existe la suite majorante 
de E  si et seulement si E  est de mesure de Lebesgue nulle. Enfin E  et F  étant 
de mesure nulle, l’ensemble E  est dit plus raréfié que l’ensemble F  (en symbole 
Rar E  >  Rar F )  s’il existe une suite majorante de E  dont la série des longueurs 
converge plus rapidement que la série des longueurs de chaque suite majorante 
de F . Si ni R ar E  >  Rar F  ni Rar F  >  Rar F ,  nous disons que les ensembles F  
et F  ont le même ordre de raréfaction.

Le problème ouvert est suivant: existe-il des ensemble F  et F  pour lesquels 
Rar F  >  Rar F , en particulier existe-il un ensemble F  tel que l’ensemble réduit 
à un point est plus raréfié que F ?

On peut démontré [3] que chaque sous-ensemble d’un ensemble du type Fa 
et de mesure nulle a le même ordre de raréfaction que l’ensemble réduit à un 
point. Cette situation montre que la notion de raréfaction n’est pas bonne pour 
distinguer entre les ensembles de mesure nulle (il y a trop des ensembles les



plus raréfiés). Mais remarquons qu’il existe des ensembles qui ne sont pas des 
sous-ensembles des ensembles du type F a et de mesure nulle, par exemple des 
ensembles du type G g, de mesure nulle et recouvreant l’ensemble des nombres 
rationnels.
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Problème 2 du prolongement de la mesure de Peano-Jordan2

Considérons la mesure comme une fonction définie sur un corps des sous- 
ensembles de M", non-négative, invariante par rapport à l’isométrie, additive 
pour les deux ensembles sans le point intérieure commun et positive pour un 
cube n-dimensionnel. On sait que la mesure de Peano-Jordan est de cette sorte 
sur la familiie J  des ensembles mesurables au sens de Peano-Jordan et que 
cette mesure est unique sur cette famille. Il se pose la question est-ce qu’on 
peut prolonger cette mesure? La réponse est positive. On peut prolonger la 
mesure de Peano-Jordan sur le plus petite corps C  recouvrant la famille J  
et la famille des ensembles non-denses. On peut aussi démontrer que si nous 
nous restreignons aux ensembles bornés, alors le plus grand corps sur lequel 
ce prolongement pourrait être possible c’est le corps N des ensembles bornés 
ayants la frontière non-dense (on a J  Ç. C  Ç. N ) .  Nous savons (le résultat 
de E. Szpilrajn-Marczewski, voir [2] p. 234) que ce prolongement existe pour 
n =  1,2.  Les problèmes suivants sont ouverts [1]:

a) est-ce que ce prolongement sur N est unique pour n =  1,2,

b) existe-il ce prolongement pour n >  2 (unique)?
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Problème 3 du prolongement d'un homomorphisme3

On considère dans beaucoup des domaines de mathématique le groupe L\ 
comme l’ensemble des suites ( a i , . . . , a g), où a\ ^  0, avec l’opération définie 
comme il suit:

(ni — ( d ,• • •, cs),

où c„ pour v =  l , . . . , s  est la dérivée d’ordre v d’une fonction composée 
f(x )  =  g(h(x)) si « i , . . . ,  a v sont les dérivées des ordres 1, . . . ,  v de la fonction 
extérieure g(y) et b i , . .. ,b v sont les dérivées des ordres 1, . . . ,  v de la fonction 
intérieure h(x).

L. Reich ([4] p. 309 — il y a là une méprise: il doit être R£ et L\ au lieu de R3 
et L*) a posé la question suivante: quand l’homomorphisme hs =  ( / i , . . . ,  f s) 
de M+ à L\ est prolongeable à l’homomorphisme hs+1 =  ( / i ,  • • •, f s , fs+ i)  de 
(M, + )  à L\+l (le problème de l’existence de la fonction / s+ i)?

On démontre dans [3] que pour s =  1 ,2 chaque homomorphisme peut être 
prolongé, mais pour s =  3 ,4  il existe des homomorphismes qui ne sont pas 
prolongeâmes. J ’ai formulé ([4] p. 309) la conjecture que ce prolongement est 
possible si f i  ^  1 et dans le cas si hs =  (1, 0 , . . . ,  0 , f p+2, . . . ,  f s), où f p+2 ^  0 , 
ce prolongement est possible si et seulement si f s- p est un polynôme de f p+2.

On démontre dans [2] la partie “seulement si” (la nécessité) de la deuxième 
partie de cette conjecture, la partie première et la condition “si” (la suffisance) 
sont ouvertes.

On peut considérer le même problème pour le groupe R " qui est défini 
analogiquement que L\, seulement dans la définition de l’opération dans R " on 
remplace la composition de deux fontions d’une variable par la superposition 
des deux systèmes de n fonctions des n variables (voir [1] p. 7-12). Ici s désigne 
l’ordre des dérivées partielles de cette superposition, donc R " est la suite de 
n2 + n 3 +  ■ ■ ■ +  ns+1 éléments, alors dans ce cas

hs(x)

=  ( ( / 7 1  { X ) ) i , j l = l , - - - , n  > i f j 1j 2 ,32 =  l , - - - , n  ) • • • ) i f j l . . . j a =

Le problème du prolongement n’est pas banal puisque pour n arbitraire 
l’homomorphisme de (M, + )  à R3 de la forme:

f j J  (x) =  1 Pour i =  i i  ; f lh  (x) =  0 pour i ^ j  1 ;

/ 11(20 =  f ( x ) additive; f h j 2(x ) =  0 P°ur ( b / i , / 2) ï  (1,1,1) ;
/ 111(2;) =  § / 2 (x) + g (x ) ,  où g(x) additive; 

f j i h h W  =  § / ( * )  P°ur ( i J u h J s )  +  (1, 1, 1, 1);
où toujours i, j i , j 2, j 3 =  1, • • •, n



n’est pas prolongeable à l’homomorphisme de (R, + )  à L "  si f(x )  n’est pas 
identiquement zéro et s’il n’existe pas une constante a  telle que g(x) =  a f(x ) .
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Problème 4 de la stabilité de l'équation de translation4

Nous entendons par l’équation de translation l’équation fonctionnelle de la 
forme

F (F (a ,  x), y) =  F ( a ,x  ■ y),
où F  : T  x  G — > T  est une fonction cherchée, T étant un ensemble arbitraire 
et (G, •) forme un groupoïde donné. Soit dans T une métrique p. On dit que 
cette équation est stable si pour chaque e >  0 il existe un ô >  0 let que pour 
chaque fonction H  : T x  G — > T si

Va € T, x ,y  € G : p (H (H (a ,x ) ,y ) ,H (a ,x  ■ y)) ^  ô

alors il existe une solution F  de l’équation de translation pour laquelle

Va €  T ,  x €  G : p (H (a ,x ) ,F (a ,x ) )  ^  e .

Si par exemple G se réduit à un point {e } , l’équation de translation qui 
dans ce cas peut être écrite comme / ( / ( a ) )  =  / ( a ) ,  où / ( a )  =  F (a ,e ) ,  est 
stable pour chaque métrique dans T arbitraire [2].

Il se pose le problème [1]: existe-il l’espace métrique (r ,p ) et le groupoïde 
(G, •) pour lesquels l’équation de translation n’est pas stable dans ce sens?

On définit aussi la stabilité de l’équation de translation comme il suit: si 
pour une fonction H  : T x  G — > T l’ensemble

{p (H (H (a ,x ) ,y ) ,H (a ,x  ■ y)) : a  e  T, x ,y £ G }

est borné, alors il existe une solution F  de l’équation de translation telle que 
l’ensemble {p (H (a ,x ) ,F (a , x)) : a  €  f ,  r  ë  G } est aussi borné. L ’équation



/ ( / ( a ) )  =  f ( a )  est stable d’après cette définition pour chaque l’espace métrique 
(T ,p), mais il existe un espace métrique (T ,p) et un groupe (G,-) tels que 
l’équation de translation n’est pas stable dans ce sens [2].
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Problème 5 de la décomposition de la fonction de deux variables 5

Supposons que pour une fonction h : I  x J  — > R, où I  et J  sont des 
intervalles réels, tous les éléments (les dérivées partielles de h) de la matrice

M (x,y) =  {hxiy i(x,y)) ,

où i , j  =  0 , . . .  ,n , sont continues. Est-il vrai le théorème suivant (la conjecture 
C ) :

-  la condition rang M (x,y) =  p  ^  n pour chaque (x, y) G I  x J  est 
équivalente à l’existence des fonctions /*, : I  — > R et gu '■ J  — > K 
pour k =  1, . . .  ,p  telles que

h(x, y) =  f i  (x)gi (y )+  ■ ■ ■  +  f P(x)gp(y)

et
rang ( f i l)( x ) ) i = 0} = p  =  rang i g ^ iv ) )  i = 0, . . . , n (1)

k =  1 ,.. . ,p k =  1 ,. .. ,p
pour chaque x G I  et y G J .

On sait ([1] et [2]) que cette conjecture est vraie pour p  =  1 et n ^  1 
arbitraire et pour p  =  2 =  n.

Si cette conjecture serait vraie en général et si nous supposons que la fonc
tion x — > h(x, y) est de classe Cn+1 sur I  pour chaque y dans J  et la fonc
tion y — > h(x,y) est aussi de classe C n+1 sur J  pour chaque x de I ,  alors 
dans la conjecture en considération on pourrait remplacer (1) par la condition: 
/ i , . . . ,  f p, et de même les fonctions g\, . . . ,  g\, forment un système linéairement 
indépendantes solutions d’une équation différentielle de la forme

2/(" +1) =  an{x)y(n) H------- h ai(x )y  (2)

avec les coefficients a v{x) {v =  1 , . . .  ,n) continues sur I. De plus dans ce cas les 
fonctions x — > h(x,y), x — > hy(x,y), . . . ,  x — > hy™(x,y) sont des intégrales



de la même équation de la forme (2) pour chaque y de J  et les fonctions 
y — > h(x, y), y — > hx (x, y), y — > hx™(x,y) sont les mêmes.

Le cas n =  1 est en liaison à l’équation différentielle de d’Alembert

hhxy hx hy — 0

qui a déjà sa théorie géométrique [3]. Les fonctions h(x, y) =  f(x)g(y) sont des 
solutions de cette équation, mais il y a aussi les autres solutions ([3], p. 32). Il 
résulte de nos considérations dans le cas p  ^  n =  1 que le rang de la matrice

h hy 
hx hyx

plus petite que 2 et la stabilité de ce rang pour (x,y) G I  x J  entraînent la 
forme f(x )g(y) de la fonction h(x,y).

On ne peut pas remplacer dans notre conjecture C  la supposition p  ^  n 
par la condition plus faible p  ^  n +  1. En effect pour la fonction h(x, y) =  
sur [0,1] x [2,3] on a hhxy — hxhy ^  0 pour chaque (x, y) G [0,1] x [2,3], mais 
h(x,y) n’est pas de la forme /1 (a;)<71 (y)+  /2 (a;)<72 (y) puisque elle ne remplit pas 
de l’équation (voir [3], p. 30)

h h y hy-

hx hyx hy-
h x 2 h y x 2 hy-
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Problème 6 des propriétés des opérateurs déterminés par les équations fonctionnelles 
uniquement stables6

On considère dans la théorie de la stabilité des équations fonctionnelles 
les équations de la forme G (f)  =  D (f)  d’une fonction cherchée /  qui sont 
uniquement stables dans ce sens (l’explication intuitive, on peut cela préciser 
des manières différentes) que pour chaque fonction g pour laquelle G (g) n’est 
pas “loin” de D(g) il existe exactement une solution /  de cette équation qui



n’est pas “loin” de g. On peut dans ce cas examiner les propriétés de l’opérateur 
O (g) : =  / .  Je  donne un exemple.

En résolvant le problème de S.M. Ulam, D.H. Hyers a démontré le théorème 
suivant [2 ]:

Soient (X , •) et (У, •) des espaces de Banach. Si pour e >  0 la fonction 
/  : X  — 1 У  remplit la condition

\f(x +  y) -  f ( x )  -  f(y)\ pour x ,y  G X , 

alors il existe exactement une fonction additive a : X  — > Y  telle que 

| f ( x )  — a(æ)| ^  e pour x  G X .

J ’examine dans [3] pour l’opérateur A (f (x ) )  =  a(x) en outre son continuité 
par rapport à /  et la continuité de a (x) par rapport à x.

Il me semble intéressant le problème analogue pour les autres équations 
fonctionnelles uniquement stables.

Remarquons que

a) les opérateurs analogues sont considérés aussi dans [1 ] dans le cas plus 
générale et pour l’équation des fonctions exponentielles, mais sans des 
recherches des propriétés de ces opérateurs,

b) on considère dans [4] les équations fonctionnelles stables pas uniquement, 
c. à d. telles que pour chaque g  comme plus haut il existe plus qu’une 
solution /  comme ci-dessus et on examine les restrictions au sujet de g 
et de /  (par la notion de la meilleure approximation) sous lesquelles cet 
application de g  à  /  est unique. Ces résultats permettent prolonger le 
problème formulé plus haut aussi aux équations stables pas uniquement.

Références

[1] R. Ger, P. Semrl, The stability of the exponential equation, Proc. Amer. Math. 
Soc. 124/3  (1996), 779-787.

[2] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. 
Sci. U.S.A. 27 (1941), 222-224.

[3] Z. Moszner, Les opérateurs de Hyers, dans: Functional Equations — Results and 
Advances, ed. by Z. Daróczy and Zs. Pâles, Dedicated to the Millenium of The 
Hungarian State, Kluwer Academic Publishers, Boston -  Dordrecht -  London, 
2001, 113-122.

[4] Jacek Tabor, Józef Tabor, Geometrical aspects of stability, dans: Functional 
Equations — Results and Advances, ed. by Z. Daróczy and Zs. Pâles, Dedicated 
to the Millenium of The Hungarian State, Kluwer Academic Publishers, Boston 
-  Dordrecht -  London, 2001, 123-132.



Institute of Mathematics 
Pedagogical University 
ul. Podchorążych 2 
PL-30-08Ą Kraków 
Poland
E-mail: zmoszner@wsp.krakow.pl

M anuscript received: D ecem ber 12, 2000 and in final fo rm : July 2, 2001

mailto:zmoszner@wsp.krakow.pl


Annates Academ iae Paedagogicae Cracoviensis
Folia 4 Studia Mathematica I (2001)

Frantiśek Neuman

Functional and differential equations

Dedicated to Professor Zenon Moszner 
on the occasion of his 70th birthday

Abstract. Functional equations play an important role in the theory of 
differential equations. Euler functional equation for homogeneous func
tions, Abel and Schroder functional equations and their systems, itera
tion groups of functions are essential tools for studying transformations 
and asymptotic properties of their solutions. And conversely, differen
tial equations give answer to some problems in the theory of functional 
equations, e.g., decomposition of functions.

I. Introduction

Let us start with a historical remark. Floquet theory deals with linear 
differential systems

Y 1 =  P(x)Y, (1)

where P  : M —> M"x"  is a continuos periodic matrix,

P e C ° ( R ) ,  P (x  +  1) =  P (x),

and Y : M ->  M"x"  is a matrix solution of the system (1).
It is known, e.g., R. Bellman [2], that the solution Y  is of the form

Y(x) =  Q(x) ■ eBx,

where Q : M —)• M"x" , Q € C 1(M), is a periodic matrix, Q(x +  1) =  Q{x), and 
B  is a constant n x n matrix with generally complex elements.

The proof of this result is essentially based on the fact that together with 
a solution x i—̂ Y(x) of the system (1) the function x i-»- Y (x  +  1) is also a 
solution. Since Y (x )-C ,C  being a regular constant matrix, is a general solution 
of equation (1), there exists a constant regular matrix Co such that

Y (x +  1) =  Y(x) ■ Cq, detCoy^O, i f l  (2)

AMS (2000) Subject Classification: 34A30, 34C10, 34C11, 34C20, 39B12, 39B22. 
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However, this is a matrix functional equation. If we suppose its solution Y  of 
the form

Y(x) =  Q (x )-eBx, (3)

where Q(x +  1) =  Q(x) is a periodic matrix, then

Y (x +  1) =  Q(x +  1) • eBx ■ eB =  Q(x) ■ eBx ■ eB = Y (x )  ■ eB .

If now eB =  Cq (B  =  In Co, det Co ^  0) then we see that any solution Y  
of the functional equation (2) must have the form (3). And this is the essence 
of the Floquet theory.

After this historical remembrance of an application of functional equations, 
let us continue with more recent results when functional equations play an im
portant role in the study of differential equations. In general we may observe 
that functional equations occur when solutions of differential equations are con
sidered in different points, e.g., in consecutive zeros, with delayed or advanced 
arguments, or when transformations of differential equations are considered.

II. Abel functional equation and linear differential equations

Consider the second order equation in the Jacobi form

y" =  P{x)y, P € Cq(I), I  =  (a, b) C K, (p)

—oo ^  a <  b ^  oo. Suppose that this equation (p ) is oscillatory for x —> b, i.e. 
each solution y of (p) has infinitely many zeros when x approaches the right 
end of the interval of definition.

In accordance with O. Boruvka [3], introduce the following notions. 

D efinition  1
A phase a  of equation (p) having two linearly independent solutions y\, y-2 

is defined as a continuous function on I  satisfying the relation

, , ■, yi(x)tan ala;) =  — —
2/2(2:)

for all x where 2/2(2:) ^  0 .

P r o per ty  1
Phase a  being continuous on the whole interval I ,  is also in C3(I) and 

a'(x) 0 on I .

P r o per ty  2
I f  a  is a phase o f equation (p) then its general solution is 

y(x) =  y(x; c i , c2) =  ci \a'{x)\~^ sin(a(a;) + c 2).



D efin ition  2
Let xq € I  be arbitrary, and y be a nontrivial solution of equation (p) 

vanishing at xq, y(xo) =  0. Denote by x\ the first zero to the right of xq of 
this solution y. Define the dispersion of the equation (p ) as the function

<p : I  —> I , <p(xo) =  Xi for each Xq € I.

The dispersion <p is well-defined since all solutions of equation (p) having 
a zero in xq have x\ as its first zero to the right of Xq. Moreover, all such x\ 
exist because equation (p) oscillates when x —> b.

O. Boruvka has proved

P ropo sitio n  1
The dispersion <p and the phase a  o f an equation (p) satisfy the Abel equa

tion
a(ip(x)) =  a(x)  + 7rsign a'. (4)

Hence

<p : I  I , <p(x) >  x, <p € C 3(I) and <p'(x) >  0.

Using these properties we proved [9] for differential equations (p) the following 
result denoting the f-th iterate of ip).

P r o per ty  3
I f  the dispersion <p satisfies one of the conditions

a) <p — id/ is a nondecreasing function, or

b) <p — id/ is a nonincreasing function, or

c) <p — id/ =  S =  const. >  0 ,

then one o f the three cases hold, respectively:

a') the maxima o f absolute values o f each solution o f (p) on consecutive inter
vals [y?W(a;o), <p[*+ 1l(a;o)], i =  0 , 1, 2, . . form  a nondecreasing sequence,

b') those maxima form  a nonincreasing sequence,

c') each solution o f (p) is periodic or half-periodic with the period 5.

Roughly speaking, if the distances between consecutive zeros of solutions 
are increasing, or decreasing or are equal, then their maxima are increasing, or 
decreasing, or equal (solutions are half-periodic).

By using this Abel equation (4) and results of B. Choczewski [5], M. Kucz- 
ma [7] and E. Barvfnek [1], the second order equations with prescribed prop
erties were constructed [12].

Recently the notion of dispersion was extended to some linear differential 
equations of an arbitrary order. The same effect concerning relations between 
distances of consecutive zeros of solutions and their asymptotic behaviour was



proved in [14]. Also a construction of all n-th order linear differential equations 
with prescribed asymptotic properties was presented there.

III. Systems of Abel and Schröder functional equations, iteration groups of functions

Consider a generali nonlinear functional differential equation,

F (x , y ( x ) , y M  (x), j/(£l (x)), yW  (£1 (x)),

■ ■ ■ , y(£k(x)), ■ ■ ■ , y {n) (& (x))) =  o,

and the substitution x =  h(t), z(t) =  y(h(t)) converting the above equation 
into

G (t ,z ( t ) , .. . ,z ^ n\t),z(ri i ( t ) ) , . . . ,  2 (n) (r? i (t)), 
. . . ,z ( r ]k( t ) ) , . . . ,z ^ n\r]k ( t ) ) ) = 0 .

Then y o £i(x) =  y o & o h(t) =  (y o h )  o (/i-1 o f  o h(t)) =  z(m(t)), i.e., 
=  r)i(t), or

horji(t) =  £ i°h (t) , i =  l , . . . , k ,

expressing the fact that deviating arguments & and r/; are conjugate functions.
If we consider a possibility of a special choice of canonical deviations & (x) =  

x +  Ci, Ci =  const., see [10], then we come to a problem of a common solution 
h of a system, o f Abel functional equations for prescribed r/;:

h(rji(t)) =  h(t) +  Ci, i =  l , . . . , k .

If k =  1, i.e. when we have a single Abel equation, there were lot of results 
in the literature, see e.g., [7]. For k >  1 there has recently been investigated 
these problems in Brno, Katowice and Kraków. We discovered several sufficient 
conditions for the existence of a solution of a system of Abel equations [10]. 
Then a systematic research was done by M.C. Zdun [16].

For linear functional differential equations we may take even more general 
transformations of Kummer’s type z(t) =  f(t)y(h(t))  which enable us to impose 
one more condition on coefficients because of a rather arbitrary function /  in 
the transformation.

In the simplest case of linear functional differential equations of the first 
order with one delay

y'(x) +  a(x)y(x) +  b(x)y(£(x)) =  0 

we may consider their canonical form  as

z'(t) +  c(t)z(t — 1) =  0 .

For another choice of special deviations, e.g., of the form £i(x) =  CiX we 
get a system of Schröder functional equations,



h(r)i(t)) =  Cih(t), i =  l , . . . , k .
In general, zeros of solutions are preserved and they may be studied on 

canonical forms only. Since the factor /  in the transformation can be explicitly 
evaluated from coefficients, asymptotic properties of solutions of equations, 
their boundedness, classes L p, convergency to zero, or the rate of growth, can 
be obtained from these properties of canonical equations.

For some cases we have also a criterion o f equivalence, see [13].
Iteration groups o f continuous functions were studied by many authors 

in connection with flows, dynamical systems, fractional iterates, etc. At the 
beginning of the eighties the study of solutions of a system of Abel equations, or 
equivalently, embedding of a finite number of functions into an iteration group 
as its elements, was initiated by investigating functional differential equations.

IV. Euler functional equation for homogeneous functions

Consider a linear differential equation of the form

y{n) +  P n -i(x )y (-n~ 1'> H-------\-po(x)y =  0 on I ,  (P)

I  being an open interval of the reals, pi are real-valued continuous functions 
defined on I  for * =  0 , 1 , . . . ,  n — 1, i.e. Pi G C °(I), Pi : I  

Take functions f  : J  —>№ and h : J  —> I  such that

/  G C n(J ) , f{ t )  ^  0 for each t G J,
and

h G Cn(J ) , h'(t) ^  0 for each t G J, and h (J )  =  I.
For each solution y of equation (P) the function z defined as

Z- j  - t  z(t) :=  f( t )  y(h(t)), t G J ,  ( / , h)

satisfies again a differential equation of the same form

z ^  +  qn-i(t)z^n~^  -\-------1- qo(t)z =  0 on J .  (Q)

Since h is a C"-diffeomorphism of J  onto I ,  solutions y are transformed into 
solutions z on their whole intervals of definition. This is why we also speak 
about a global transformation of equation (P) into equation (Q).

Let y(x) =  (y i(x ) , . . .  ,yn(x))T denote an n-tuple of linearly independent 
solutions of the equation (P ) considered as a column vector function or as a 
curve in n-dimensional Euclidean space E„ with the independent variable x 
as the parameter and y i(x ) , . . . , yn(x) as its coordinate functions; M T denotes 
the transpose of the matrix M.

If z ( t )  =  (z i(t) , . . .  ,z n(t)T denotes an n-tuple of linearly independent solu
tions of the equation (Q), then the global transformation (/ , h) can be equival
ently written as



z0 ) =  / 0 )  • y (M *))
or, for an arbitrary regular constant n x n matrix A,

z(t) =  A f(t) ■ y(h(x)),

expressing only the fact that another n-tuple of linearly independent solutions 
of the sam e  equation (Q) is taken.

To emphasize this situation, let us denote by (Py) and (Qz) the equations 
(P ) and (Q), respectively. Capital P  refers to the coefficients Pi of the equa
tion (Py), subscript y expresses a particular choice of an n-tuple of linearly 
independent solutions. Similarly for (Qz).

Denote by W\y](x) the Wronski determinant of y, i.e.

d et(y(*), y ' ( * ) , . . . ,  y ^ " 1) ^ ) ) .

The coefficient pn- i  in (Py) is given by

Pn-i(x) =  —(In |wr[y](a;)|)/.

We have pn- i  =  0 exactly when W[y](x) =  const. f  0. Since 

W\f • y(/i)](i) =  ( /№ )"  (/»'(*))^  W[y](h(t)), 

for the coefficient qn-\ in (Qz) we have

, . f i t )  n(n — l)h " (t)
Qn-i(t) =  ~ n J ( ^ ----------2------17(f) + P ^ ( h (t)) h (t). (5 )

Namely, if pn- i  =  0 then qn-\ = 0  occurs exactly when

f(t)=c\ h'(t)\ ~z~ , c =  const, f  0 . (6)

Since the factor /  belongs to C n(J) ,  we have h € Cn+1(J).
For the criterion of equivalence of linear differential equations it was essen

tial to find covariant functors from the second order equations (p) to the n-th 
order equations with the vanishing coefficient of y f"-1 ) . The condition on the 
commutativity of the diagram of transformations leads to the relation

F  {\h(t)\~^u1(h(t)),\h(t)\~iu2(h(t))^j =  F (u 1(h(t)),u 2(h(t))) (7)

for linearly independent solutions u i,u 2 of equation (p). Set a =  h (t )~ i,  
r =  ui(h(t)) and s =  u2(h(t)), then from (7) we get

F (ar, as) =  a" -1 F (s , r),

the Euler functional equation. Under the additional condition that each second 
order equation with analytic coefficients should be mapped on its whole interval 
of definition into an n-th order equation again with analytic coefficients, the 
only possible solutions are linear combinations with constant coefficients of



r n - l ^ n - 2 s ^  ^ s n - l _

It means that the n-th order linear differential equation to which the equation 
(p) with a couple Mi, «2 is covariantly mapped is uniquely determined by its 
n-tuple of linearly independent solutions

,.n—1 , , n - 2 W2,. ,n —1

These special n-th order linear differential equations are called iterative equa
tions and serve for effective criterion of equivalence of linear differential equa
tions of an arbitrary order in general case, see [12].

V. Decomposition of functions

Here is a brief comment to results connected with decompositions of func
tions h into finite sums of the form

n

h(x,y) =  ^ 2 fk(x)  •9k(y)•
k= 1

(8)

For sufficiently smooth h, determinants of the form

det

( h h y  . . .  h y n   ̂
h x y  ••• h x y n

\ hx • • hxnyn J

are involved in expressing a sufficient and necessary condition for such a de
composition. The correct formulation of the condition was first given in [11]. 
Functions fk , gk in the decomposition (8) and the number n as the minimal 
number possible for such a decomposition was determined there by using solu
tions of certain linear ordinary differential equations.

A sufficient and necessary condition for not sufficiently smooth functions h 
defined on arbitrary (even discrete) sets without any regularity conditions was 
also formulated in [11] by introducing there a new, special matrices

/ h(x\,y\) h(x1,y2) . . .  / i(x i ,2/„)\ 
h(x2,y i)  h(x2,y2) . . .  h(x2,yn)

\h(xn,y  i)  h(xn,y2) . . .  h(xn,yn) /

Several authors, M. Cadek, H. Gauchman, Z. Moszner, Th.M. Rassias, L.A. 
Rubel, J .  Simsa, in [4], [6], [8], [15] and others dealt with problems concerning 
decompositions of functions of several variables and similar questions.
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Abstract. In this paper the authors provide an account of some of their 
recent results concerning the J. D’Alembert equation especially in a suit
able category of noncommutative manifolds.

Introduction

Questions of representation of functions in several variables by means of 
functions of a smaller number of variables have captured the interest of math
ematicians for centuries (see [14]). One of these questions is closely connected 
with the thirteenth problem of D. Hilbert (1862-1943) and concerns the solv
ability of algebraic equations (see [5]). Let us mention the surprising result of 
A.N. Kolmogorov here (see [6]):

Each continuous function h on the unit n-dimensional cube can be 
represented in the form

h(xx,x 2, . . .  ,x n) =  ^ 2  ^ 2  a n (x J))
l< i<2n+l 1 <j<n

with some continuous functions (j>i and Moreover, the inner 
functions aij can be chosen in advance, i.e., independently of the 
function h.

Functions of certain special forms have been investigated by several authors, 
including J . d’Alembert (1717-1783), who as early as 1747 proved that each 
sufficiently smooth scalar function h of the form h(x,y) =  f(x ).g (y ) has to 
satisfy the following partial differential equation

d2 log h 
dxdy (A)
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(see [2]). 
form” :

This equation can be also expressed in the following “Wronskian

det W2+i (h) h hy 
hx foxy

=  0.

A generalization to a finite sum of products of functions in single variables of 
the form

h{x,y) =  ^ 2  fi(x )-9i(y) (p )
l<i<n

has been considered since the beginning of the twentieth century. This forms 
the fundamental problem  in the subject. The functions of the above tensor 
product play a significant role in many areas of both pure and applied math
ematics. In the year 1904 in the section Arithmetics and Algebra at the Third 
International Congress of Mathematicians in Heidelberg, Cyparissos Stephanos 
announced the following result ([16]):

Functions of the type (P) form the space of all solutions of the 
partial differential equation with the “Wronskian” of order (n + 1 ) :  
det Wn+i (h ) =  0.

However, no proof of the above result was given and no smoothness condition 
on the given function h was mentioned. In fact, Th.M. Rassias gave in [13] a 
counterexample to Stephanos statement. It was F. Neuman ([7]) who proved 
the basic theorem involving the equation det Wn+1 (h) =  0 for functions of class 
Cn.

The problem of representing a function /  in several (more than two) vari
ables by:

h(x1,x 2, . . . , x k) =  ^ 2  fn ix 1) ' f a { x 2) ..........fik {x k), (Q)
l<i<n

was proposed by Th.M. Rassias in [13]. H. Gauchman and L.A. Rubel [4] 
obtained some new results and extensions on finite sums expansions of the 
form (P), especially for real analytic functions. The first existence theorem on 
the decomposition (Q) was proved by F. Neuman [7]. Later M. Cadek and
J . Simsa [1] found an effective criterion for the existence of the decomposition 
(Q) by making use of a system of functional equations, which does not require 
any assumption on the function h. Furthermore, they outlined a way to find 
systems of partial differential equations whose solutions space form the family 
of all sufficiently smooth functions h of type (Q). J .  Simsa [15], among other 
things, has introduced some new functional equations for functions of the form 
(P) using the so called Casorati determinant.

By using a geometric framework for partial differential equations A. Prasta- 
ro and Th.M. Rassias [11] proved that the set of solutions of the J .  d’Alembert 
equation (A) is larger than the set of smooth functions h of two variables x, y of 
the form (P). This agrees with the above mentioned counterexample by Th.M.



Rassias. The book by Th.M. Rassias and J . Simsa [14] discusses the work 
of both past and mainly current research in the subject. Then, A. Prastaro 
and Th.M. Rassias [10] extended their results on the d’Alembert equation to 
functions of more than two variables by considering the generalized d’Alembert 
equation

dn log h _  
d x id x 2 ■■ ■ dxn ’

in which h =  h(x1,x 2, . . .  ,x n) is a scalar unknown function, smoothly de
pending on the variables a;1, . . . , a ; " .  Recently A. Prastaro has given a gen
eral method to calculate integral and quantum (co)bordism groups in PDEs
[8]. This method has proved to be very useful in order to show existence of 
global solutions, their topological structure and tunneling effects in PD E ’s, 
i.e., existence of solutions that change their sectional topology. Furthermore, 
A. Prastaro and Th.M. Rassias in [12] have extended such results also to gener
alized d’Alembert equations built in the category of quantum manifolds. These 
objects are noncommutative manifolds introduced by A. Prastaro who has also 
formulated a general geometric theory of quantum PDEs [8,9]. By utilizing such 
a theory we proved the existence of quantum tunneling effects for solutions of 
noncommutative d’Alembert equations.

In this paper we provide an account of some recent results in the subject. 
(For more details see the original papers [8-12].)

1. The commutative generalized d'Alembert equation

The n-cPAlembert equation:

dnlog f  
dx\■■ ■ dxn

(d'A)n

is an n-th order partial differential relation on the fiber bundle n : R " x R —> R " , 
i.e., it defines a subset Zn C J2 ? "(R " , R). Let {x a , u ,u a , uap , . . . ,  ua i...an }  be a 
coordinate system on the je t space J2 ? " (R " ,R )  adapted to the fiber structures 
7r„ : J2 ? " (R " ,R )  —> Mn,7f„|0 : —> M. Then Zn can be defined as
the following subset:

Zn =  {D nf ( x 1, . . . ,  xn) € JZ>"(K ",K )|
f i x 1, . . . , x n) =  f i ( x 2,. . . , x n)---  fn ix 1, . . . ,  a;"- 1 )}.

Furthermore, Zn can be locally characterized as

Zn =  F ~ 1{0), F  : JT>n(M.n,M) -)• M,

where the value of F  is a sum of terms of the type

F[s;rja:,/Ji/J2 , - - - , 7 i •••7 g\ =  •••uTl...T„,



with a  zfi /3i 7̂  • • • 7̂  7 i ~f~ • • • ~f~ Tq <  n, s € Z, r € N U {0 } . Furthermore,
the term in F  containing u\...n is just u\...nun~ ' . For example,

F  =  uxyu — uxuy for n =  2;

F  — UxyzU UxyUzU UxzUyU F  '̂ x'Uy'̂ Z for ÏI — 3.

Note that F  has not locally constant rank on all Zn, so Zn is not a subman
ifold of Furthermore, on the open subset Cn =  u_1(M \ 0) C
J V n(E.n, M), one recognizes that F  has locally constant rank 1. Hence Zn n Cn 
is a subbundle of J V n(E.n, R) —> R " , of dimension n +  — 1. In the follow
ing, for abuse of notation, we shall denote by (d!A)n either Zn or Zn n Cn. The 
fundamental geometric structure of (d! A)n is given by the following:

T heorem  1.1
1) The n -d ’Alembert equation (d'A)n c  is an n-th order PDE,

formally integrable on the trivial fiber bundle n : M" +1 —> M".
2) The characteristic distribution o f  (d'A)n is zero.

R em ark  1.1
Note that, even if the characteristic distribution of (d'A)n is zero, we can 

built regular solutions by means of characteristic method if one considers the 
infinitesimal symmetry of (d'A)n (for n =  2 it is generated by the following 
vector fields C on 7T : 1F(=)M 3 —> M2:

C =  f(u )d x  +  g(y, u)dy +  [s(y) +  r(x)] udu, (•)

where / ,  s and r are arbitrary functions of a single variable and g is an arbitrary 
function of two variables).

In fact we have the following:

T heorem  1.2
Let tp : P  (d'A) be the mapping that characterizes a 1-dimensional reg

ular integral manifold N  c  (d'A) such that the second holonomie prolongation 
o f a vector field  Ç, as given in (•), for  suitable functions f ,  g, r and s, 

satisfies the following conditions:

(i) transversality condition: ip*(C ^ \r}) jz 0 ;

(ii) initial conditions: ip*I =  0 , ip*(C,^\I =  0 ,

where I  is the Pfaffian ideal defining the contact structure o f (d'A) (see equation 
(1.3) below), and r] is a differential 2-form defining the horizontalization for  
N. Then, if <p is the flow associated to : d(p =  , one has that V =
U e u  (ps(N ) is a regular 2-dimensional integral manifold o f (d'A), where J  is 
a suitable neighborhood o f  0 € M.



Proof. The conditions for ( (‘2̂  to be a symmetry for T. and transversal to N  
imply that (j>s (N ) =  Ns are 1-dimensional regular integral manifolds of (d'A), 
for s in a suitable neighborhood J  of 0 €  1 .  Furthermore, the conditions (i) 
and (ii) assure that the 2-dimensional manifold V =  Use J  inteSral also 
for (d'A).

R em ark  1.2
Another way to built solutions by means of the characteristic method is 

just to recognize characteristic strips in (d'A)n, cf. [8]. In the following lemma 
we explicitly give the characteristic strips for the case n =  2.

L emma 1.1
The equation

uuxy — uxuy =  0 (d'A)

admits the following two 1-dimensional characteristic strips:

v\ =  X x (dx +  uxdu +  uxxdux +  uxyduy +  uxxxduxx +  uxxyduxy +  uxyyduyy) 
i>2 =  X y (dy +  uydu +  uyxdux +  uyyduy +  uyxxduxx +  uxyyduxy +  uyyyduyv)

( 1.1)
where X x and X y are arbitrary numerical functions on J'D 2(M2,M).

Now, we are ready to prove the first main theorem.

T heorem  1.3
The set Sol(d'A)n of all solutions of the n-dAlem bert equation: (d'A)n, 

considered in domains contained in M", is larger than the set o f all functions 
f  that can be represented in the form

f ( x 1, . . . , x n)

=  / l ( z 2, l ) f 2(x1,: Y>n—1 > ( 1.2)

Proof. The Cartan distribution E„ c  T(d'A)n of (d'A)n that characterizes 
the solutions of (d'A)n is the annihilator of the Pfaffian ideal I n generated by 
the following differential 1-forms on J'D"(M ",M ):

U>0 =  dF  =  (dxa .F )dxa +  (du.F)du +  (dua .F)dua 
-\------- 1- (dua i F)dua i ...an

0)1 =  du — uadxa
0)2ct =  dua — Uafidx13

_i =  dua i ...0,n_1 ua i ...an_1̂ dx^



with the function F  that defines (d'A)n. One has a canonical embedding 
((d'A)„_i)_|_i —> (d'A)n. Let us consider, now, a vector field £ : —►
T J V n(Rn,M) of the following type:

C =  dxn +  undu +  unad a H------- 1- unai...andua i- a" (1.4)

such that unai...an are functions on J'D "+ 1(M",M) satisfying the equations 
which define the first prolongations of (d'A)n , { F  =  0}:

' F a =  (dxa .F ) +  (du .F )ua
H------- H (dua i F ) u aa i ...a,

=  0 , 1 <  a  <  n
. F  =  0

((d'A)n)+ 1

Then £ is necessarily transversal to

( ( d ' A ) ^ ) ^  =  JV ((d'A )n_i)  P| JX>"(M "_1, M)

and it generates a characteristic strip for (d'A)n. Therefore, if N  is an (n — 
l)-dimensional integral manifold contained in ((d'A)n_ i ) + i , a vector field £, 
as defined in (1.4), generates from N  an n-dimensional integral manifold V 
contained in (d'A)n. As N  is not, in general, a regular solution of the equation 
(d'A)n_ i ,  then the so generated integral manifold V, solution of (d'A)n, cannot 
be represented as the graph of some n-derivative of function /  : M" —> M. 
Hence, in particular, V  cannot be represented as the image of the n-derivative 
of a function /(a;1, . . . ,  xn), of the type (1.2).

We shall prove, now, that in Sol(d'A) there are solutions that change their 
sectional topologies. We shall use some recent results obtained by A. Prasta
ro about tunneling effects and quantum and integral (co)bordism in PD E ’s 
[8]. In the following we shall consider the n-d’Alembert equation given as 
a submanifold (d' A)n of the je t space J."(M n +l) by means of the embedding 
(d'A)n ■ /£ > " ( !" ,M) ^  J £ ( I T +1), where J£(M "+1) =  {[2V]” } with [N]% the 
set of n-dimensional submanifolds of M" +1 that have with the n-dimensional 
submanifold N  c  M" +1 a contact of order n at an a £ N. In the following table 
we report the explicitly calculated expressions of the integral bordism groups 

" ° f  (d'A)n, for n € { 2 , 3 , 4 , 5 } .

n [ d'A h  =  0
n (d'A )3 =  Z 2 n (d'A U =  0 n (d'A )5 =  z 2  0  z 2

Tab. 1.1 Integral bordism groups of (d’A )n for 2 <  n <  5

Now, by means of these integral bordism groups, we see that there are solutions 
of (d'A)n that change their sectional topology. In fact, for example, if n =  2 or 
n =  4 one has: A 2̂ =  fig* =  0. Thus, in the case n =  2, any compact



closed admissible integral 1-dimensional manifold N  of (d'A)  is a disjoint union 
of copies of S 1: N  =  S 1 U .. .p . . .  U S 1. Hence, we can always find a connected 
2-dimensional integral manifold V ,  contained into (d'A),  such that d V  =  N. 
In other words, if N0 =  S^U .. ,r . . .  U S1 and N\ =  S^U .. .s . . .  U S 1 are two 
compact closed admissible integral 1-dimensional manifolds of (d'A),  we can 
always find a 2-dimensional integral manifold V  C  (d'A)  such that d V  =  
IVoUlVi. Of course, if r A s one has a tunnel effect, i.e., a change in the 
sectional topology of V ,  passing from N0 to N±. Similar considerations hold 
for n =  4. Furthermore, if n =  3 one has: A'l:i =  Z2. In this case we have
two types of compact closed admissible integral 2-dimensional manifolds. But 
the above considerations can be extended to each of these types of integral 
manifolds.

We now state our second main theorem.

T h e o r e m  1.4
In the set o f solutions Sol(d!A)n o f the n -d ’Alembert equation, (d'A)n c  

c  J."(M n + l), there are also some manifolds enjoying a change of 
sectional topology (tunneling effect).

2. The quantum generalized d'Alembert equation

In order to give a geometrical model for quantum physics, A. Prastaro 
has introduced in [8,9] a new category of noncommutative manifolds (quantum 
manifolds) built by means of a suitable structured noncommutative Frechet 
algebra, (quantum algebra). An example for such an algebra can be the C*- 
algebra A  C  C((H) of continuous linear operators on a Hilbert space A  corres
ponding to the canonically quantized observables of a classical system.

The aim of this section is to consider the extension of the generalized 
D’Alembert equation (d'A)m to this new noncommutative framework given 
by A. Prastaro and Th.M. Rassias in [11]. Let us recall some fundamental 
definitions and results on quantum manifolds as given by A. Prastaro.

A quantum algebra is a triplet (A,e,c),  where:

(i) A is a metrizable, complete, Hausdorff, locally convex topological K - 
vector space, that is also an associative K-algebra with unit;

(ii) e : K  —̂ Aq C .1 is .I K-algebra homomorphism, where Aq is the centre 
of A;

(iii) c : A —> K  is a K-linear morphism, with c(e) =  1, e = u n it of A.

A quantum vector space of dimension (m\,. . .  ,m s) £ N s, built on the 
quantum algebra A =  A\ x . . .  x As, is a locally convex topological K-vector 
space E  isomorphic to A™1 x . . .  A™s.



A quantum manifold of dimension over a quantum algebra
A =  A\ x . . .  x As of class Q* ,  0 <  k <  oo ,u , is a locally convex manifold M  
modelled on E  and with a Q *-atlas of local coordinate mappings, where Qk. 
means class C k (weak differentiability, e.g., H.H. Keller [3]), and derivatives
A0-linear. So for each open coordinate set U C  M  we have a set of mi -I------ Kms
coordinate functions xA : U —> A, (quantum coordinates). The tangent space 
TPM  at p £ M, is the vector space built in the usual way (cf. [9]). Then, 
derived tangent spaces associated to a quantum manifold M  can be naturale 
defined.

A quantum PDE  (QPDE) of order k on the fibre bundle 7r : W —> M, 
defined in the category of quantum manifolds, is a subfibrebundle E k c  J V k (IT) 
of the jet-quantum derivative space J V k(W) over M. J V k(W) is, in the cat
egory of quantum manifolds, the counterpart of the jet-derivative space for 
usual manifolds.

For more details see [9, 10], where there is also formulated a geometric the
ory for quantum PDEs that generalizes the theory of PDEs for usual manifolds.

In order to state existence of local solutions of QPDEs the following two 
theorems are very useful. (For the terminology used see [9, 10].)

T h e o r e m  2.1 (A. P r a s t a r o  [9])
1) ( 5 - P o i n c a r e  l e m m a  f o r  q u a n t u m  P D E s ). Let E k c  J V k(W) be a 

quantum regular QPDE. I f  A0 is a Noetherian K-algebra, then Ef. is a 8-regular 
QPDE.

2 )  ( C R I T E R I O N  O F  F O R M A L  Q U A N T U M  I N T E G R A B I L I T Y ) .  L etE k  C  J V k(W) 
be a quantum regular, 8-regular QPDE. Then if gk+r+1 a bundle of A0- 
modules over E k, and E k+ r+ i —> E k+ r is surjective for  0 <  r <  n, then Ek is 
formally quantumintegrable.

A solution of Ek that satisfies the initial condition q € Ek is an Tri
dimensional quantum manifold N  c  Ek such that q £ N  and N  can be repres
ented in a neighborhood of any of its points q' £ N , except for a nowhere dense 
subset E(AT) C  Ar of dimension <  m — 1, as image of the fc-derivative D ks of 
some -section s of ir : W —> M. We call E(AT) the set of singular points (of 
Thom-Bordman type) of N. If T,(N) ^  0 we say that Ar is a regular solution 
o i E k c J V k (W).

Let us denote by Jfy f W) the fc-jet of m-dimensional quantum manifolds 
(over A) contained into W. One has the natural embeddings E k C  J V k (W)  C  
J km{W). Then, with respect to the embedding E k C  ./.*,(IT) we can consider 
solutions of Ef. as m-dimensional (over A) quantum manifolds V  C  E k such 
that V  can be representable in the neighborhood of any of its points q' £ V: 
except for a nowhere dense subset E (V ) C  V, of dimension <  m — 1; as N (k'̂ — 
the fc-quantum prolongation of an m-dimensional (over A) quantum manifold 
N c W .



In the case that Е (У ) =  0, we say that У  is a regular solution of Êf. c  
J^ (W ).  Of course, solutions У  of E k C J ^ ( W) ,  even regular ones in general 
are not diffeomorphic to their projections ии (У) C M, hence they are not 
representable by means of sections of 7r : W —»• M. Therefore, the above two 
theorems allow us to obtain existence theorems of local solutions.

Now, in order to study the structure of global solutions it is necessary to 
consider the integral bordism groups of QPDEs. In [9] A. Prâstaro has extended 
to QPDEs his previous results on the determination of integral bordism groups 
of PDEs [8]. Let us denote by f l p k , 0 <  p  <  m  — 1, the integral bordism 
groups of a QPDE Ef. c  J fn(W) for closed integral quantum submanifolds of 
dimension p  and class Q™, over a quantum algebra A of Ef.. The structure 
of smooth global solutions of Ef. are described by the integral bordism group 
fi^ “ i corresponding to the quantum prolongation E x  of Ef..

Let us, pass to the study of a noncommutative case. For, now, set K =  Ж 
and let A be a quantum algebra such that A0 is Noetherian. Let us consider 
the following trivial fiber bundle: тг : W =  Am+1 —> Am, with quantum 
coordinates (x A l , . . . ,  x Am , u) i-»- ( x A l , . . . ,  x Am). Then the noncommutative 
generalized ra-d’Alembert equation, m € N, 2 <  m  <  oo, is the QPDE 
(.dt A)m  c  J 'b m{W) c  - t ( W )  defined by means of the following -function:

m

F  : J V m(Am-A) -»• A
=  H om Ao (A® A 0 . . . m . . .  ®Ao A; A) =  (T™ A)OA =  (T0mA)+,

where E  is the sum of formally the same terms with the commutative case. 
Of course more care must be taken on their meaning. For details see [9] and 
[11]. The quantum jet-derivative space J V m(W) C  T™(W) is a quantum 
manifold of dimension (m +  1, m, m2, . . . ,  m m) over the quantum algebra C =

1 m  1 m

A x A x  . . .  x A, i.e., J V m(W) is modelled on Am+1 x (A)m x . . .  x (A)”1”*. 
Moreover J V m(W) is an open quantum submanifold of ./.™(ІУ), and (d'A)m 
is a quantum regular QPDE as the mappings {(d!A)m)+r —> ((cPA jm ).).^ !), 
r >  1, are surjective. Hence, taking into account that (d'A)m is also ^-regular, 
it follows that (d'A)m is formally quantum integrable. Then, since in the open 
subset Zm =  u_ 1(0) C  J V m{W) the QPDE (d'A)m is quantum analytic, in 
a suitable neighborhood U of any point q Є Zm П (d'A)m one is able to build 
a quantum analytic solution that is diffeomorphic to irm{U) C  M =  Am. 
Therefore we have the following:

T heorem  2 .2  ___
The noncommutative generalized m -dAlem bert equation (d'A)m is a form 

ally quantum integrable QPDE. For any point q Є Zm П (d'A)m passes a quan
tum analytic solution V that is diffeomorphic to 7гто(У) C  M =  Am.



In order to state existence theorems of global solutions for (d'A)m it is

necessary to calculate the integral bordism groups n ^ A'>m, 0 <  p <  m — 1. 
From the above theorem, and since W  is p-connected, p € { 0 , . . . ,  m  — 1}, one

has the following isomorphism: Qpl Ad)m =  A 0 k  Hp(W: K ), 0 <  p <  m  — 1.
For a proof see [9]. On the other hand H0(W ;K ) =  K , and HP(W; K ) =  0,

for 1 <  p <  m  — 1. Therefore, one obtains: Qq1 A m̂ =  A, Qpd A'>m =  0, for 
1 <  p <  m  — 1. Hence, in particular, the following result holds:

T heorem  2.3 ___
Any admissible integral closed quantum manifold N  c  (d'A)m, o f dimen

sion m — 1 over A, bounds an integral quantum manifold of dimension m over 
A that is a solution o f  (d'A)m. Moreover, fo r  two admissible integral closed 
quantum manifolds Ar0, Ari c  (d'A)m, o f dimension m — 1 over A, there exists 
a solution V o f (d'A)m such that dV  =  Na(jN i.

In particular if N0 and Ari are homotopically different and V  is connected, 
then V  is a solution with change of sectional topology. Thus, we get the 
following:

C orollary  2.1 ___
In the set Sol((d'A)m) o f solutions o f the quantum generalized m -dA lem 

bert equation, there are solutions with change of sectional topology (quantum 
tunnel effect,). Such solutions, in general, cannot be represented as mappings 
f  : Am ->• A.

Conclusions

The geometric theory of PDEs introduced by A. Prastaro in [8 , 9] is a 
handable framework where problems in the theory of partial differential equa
tions find their natural solutions. In fact, the J .  d’Alembert equation is one 
such application.
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On a  Pexider type equation on A +

Abstract. The Pexider equation in question is defined with the use of t- 
norm and is considered in the space A+ of all non decreasing functions F  
from ]R+ into I  that satisfy F (0) =  0, F(oo) =  1 and are left-continuous 
on (0, oo). The general solution of the equation is found as well as, under 
certain regularity conditions solutions of more explicit from are exhibited.

1. Introduction

Cauchy’s equation on the space of distance distribution functions, A+was 
investigated in two papers [7, 8], by one of the authors. In this paper we 
consider the the Pexider equation on A + . Work on Pexider equations on general 
algebraic structures was done by M.A. Taylor [12] and A. Krapez and M.A. 
Taylor [4]. In their work, they assumed very little structure on the domain and 
no regularity on the functions and showed that if solutions exist, then some 
have to be in terms of homomorphisms of the underlying spaces. This paper 
makes certain regularity assumptions about the functions and, with the results 
of [7], obtains rather explicit solutions of the Pexider equation. For further 
references on the Pexider equation as well as functional equations in general, 
we refer to the classic works of Aczel [1], and Aczel and Dhombres [2].

This paper is divided into four sections, Section 1 being this introduction. 
In Section 2, we introduce the necessary notation and known results to keep this 
paper reasonably selfcontained. Section 3 introduces the functional equation, 
some general properties of the solutions and our main result. We conclude in 
Section 4 with by considering certain special cases, which yield explicit formulas 
for the solutions.

2. Preliminaries from A +

We will denote by A+ the space of all nondecreasing functions F  from M+ 
into I  that satisfy F (0) =  0, F ( oo) =  1, that are left-continuous on (0, oo).

The following elements of A + are of particular importance and therefore 
merit special symbols:

AMS (2000) Subject Classification: 39B22, 60E05.



(i) For any a  in M+ , e a is the function in A + defined by

0, for 0 ^  x ^  a,
6а{х) =  { ~1 . "  if 0 ^  a <  00,

1, for a <  x ^  oo,

and

(ii) For any a  in Ж+

£oo(a;) =  I 
and b in I ,  Sa>b is

Sa,b(x ) =  "

0 ,

b,

1,

for 0 ^  x ^  a, 
for a <  x <  oo, 

for x =  oo,

for 0 ^  x <  oo, 
for x =  oo.

the function in A + defined by 

if 0 ^  a  <  oo, and Sooj =  Eqo.

We will denote the set of all the Sa>b by A^~ and note that for all a  in M+ , 
<̂ a,i =  £a and <5(1.o =  coo- We also have:

L emma 2.1
For 0 ^  a, c <  oo and 0 <  b, d ^  1, Sa>b =  Sc>d if and only if a =  c and 

b =  d.

The set A +, partially ordered by

F  ^  G if and only if F (x)  ^  G(x) for all x in M+ ,

forms a complete lattice, i.e., a partially ordered set in which every subset has a 
supremum and an infimum, see [3]. Here, for any subset S of A +, the supremum 
of S is the pointwise supremum of all functions in S and the infimum of S is 
the supremum of the set of all lower bounds of S. The latter refinement is 
necessary since the pointwise infimum of left-continuous functions need not be 
left-continuous.

We note that in particular we have,

£a ^  Eb , whenever a  ^  b,
and

Sa .b ^  S Ctd , whenever a  ^  c and b ^  d.

Moreover, Soo and eq are, respectively, the least and greatest elements in this 
partial order.

To generalize the triangle inequality to probabilistic metric spaces, one 
needs a binary operation on the space of distance distribution functions: A tri
angle function r  is a binary operation on A + that is commutative, associative, 
nondecreasing in each place, and has eq as identity.

As an immediate consequence we have that is a zero for r , i.e., that



r (e o o ,  F ) = £ o o ,  for all F  in A +,

whence (A + ,r )  is a semigroup with identity and zero.
We will be principally concerned with the class of triangle functions tt that 

are induced by left-continuous t-norms via:

t t {F ,G ){x) =  sup {T (F (u ), G (v))}, for all F, G in A+  and x in M+ .
u+v=x

A simple calculation yields that for all a, b in M+ and all c, d in I ,

T T { S a , c $ b , d )  =  & a+b,T(c ,d)-  ( 1 )

This implies that (A ^ ,tt) is a subsemigroup of (A + ,tt).
Moreover, it follows from (1), that for any Sa>b in A ^, we have Sa>b =  

Vr(£a,fio,b)-
We also have the following basic lemma, which is due to R.C. Powers [6]:

L emma 2.2
Let F  be in A + , then

F =  SUP Sa}F (ay  (2)
a €  R +

D efin ition  2.3
A function ip from A + into A + is said to be sup-continuous if, for any index 

set J  and any collection {F j}  such that Fj is in A + for all j  in J ,  we have

<^(sup Fj)  =  sup ^(Fj). 
j e J  j e J

The next lemma is due to R.M. Tardiff [11] (see also [10, Sec. 12.9]). 

L emma 2.3
I f  T  is a continuous t-norm, then tt is sup-continuous in each variable.

Thus we have that a sup-continuous function on A + as well as any t t , 
with continuous T, is completely determined by its values on A j-. This is the 
key observation for solving functional equations for sup-continuous functions 
on A +.

3. Pexider equation
D efin ition  3.1

We say that the triple (<pi,<P2,<P3) is a solution of the Pexider equation if 

< P i(M F ,G ))= T r(< p 2(F),<p3(G )), for all F ,G  € A+ . (3)

We begin with some obvious observations.



If ip is a solution of Cauchy’s equation, see [7, 8], then is a
solution triple of the Pexider equation. Furthermore, if is a solution of 
Cauchy’s equation and we let <fi2(F) =  tt(<p (F ),H 0), <̂ 3(F ) =  tt{w{F ),H i ), 
and ifi(F ) =  tt(ip(F ) ,tt(H0,H 1)), then (<pi,<p2,<P3) is a solution triple of 
the Pexider equation. The latter includes all constant solutions by choosing 
ifi(F) =  £q. Furthermore, if H0 =  e ^ ,  then ipi =  <̂ 2 =  £oo and <fi3 is arbitrary; 
similarly for H\ =  e ^ .

This yields a large class of solutions of the Pexider equation and the rest of 
this section will be devoted to showing that, among sup-continuous solutions 
satisfying a few additional conditions, these are the only solutions of the Pexider 
equation on A +. Krapez and Taylor, [4], showed that such solutions have 
to occur if the Pexider equation has a solution; they did so on spaces with 
very little structure and without regularity assumptions. To show that all 
solutions of a certain class are of this form, we need, however, some regularity 
assumptions.

From now on we will make more stringent assumptions on the class of 
solutions of (3). As was pointed out, the assumption that the solutions are 
sup-continuous allows us to reduce the problem to solving (3) on A jb We will 
now make two further assumption: First we assume that T  is a strict t-norm  
and second, that the solutions will map Â ~ into a cancellative subsemigroup 
of (A + ,tt). To this end we need the following results and definitions, see [10]:

T heorem  3.2
I f  T  is a strict t-norm then

T (x ,y )  =  5 -1 (g(x) +g (y)) ,  for  all x ,y  in I,

where g is a continuous, strictly decreasing function from I  onto M+ =  [0 , oo], 
with 5 (1) =  0 .

The function g is called an inner additive generator (briefly, a generator); 
and it is well-known that g and h generate the same t-norm if and only if there 
is a k >  0 such that

g(x) =  к ■ h(x), for all x in I. (4 )

D efinition  3.3
Let T  be a strict t-norm and g any inner additive generator of T. Then we 

let

A + =  { F  in A+ | g o F  is convex on (6^ , 00)} , 

where =  supx6R+{F (a ;) =  0}.

In view of (4), the set A j; does not depend on the choice of generator g. 
Furthermore, (Ay \ {£00)5tt) is a cancellative subsemigroup of (A + ,tt), [10, 
Theorem 7.8.11].



We note here that the set Ay is often referred to as the set of T -log-concave 
elements of A +. This terminology is due to R.A. Moynihan [5] (see also [10, 
Sec. 7.8]) and stems from the fact that he used multiplicative generators to 
define this set.

Clearly bga b =  a  and, since 6а>ь is constant on (a, oo), it follows that д о 6 а>ь 
is convex, whence

Aj  C A +.

With this we have the following lemma:

L emma 3.4
Assume that ^ ( A j"  \ {£oo}) C Ay \ {£oo}> for  i =  1 ,2 ,3  and that fo r  i =  2 

o r i  =  3, we have <Pi(F) ^  tpi(e0) and tpi(e0) €  A |  \  {eoo}- Then (<y?i,<y?2 ,<y?3 ) 
is a solution triple o f  (3) on A^“, if and only if there is a function <p with

<p(TT(SatC, <5M )) =  TT(ip(6atC), ip(6btd))

(i.e. a solution o f Cauchy’s equation on A “̂), such that

P i(F ) =  tt (<p (F ) ,tt (<P2(£o),<P3(£o)))

<p2{F) =  TT{<p{F),<p 2(e0))

M F )  =  TT{<p{F),<p 3(e0))

Proof. The only if part follows from the observations in the previous sec
tions. We will follow an approach similar to that of the proof in [4, Theorem 
10]. We let G  =  e 0 in (3) to get

<Pi(F) =  TT(v2(F),(p3(£o)). (5)

For F  £  A ji we have that ipi maps into the coset S 3 =  7 r ( A y ,  <̂ 3 (e0)). Simil
arly, letting F  =  e0 we have that ipi maps into the coset S2 =  TT(Ay,<£2(£0))- 
Since if2(F) ^  <fi2 (eo) and ^ (e o )  =  $a,b, (or the same holds for <p3), we can 
write if2(F) =  TT(H,Sa>b), which is <̂ 2 (F ) =  T (H (x  — a),b), so that

H(x) =  g - 1 (g(<p2(F )(x  +  a)) -  g(b)) £ A+

and the range of ipi is contained in the coset S 2i3 =  TT(A y,rT(¥32(eo))¥J3(eo)))- 
Now we let M i(F) =  TT(F,ifi(£0)) for i =  2 ,3. Using the fact that tt is 
cancellative on A y, we have that M* is invertible on the coset T T (A y ,^ (e 0)) 
for i =  2 and i =  3, respectively. The associativity and commutativity of tt 
yield that M2(M3(F)) =  M3{M2{F)) and M i(TT (F ,G ))  =  TT (M i(F ) ,G )  =  
T T (F ,M i(G )). Similarly, we have M 2_ 1 (M^“1 ( F ) )  =  M^“1(M^“1 ( F ) ) ,  for F  £  
S 2 ,3 and Mi_ 1(rT (G ,H)) =  t t {M ^1{G ),H ), for G  £ S i, i =  2,3. Using these 
properties of the M i, we can now proceed and let F  =  e0 in (3), to get



i f i(F )  =  M3(<p2(F)) and i f i(F )  =  M2(<p3(F)),

which by the invertibility of the M*, yields:

M F )  =  M ^ ( M F ) )  and ( F ) = M ^ ( M F ) ) .  (6)

Substituting (6) into (3) yields

<Pi (t t ( F , G)) =  t t (M3- 1(Vi (F)), M ^ 1 fa , (G))).

Applying M2_ 1M3_1 to both sides and simplifying yields that ip =  M2- 1M3-1 <̂ i 
satisfies Cauchy’s equation on A jb Using this and equations (5) and (6), gives 
the desired result.

Lemma 3.4 together with Lemmas 2.2 and 2.3 immediately yield our main 
result:

T heorem  3.5
For i =  1 ,2 ,3 , let <pi : A + —> A + , be sup-continuous. Further, assume 

that \ {£oo}) C Aji \ {eoo}, for  i =  1 ,2 ,3  and that fo r  i =  2 or i =  3, we
have ifi(F )  ^  ipi(eo) and <pi(eo) € A^" \ {eoo}- Then (ipi,ip2,ip3) is a solution 
triple o f  (3) on A + , if  and only i f  there is a function with

<p (tt (F ,G )) =  M v W M G ) ) ,  for  all F ,G  € A +

( i. e. a solution of Cauchy’s equation on A +J, such that

<Pi (F) =  tt (<p (F ) ,tt (<P2(£ 0) ,^ 3(eo)))

<Pz(F) =  TT{<p{F),<p 2(e0))

M F )  =  tt {<p (F ) ,F  3(eo))

4. Explicit solutions

Using hypotheses similar to those of Theorem 3.5, we can use the following 
theorem (see [7, Theorems 6.6 and 6.7]), to obtain specific explicit solutions of 
the Pexider equation.

T heorem  4.1
Let T  be a strict t-norm with generator g and let <p be a sup-continuous 

solution o f Cauchy’s equation fo r  tt such that <p(Af) C Ay . Then, given any 
c e  (0 ,1 ), we have fo r  all F  in A +,

<P(F) =  sup TT  ( W i ) ] 4 ,  b№>,c)]fes(F(t)))  ,  (7)
t€ R+ V '

Where k = ^ - cy



Here F'1 is the “/i-th tt power” of F  (for F  in AiJ; \ {eoo})> given by

F » ( x) = 9 ~ 1 \ ^ - g \ F for 0 <  p  <  oo,

„ I Era, for F  ^  £n,
F ° =  lim =  e„, F °°  =  lim ^

M->0 O I e0, for F  =  e0.

Assuming now that <y? satisfies the hypotheses of Theorem 4.1 and in particular, 
that <p(ei)  =  e a and < (̂<Jo,c) =  So,b, we see that

<p(fiu,v) =  Sau,e(v) ; 0(v) =  g - 1 ■

This, in turn, implies by the sup-continuity of <p that ip is an order automorph
ism (see [6]), that is

<p(F)(x) =  0(F(y(x))) for all F  € A+ and all a; € M+ .

Here 7 (u) =
Thus the question arises whether each function of the triple (<pi,<P2,<P3) 

(a solution of (3)) is also induced by left and right composition. This is not 
quite the case as the following theorem shows:

T h e o r e m  4.2
For i =  1 ,2 ,3 , let <pi : A f  —> A f  \ {£oo}> be sup-continuous with

F i (£o ) — bUiiVi , —Sa+ UiiVi , v^i(^o,c) — bUi,T(vi,b) f o r i  — 2,3.

Then is a solution triple o f  (3) i f  and only if  there is a ip , given by
(7), with <p {e\) =  £a and <̂ (<io,c) =  So,b such that

fo ,

<Pi(F)(x) =  <
' - ' { w y < F ' x ~ v‘
1,

+  g(ui)

if x =  o,

ifO <  x  <  oo, 

if  x  =  oo;

for  i =  2 ,3  and <p\(F )  =  t t (<P2(F),<p3(eo))- Here we use for  ease o f notation 
that F ( x )  =  0, for  x  <  0.

Thus we see that these solutions are not induced on A +.
In a similar manner, we can obtain order automorphism solutions of the 

second type (see [6]), where <p(ei) =  So,b and <p(So,c) =  s a- In this case we have 
that the left and right compositions of the order automorphism can only differ 
by a multiplicative constant since they need to generate the same T -norm.



Thus solutions of this type are given, for i =  2,3, by

f 0 ,
{<Pi{F)){x) =  < (.9 F v9 )(k ■ X -  hi),

u

if X =  0, 

if 0 <  X <  o o ,  

if X =  oo;

and i f i(F )  =  Tr(<fi2(F),<p3(eo)); with the same notation as above and F v is 
the right-continuous quasi-inverse of F  which is given by

F v (y) =

fo ,
inf{a; I F (x) >  y},
00,

for y =  0 , 

for 0 <  y <  1, 
for y =  1.

(8)

In conclusion we note that the case of non-strict T -norms requires another 
approach; solutions of the type of those just presented are still possible, but 
new methods will be needed to describe all sup-continuous solutions in that 
case. We further note that the restriction to triangle functions of the form tt 
is not as restrictive as it may seem, since, as was noted in [9], triangle functions 
that are sup-continuous and map x A into A ^ are essentially of this form.
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On the stability of derivations of higher order

Herrn Professor Zenon Moszner mit den besten Wünschen 
für die Zukunft zum 70. Geburtstag gewidmet

Abstract. Derivations of order n as defined by L. Reich are additive and 
nonlinear functions /  : R —>• R with / ( 1 ) =  0  which satisfy the func
tional equation 8ai ° Sa2 ° ■ ■ ■ ° <U„+i /  =  0  for all a i,a 2 , ■ ■ ■ ,a n+i £ R, 
where 5af(x )  :=  f(a x)  — a f(x ). Here we prove several stability results 
concerning this (and similar) functional equations.

1. In [K], Chap. XIV  a derivation f  : M —> M is defined to be an additive 
mapping which additionally satisfies the Leibniz rule

f(x y ) =  x f(y ) +  y f(x ),

In [R92] the operators Sa are introduced. For functions /  : M —> M and reals a 
we have

$a(f)(x) ■ = f(a x )  -  a f(x ) .

In [R98] it was shown that

an additive function f  is a derivation if and only if and

/ ( 1) =  0 and (Sa oSt,)f =  0, a, f e e l .

Moreover in the same paper (Satz 2) and in [UR] this leads to the following 
generalization.

D e f i n i t i o n  1
A function /  : M —> M is called a derivation of order n (e  No) if and only if 

/  is additive with / ( 1) = 0  and if /  satisfies the equation

^ 1 o(5O2 o . . . o (5Oii+1/(a;) =  0, a i ,a 2, • • • , a n+ i ,x  € M. (1)

Actually the original definition was different. But for our purpose (stability 
investigations) it is convenient to use the definition above.
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Before we proceed to this topic we prove the following theorem which was 
mentioned in [R98] (Satz 3) and proved there for n =  2.

T h e o r e m  1

For a £ l  and n € N let <J" +1 :=  Sa o Sa o . . .  o Sa. Then f  : R —t R is a

n + 1  t im e s
derivation o f order n if and only if f  is additive with / ( 1) = 0  and if

$a+ 1f ( x ) =  °> a, a; € M. (2)

Proof. Let /  : R  —> R  be additive. Obviously it is enough to show that (2) 
implies (1). Moreover Sa maps additive functions to additive functions. Thus 
Sa is an endomorphism of the vector space of all additive functions defined on 
R with real values. Since 8a ±  Si, =  8a± b and Sa o Sb =  Sb o Sa the ring generated 
by the operators Sa, a  € R, is commutative. It is well-known (see for example 
[S]) that in any commutative ring we have

( m
y Z£jXj

j = l

Using this for m =  n +  1, Xj =  Saj (and • =  o) we see that the operator 
6ai o Sa.2 o . . .  o San+1 is a linear combination of certain operators <S"+1 . But this 
gives the desired result.

R e m a r k  1

Since Sa (id«) =  0 it can easily be seen that the general additive solution of 
(1) or (2) is given by sums of a derivation of order n and of a linear function. In 
the following we will call additive solutions of (1) or (2) generalized derivations 
of order n (and for convenience omit the term “generalized”).

For future use we formulate the explicit form of 8ai o 6a2 o . . .  o San+1f(x ).  

L e m m a  1

For all a i , «2, . . . ,  a n+\ , i £ l  and all f  : M —> M we have

5a io5a2o . . .o 5 an+1f{x )  =  ^  ( - l ) n+1- # J I I a r /  | I I  «j  ' a: ] (3)
J C { l , 2 , . . . , n + l }  \ j e J  J

Proof. For real a  the operator Sa may be written as Sa =  Ma — p(1, where 
Maf(x )  :=  f(a x )  and iiaf(x )  :=  a f(x ) .  Then Ma o Mb =  Mab, fia o fib =  /iab 
and (Ma o nb)f(x )  =  bf(ax ) =  (fib o Ma)f(x ) . Thus all the operators Ma, Mb, 
tic, Hd commute in pairs and we get



Tl +  1

^ai 0 â-2 0 • • • 0 ^an+i — O  l^aj )
3 =  1

E  ( - 1) " + 1 - # J  O  A *a,-0 O  M a . ,  

J C { 1 , 2 ....... n + 1 }  i  & J

from which the assertion follows.

We also mention a suitably adapted version of a stability theorem (see [K], 
Chap. X V II and the references given there in).

T heorem  2
Let f  : R  —)■ R be such that \ f ( x  +  y) — f(x )  — f(y )  | ^  e for  all x ,y  € R. 

Then there is a unique additive function g : R —► R such that \ f  — g\ is bounded 
(by e .)  Moreover g is given by g(x) =  lim ^o o

Surprisingly the same problem for exponential functions has a completely 
different answer (see e.g. [BLZ]).

T heorem  3
Let f  : R —)■ R be such that \f{x +  y) — f(x)f(y)\  ^  e for  all x ,y  £ 

R. Then either f  is bounded or an unbounded exponential function, i.e., an 
unbounded function such that f ( x  +  y) =  f (x ) f (y )  for  all x, y £ 1 .

The phenomenon described here is called “superstability” by some authors.

2. The stability results

The possibility of investigating the stability of derivations of order n de
pends on the choice of equations to be replaced by suitable inequalities. One 
result is the following.

T heorem  4
Let e  >  0, letb  : R " +1 —> R be an arbitrary function, and let f  : 

such that
\f(x +  y) ~  f(x )  -  f(y)\ ^  £, x ,y £ R

and
l ^a i  °da2 0 ■ ■ ■ 0 5a„+1f(x)\ ^  6 ( a i , a 2 , . . .  , a „ + i ) ,

x, o\, 02, * * *, Uyj-j-i £ R.

Then we have:

—> R be

(4 )

(5 )

i) There is one and only one derivation d o f order n such that f  — d is 
bounded.



ii) For any derivation d of order n and any bounded function r : R —> R the 
function f  :=  d +  r satisfies (4) and (5) for  some suitable number e and 
some function b : R " +1 —> R.

iii) I f  b is independent o f at least one o f its variables and if f  satisfies (4) 
and (5), then f  is already a derivation o f order n itself

Proof. Using (4) and Theorem 2 we get a unique additive function d such 
that f  — d is bounded. Moreover we know that d(x) =  lim ™ -^ . For 
fixed m  we put f m(x) :=  . Then (5) together with the linearity of the
operators Sa gives

^ai 0 ^a2 0 ■ • 0  3an + i fm[x)  I ^
b (ü i ,  «2,  • • • , a n+ 1)

m
for all x, «1, «2, . . . ,  an+1 € M and all m  € N.

But for m —> oo we get that f m(x) d(x) and by (1)

Sai 0 $a2 0 • • • 0 8an+1fm (x) Sai O Sa2 O . . . O San+1d(x).

Since ^ 6( a i , a2, . . .  , a n+1) —> 0 this means that

Sai °Sa2 0  ••• °8an+1d(x)  = 0

for all x, a i , «2, . . . ,  an+1 e  R, thus proving the first part of the theorem.

Let r and d be as required in the second part of the theorem, and let R  be 
an upper bound for |r(a?)|, i £ l .  Then

Sai 0 Sa2 0 • • • 0 San + 1 (d +  r)(x) =  Sai O Sa2 O . . . O Sarl+1 (r)(x)

and by (1)

öai ° ö a2 ° ° öan+1(r)(x)\ ^  &(a1,a 2, . . . , a n+1) : E
J C { l , 2 , . . . , n + l }

R.

Moreover

|( d + r ) ( x  +  y) -  (d +  r)(x) -  (d +  r)(y)\ =  \r(x +  y) -  r(x) -r(y)\
^  e :=  3R.

To prove the third part we may observe that by the first part there is a 
unique derivation d such that F  :=  f  — d is bounded. We have to show that 
F  =  0. Let us assume that the function b does not depend on, say, the last 
variable an+1. Since dai o Sa2 ° • • • ° Sa„+1 (F) =  dai o Sa2 o . . .  o San+1 ( / )  we get

^an+i (^ ) (x) | ^  b(a i , O2, • • • ? ^n+l) —• R {a  1, O2, • • • , On)

Assuming that 01, 02, . . .  ,o„+ i are different from zero and using (1) we get



F  Y [ a r x

E (-Dn + l  — # J _

J C { l , 2 , . . . , n + l }  £\jaj \0-10-2 • • • an+ 11

If we fix a i , «2, . . . ,  a„ and if we let an+1 tend to infinity we get

B(cL\, Oj2 , • • • , Q*n)

F 11 Oj • *
j e J

n a:i
j e J

=  0

since -B(ai ,a2 ,...,aw) 
|aia2***an-|-i| —> 0 for an+\ —> oo and since also Uj€J ai —>- 0 if the

subset J  C { 1 , 2 , . . . ,  n +  1} is such that n +  1 € J .
But the sum above contains the term ± F (x )  (for J  =  0) and all the other 

terms tend to zero when all the aj tend to infinity, which means that F(x)  =  0 
(for arbitrary a;).

Concerning the characterization of derivations as given by Theorem 1 we 
have the following result.

T heorem  5
Let e >  0, let b : M —> M be an arbitrary function, and let f  be

such that (4) is satisfied and such that

\$a+1f (x )\<  b(a), x ,a  GM. (6)

holds. Then we have:

i) There is one and only one derivation d o f order n such that f  — d is 
bounded.

ii) For any derivation d o f order n and any bounded function r : M —> M the 
function f  :=  d +  r satisfies (4) and (6) for  some suitable number e and 
some function b : M —> M.

iii) I f  b is constant and if f  satisfies (4) and (6), then f  is already a derivation 
o f order n itself.

Proof. The first part and also the second one can be proved as the corres
ponding parts of the theorem above. Especially the desired derivation of order 
n is given by d(x) :=  lrninj^oo ■ As for the third part we put F  :=  f  — d 
and observe that F  is bounded and satisfies <5"+l F  =  <5"+' / .  Moreover



5™+1F(x) =  { - l ) n+1~ * J an+1~ * J F  ( a * J x)
J C { l , 2 , . . . , n + l }

Thus for a  ^  0 (and putting B  :=  b(a))

SZ+1F(x)
an+l

n+1
(—l ) " +1F(a;) +

j = i

n +  l \ F  (aj x)
a3

B
I n+l '

This for a  —> oo implies F (x) =  0, as desired.

R em ark  2
The last parts of both theorems are remarkable since they show the phe

nomenon of “strong” superstability: Every solution o f the inequality is also a 
solution o f the equation!

3. Characterization of derivations of order n  by a single equation (and its stability)

Actually the definition of a derivation of order n contains two requirements 
(additivity and the condition connected with the operators Sa). For n =  0 
formally this is nothing but the definition of linearity by the two requirements 
f ( x  +  y) =  f(x )  +  f(y )  and f(a x )  =  a f(x )  which are equivalent to the single 
condition f (a (x  +  y)) =  a f(x )  +  a f(y ) .  Generalizing this we have the following 
theorem.

T heorem  6
For n e  No and f  the conditions (a) and (b) below are equivalent.

(a) /  is a derivation o f order n.

(b) /  (an+1(x +  2/ ) ) + E " =  o ( - 1) " + 1_-7' ( " j 1) a" +1_'7 (f (a jx ) +  / ( « + ) )  =  0 for  
all x ,y ,a  e  M.

Proof. Obviously the condition given in (b) is nothing but

/  {an+1(x +  y)) +  Sna+1f(x )  +  S :+1f(y )  -  f ( a n+1x) -  f ( a n+1y) =  0. (7)

If /  is a derivation of order n the terms S%+1f(x )  and S%+1f(y )  vanish. Moreover 
by the additivity of /  the three remaining terms on the left-hand side of (7) 
also disappear.

Conversely, if (7) is satisfied, we may put x =  y =  0 in this relation to get 

/ ( 0) +  2(1 - a) " + 7 (0) -  2/ ( 0) =  0 or (2(1 -  a)n+1 -  l )  / ( 0) =  0 .



Using this with (for example) a =  — 1 we get (2" + 2 — l) / ( 0 )  =  0, i.e. / (0 )  =  0. 
This gives <J" +1 /(0 )  =  0. Applying the equation for y =  0 gives

f ( a n+1x) +  5™+1f(x )  +  0 — f ( a n+1x) —0 =  0 or 6^+1f(x )  =  0 .

Using this and (7) for a =  1 once more also gives the additivity of / .

The corresponding stability result is contained in the following theorem.

T heorem  7
Let b be an arbitrary function and let f  be given such

that

\f (an+1(x +  y)) +  S™+1f(x )  +  S™+1f(y )  — f ( a n+1x) — f ( a n+1y)\ ^  6(a) (8) 

for  all x ,y ,a  £ M. Then we have:

i) There is one and only one derivation d o f order n such that f  — d is 
bounded.

ii) For any derivation d of order n and any bounded function r : M —> M the 
function f  :=  d + r  satisfies (8) fo r  some suitable function b : M —> M.

iii) I f  b is constant and if f  satisfies (8), then f  is already a derivation of 
order n itself

Proof. Since 5™+1 f(x )  =  (1 —l ) " + 1/(a;) =  0, equation (8) for a =  1 implies 

I f ( x  +  y ) -  f{x )  -  f{y )  I ^  6(1) = :  e.

Putting y =  0 in (8) leads to

\f(an+1x) + s : +1f(x )  + s : +1m  -  f ( a n+1x ) -  /(0)| ^  6(a). (9)

Moreover
Sa" + 7 (0) -  / ( 0) =  ((1 -  a )"+1 -  1) / ( 0) = :  c(a).

Thus with 6' (a) :=  6(a) +  |c(a)| we get

|6" + 1/(a;)| ^  6' (a), x ,a  £ 1 .

Accordingly we may apply Theorem 5 to get the first part of the theorem.
The second part may be proved in a similar way as in previous cases. (If 

i? is an upper bound for |r| we may take 6(a) =  3i? +  2(1 +  |a|)"+1 .)
With F  =  f  — d we have (again as in previous cases) that F  is bounded 

and that
IF (x  +  y) -  F (x ) -  F (y)  | <  6(1) =  e.

Thus (8) with x =  y implies

|26"+1/(a;)| ^  2e, i , a £ l .

Now we again apply Theorem 5.



R em ark  3
It is possible to formulate (and prove) similar results with <J" +1 replaced 

by the operator 8ai o 6a2 o . . .  o Sari+1. But we will not do this here.

The results of this paper have been presented earlier for example at a joint 
Graz-Maribor seminar in 1996 and at the 36-th ISFE  in Brno in 1998.
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Abstract. One version of the classical Wiener Tauberian Theorem states 
that if G is a locally compact abelian group then any nonzero closed 
translation invariant subspace of L°°(G) contains a character. In other 
words, spectral analysis holds for L°° (G). In this paper we prove a similar 
theorem: if G is a discrete abelian torsion group then spectral analysis 
holds for C(G), the space of all complex valued functions on G.

1. Introduction

A possible formulation of one version of the classical Wiener Tauberian 
Theorem on locally compact abelian groups is the following: if G is a locally 
compact abelian group then any nonzero closed translation invariant subspace 
of L°°(G) contains a character. Similar problem can be formulated concerning 
C{G) instead of L°°(G) but in that case “characters” should be replaced by 
“generalized characters” : does any nonzero closed translation invariant sub
space of C{G) contain a generalized character? The answer is positive in some 
special cases but the general problem is far from being solved. The problem is 
still open even in the case where G is discrete. In this paper we give a positive 
answer to the above question if G is a discrete abelian torsion group.

2. Spectral: analysis and synthesis on discrete abelian groups

In this paper C denotes the set of complex numbers. If G is an abelian group 
then C{G) denotes the locally convex topological vector space of all complex 
valued functions defined on G, equipped with the pointwise operations and the 
topology of pointwise convergence. The dual of C(G) can be identified with 
M C(G), the space of all finitely supported complex measures on G.

AMS (2000) subject classification: Primary 43A45, Secondary 20K10. 
Research supported by F K F P  0310/1997 and O TKA Grant T-031995.



Homomorphisms of G into the additive group of complex numbers, resp. 
into the multiplicative group of nonzero complex numbers are called additive, 
resp. exponential functions. Bounded exponential functions are exactly the 
characters of G, hence exponential functions are sometimes called generalized 
characters. Products of additive functions are called monomials, products of 
monomials and exponential functions are called exponential monomials.

The basic question of spectral analysis on C(G) can be formulated as fol
lows: does any nonzero closed translation invariant subspace of C(G) contain 
an exponential function? If so, then we say that spectral analysis holds for  
C{G). For instance, if G is finite then by the Wiener Tauberian Theorem the 
answer is “yes” . Another basic problem concerns spectral synthesis on C(G): 
given a nonzero closed translation invariant subspace of C{G), do the linear 
combinations of exponential monomials in this subspace form a dense subset? 
If so, then we say that spectral synthesis holds fo r  C(G). This is the case, for 
instance, if G is finitely generated, due to the following theorem.

T h e o r e m  1 (M. Lefranc [2])
I f  G is a finitely generated discrete abelian group then spectral synthesis 

holds for  C(G).

3. Exponential monomials on abelian torsion groups

Let G be an abelian group. We say that G is a torsion group if every 
element of G has finite order. In other words, for every x in G there exists a 
positive integer n with nx =  0. Hence G is not a torsion group if and only if 
there exists an element of G which generates a subgroup isomorphic to Z, the 
additive group of integers.

In what follows we need the following lemma (see [1]).

L emma 2
Let G be an abelian group, H  C G a subgroup and let D be a divisible abelian 

group. I f  ip : H  —> D is a homomorphism, then there exists a homomorphism  
$  : G —> D which extends <p, that is, $(x) =  <p(x) for  all x in H.

T heorem  3
Let G be an abelian group. Then G is a torsion group if and only if every 

nonzero exponential monomial on G is a character.

Proof. Suppose that G is a torsion group and let a : G —> C  be an additive 
function, and m : G —> C an exponential function. For every x in G there exists 
a positive integer n with nx =  0 and hence 0 =  a(nx) =  na(x), which implies 
a(x) =  0. This means that every additive function on G is zero. Further 1 =  
m(nx) =  m (x)n, which implies \m(x)\ =  1. This means that every exponential
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function on G is a character. Now we conclude that if G is a torsion group 
then every nonzero exponential monomial on G is a character.

Assume now that G is not a torsion group, that is, there exists an xq in 
G such that the cyclic group generated by xq is isomorphic to Z. Let a / 0  
be a complex number and we define <p(nxo) =  n a  for any integer n. Then <p 
is a homomorphism of the subgroup generated by xq into the additive group 
of complex numbers. As this latter group is divisible, by Lemma 2. this 
homomorphism can be extended to a homomorphism a : G —> C of G into the 
additive group of complex numbers. By a(a;o) =  <p(xo) =  a ^ 0 w e  have that a 
is a nonzero additive function, that is, a nonzero exponential monomial on G, 
which is obviously not a character. The theorem is proved.

4. A Wiener Tauberian Theorem on abelian torsion groups

In this paragraph we show that if G is a discrete abelian torsion group, then 
any nonzero closed translation invariant subspace of C(G) contains a character. 
The proof heavily depends on Theorem 1.

T heorem  4
Let G be an abelian torsion group. Then any nonzero closed translation 

invariant subspace of C(G) contains a character.

Proof. Let V  C C(G) be any nonzero closed translation invariant sub
space. Then by the Hahn-Banach theorem V  is equal to the annihilator of its 
annihilator, that is, there exists a set A C M C(G) of finitely supported complex 
measures on G such that V  is exactly the set of all functions in C(G) which 
are annihilated by all members of A:

V =  V(A) =  { / 1 /  € C(G), A( / )  =  0 for all A e  A}.

We show that for any finite T C A, its annihilator, F (T ), contains a character. 
Indeed, let Fr  denote the subgroup generated by the supports of the measures 
belonging to T. Then F r  is a finitely generated torsion group. The measures 
belonging to T can be considered as measures on F r and the annihilator of 
T in C(F\-) will be denoted by V ( r ) f r . This is a closed translation invariant 
subspace of C(F\-). It is also nonzero. Indeed, if /  belongs to V  then its 
restriction to F r belongs to V ( r ) f r . If, in addition, we have f ( x o) ^  0 and 
2/o is in F r , then the translate of /  by xq — yo belongs to V, its restriction to 
F r  belongs to Vr(r) and at yo it takes the value f ( x o) ^  0 . Hence Vr(T) 
is a nonzero closed translation invariant subspace of C(F\-). As F r  is finitely 
generated, by Theorem 1. spectral synthesis holds for C (F r), and, in particular 
y ( r ) f r contains nonzero exponential monomials. As F r is a torsion group, 
any nonzero exponential monomial on F r  is a character. That means, F ( r ) f r



contains a character of Fp. By Lemma 2. any character of Fy can be extended 
to a character of G, and obviously any such extension belongs to V  (r ) .

We have proved that for any finite T C A the annihilator V (r)  contains 
a character. Let char(V ) denote the set of all characters contained in V . 
Obviously char{V ) is a compact subset of G, the dual of G, because char(V) 
is closed and G is compact. On the other hand, the system of sets ch ar(V (r )) , 
where T C A is finite, is a centered system of nonempty compact sets:

char{V (T i U T2)) C c /ia r(V (ri))  n char(V (T 2)).

We infer that the intersection of this system is nonempty, and obviously

P| char{V (T)) C char(V ).
r C A  finite

That means, char(V ) is nonempty, and the theorem is proved.
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On a  problem of H.-H. Kairies concerning 
Euler's Gamma function

Abstract. The Bohr-Mollerup theorem on the Euler T function states: If 
/  : R+ —>• R+ satisfies the functional equation f (x  +  1) =  x f (x )  on R+, 
log o f  is convex on (7 , + 0 0 ) for some 7 ^ 0  and /(1 )  =  1 then f  =  T .  

We give some partial answers to the question posed by H.-H. Kairies: By 
what other function can the logarithm be replaced in this statement.

Introduction

Let us introduce the family of functions

F  :=  { /  : M+  —> M+  | Vx €  M+  : f ( x  +  1) =  x f(x )  and / ( 1 )  =  1 } .

Then for every /  €  F  and n €  N we have f(n )  =  T(n) =  (n — 1)! where T is 
the Euler function defined by the formula

r ( * )  =  lim r „ ( z ) ,  (T)
n —y 00

where <r} ̂  Ti I
^  y  (T „)x(x +  1) . . . (a; +  n)

Moreover, /  €  F  iff f(x )  =  p (x )r(a ;), where p : M+  —> M+  is a periodic function 
of period 1  with p (l)  =  1 .

We begin our considerations with reminding the Bohr-Mollerup Theorem, 
cf. [1] p. 14.

T h e o r e m  (Bohr-Mollerup)
I f  f  & F  and logo/  is convex on (7 , + 0 0 ) for  some 7 ^ 0 , then f  =  T.

H.-H. Kairies proposed (private communication) to investigate the proper
ties of the following set:

M  :=  {g : M+  —> M | ( /  €  F  and g o /  is convex on (7 , + 0 0 ) for some 7 ^ 0 )

= * /  =  r } .



In this paper we find some elements of the set M  and study its properties.

1. Properties of the set M

We start with the two lemmas which follow directly from the definitions of 
monotonicity and concavity of the functions involved.

L emma 1
I f  g is increasing and concave then g~' : R  —> R  is increasing and

convex.

L emma 2
Let X , Y , Z be some intervals o f R. I f  f  : X  Y is a convex function 

and g :Y  —> Z is increasing and convex then g o /  : X  Z is convex.

T heorem  1
Let g £ M  and let h be increasing and concave. Then h o g :

M+ —> R  belongs to the set M .

Proof. Let g and h satisfy the assumptions and let /  € F . By Lemma 1 
the function /i-1 is increasing and convex. If h o g o f  is convex then (by Lemma 
2) /i-1 o h o g o f  is convex, too. Thus, since g £ M , we have h o  g g M .

The above theorem implies

R em ark  1
Let a  >  0. If g : R +  —> (a, +oo) is increasing and logarithmically convex 

then 5 _1 £ M .

Proof. By our assumption log og is a convex function. By Lemma 1 and 
Lemma 2 the function g ~ x o exp =  (log og)-1 is increasing and concave for x £ 
(loga, +oo). By the Bohr-Mollerup Theorem, log £ M . Thus, by Theorem 1, 
g 1 =  (log°5)_1 0 log € M .

In particular, we have

R em ark  2
The function G =  ( r  |(2,+oo)) is in M .

T heorem  2
I f  g £ M , a >  0, b £ M, then a - g +  b £ M .

Proof. Let g £ M , a >  0 and b £ ! .  Take a function f  £ F . If the function 
(a • g +  b) o f  is convex then so is the function ^ • [(a • g +  b) o /]  — k =  g o  f .  
Since we have assumed that g £ M , f  =  T and a ■ g +  b £ M .



Besides /  =  T there are other convex functions belonging to F , e.g., the 
functions f c : M+ —> M+ ,

They are convex for sufficiently small c >  0 on (0 ,+oo) (see [2]). Thus we 
obtain the following remarks:

R em ark  3
The function idR+ does not belong to M .

R em ark  4
If h : M+ —> M+ is an increasing and convex function then h ^ M .

Proof. Let h be a function satisfying the assumptions and let /  € F . By 
Lemma 2 if /  is convex then so is h o  f .  Because T is not the only convex 
element of F , we have h ^ M .

2. Special elements of the set M
T heorem  3

Let us assume that h : M+ —> M and

Then lo g +/i is an element o f the set M .

Proof. We put g =  log + h ,  and take a function /  C F. Moreover we fix 
an n € N and x e  (0,1]. If g o /  is convex then the following inequalities hold

f c(x) =  T(a;) exp [csin(27ra;)].

£—>•+00lim h(x) =  m £ M. (1 )

(2)
^ g o f ( n  +  l ) - g o f ( n ).

Using f ( x  +  1) =  x f(x ) ,  we have

x (gn- i -  9n-2) ^  g [x{x +  1 ) . . . ( x  +  n -  1 )f(x )] -  g„ - 1 

^  x (gn 9n—1)

where we have put, for short,

gn ■ ■ = g(n\), 
hn :=  h(n\).

Since g =  log + h ,  we get



x [log(n -  1) +  hn-1 -  hn- 2\ ^  log [x{x +  1 ) . . . ( x  +  n -  l)/(a?)]
+  h [x(x +  1) . . .  (x +  n -  l)/(a?)]

-  log(n -  1)! -  hn-1 
^  x [log n +  hn -  hn- 1] .

Since the exponential function is increasing, we obtain

exp hn- 11x 
exp h„ - 2

x(x +  1) . . .  (a; +  n — 1 ) f(x )  exp oh [x(x +  1) . . .  (x +  n — l)/(a ;)]

(n -  i y  

£
(n -  1)! exp hn-1

<  nx

Hence

(n — l ) x (n — 1)!

exp hn 
exp h„-1

(exp hn- i )x+1
(exp hn- 2)x

^  x(x +  1) . . .  (a; +  n — 1 ) f(x )  ■ exp oh [x(x +  1) . . .  (x +  n — l) / (x )]  
(exp hn)x

nx{ n -  1)!
(exp hn- 1)X  —  1  '

In turn, 

nxn\
(exp hn)x+1 
(exp hn- i ) x
^  x(x  +  1) . . .  (a; +  n )f(x ) ■ exp oh [x(x +  1) . . .  (x +  n)f(x)\

x +  n (exp hn)x exp oh [x(x +  1) . . .  (x +  n)f(x)\
<  nxn\

n (exphn- i ) x 1 expoh[x(x +  1 ) . . .  (x +  n — l)f(x )]

and

r „ (æ )•
(exp hn) X +  l

(exp hn-x )x 
^  f(x )  exp oh [x(x +  1) . . .  (x +  n)f(x)\

exp oh [x(x +  1) . . .  (x +  n)f(x)\x +  n (exp hn)
^ --------- r„ (x )

n ' (exp /i„_i)x 1 expoh[x(x +  1 ) . . .  (x +  n — l)f(x )] '

Notice that by the relations resulting from (1) (lim ^oo  hn =  m) 

lim exp oh [x(x +  1) . . .  (x +  n )f(x)] =  em
n—yoo

lim (exP hn)x+1 =  m11111 x C
n-¥oo (exp hn- 1)



j. (exp hn)x exp oh [x(x  +  1) . . .  (x +  n)f(x)\ _  m
n -̂oo (exp h n - x f -1 exp oh [x{x  +  1 ) . . . ( x  +  n -  1 )f(x)]

and by (r )  we obtain

T(x)em ^  f (x ) e m ^  T(x)em.

Thus f(x )  =  T(a;) for x £ (0,1]. We shall show that f(x )  =  T(a;) for each real 
positive x.

Let x £ M+ . We proceed by induction. There exists a k £ N such that 
x £ (k — l,k ] .  If k =  1 then we have already proved that f(x )  =  T(a;). 
Let us assume that f(x )  =  T(a;) for x £ (k — l,fc]. Take x £ (k ,k  +  1] 
and y =  x — 1. Since y £ (k — 1, k], by the inductive assumption we have 
f(y )  =  T(y). By the functional equation for /  we have f (y  + 1) =  y f(y ). Thus 
f (y  +  1) =  yT(y) =  r (y  +  1) hence f(x )  =  T(a;) for x £ (k ,k  +  1]. Therefore 
f(x )  =  T(a;) for x £ M+ .

R em ark  5
The function g =  log +  arctan belongs to M .

R em ark  6
Let a, b >  0. Then logo (aidR+ +  b) £ M .

Proof. Take h =  log o (a  +  ^ , so that log o (a idR+ +  6) =  log + h  and

lim ^+o o  h(x) =  a. Thus, by Theorem 3, log o (a idR+ +  b) £ M .

T heorem  4
Let m ,a  >  0 and let h : M+ —> M+ be an increasing function such that 

h(x) =  m — ^ +  R(x), where R(x) =  o ( ^ ) , x —> +oo. Then h ■ log £ M .

Proof. We put g =  h - log, and we take a function f  £ F . Moreover we fix 
an n £ N and x £ (0, 1).

If go f  is convex then inequalities (2) and (3) (as in the proof of Theorem 3) 
hold true. Since g =  h ■ log, we get

x log [(n -  1)!] -  hn- 2 log [(n -  2)!]}

^  h o f (n  +  x) log [x(x +  1) . . . (x +  n — 1)]

-  K - !  log[(n -  1)!]

^  X {h n log(n!) -  hn- 1 log [(n -  1)!]}.

By properties of the logarithmic function we have

log
(n — l )!**"-1 
(n -  2)\hn~2 _ ^  log 

^  log

[x(x +  1) . . .  (x +  n — l) f {x ) ]h° ^ x+n^
(n — l )!'1’* -1

n:\hn

(n -  l ) ! fe»-i



Thus

[ ( n - 1)!*» -1] ^ 1 
[(n _ 2) ! ^ - 2]a ^  [x(x +  1) . . .  (x +  n -  1 ) f(x )]h° ^ x+n'>

£
[ n ! fc» ] :

[(n -  I)!ft— 1]X  —  1

and next

(n -
(n -  2)\xh™-->

h o f ( x + n )

^  x(x +  1 ) . . .  (x +  n — 1 ) f(x )  

n\xhn
(n -  1)!(*-I)fe»-1_

h o f ( x + n )

It follows easily that

n j(x+l)h„

_(n -  l)!xh™-i

h o f ( x + n + l )

^  x(x  +  1) . . .  (x +  n )f(x )

So we have

r „ (a ;)
! nxn\n

n \(x+l)hn

(:n -  1) ! * ^ - !

^  (x +  n)

h o f ( x + n + l )

n\| xhn

(n -

h o f ( x + n )

^  f(x )  ^
Tn(x)(x +  n) n\| xhn h o f ( x + n )

n\nx (n — l) ! !3 3 - i

Let us put

and

We notice that 

and

where

l‘n -- ! nxn\n

r n =

n \(x+l)hn

(n -  1 )!æfe»-i 

n\xhn

h o f ( x + n  +  l )

(x +  n) 
n\nx (n — l ) ! ! * - i

In =  [On bn Cn\ hof(n+i + *)

h o f ( x + n )

Tn — [ûn bn — 1 dn\ +
X +  n 

n

log an =  x(hn -  hn- 1) log [(n -  1)!], 

log bn =  [hn - h  o f (n  +  1 +  x)] log ( n ! ) ,

(5 )

(6)

(7 )

(8)

(9 )

(10)

( H )



and

log c„ =  x[h„ -  h o f (n  +  1 +  a;)] log n

log dn =  x[hn -  h o f (n  +  x)\ log n. 

We shall prove that

lim ln =  1 and lim rn =  1.
n—yoo n—yoo

(12)

(13)

By (10) it is obvious that

log an+1 
log an

=  A,
log(n!)

where

An =

l o g [ ( n -  1)!]’ 

hn+ i hn

(14)

h n  h n — i

By the assumptions of the theorem we have

m -  + R [ (n  +  1)!] -  m +  % -  R(n\)
An =

Thus

An =

m ~  % +  R(n\) - m +  — R [(n  — 1)!] ‘

(n — 1)! a — ^ -j- +  n\R [{n +  1)!] — n\R(n\)
n\ a — ^ +  (n — l)!i?(n !) — (n — l)!i?  [{n — 1)!] ’

Because R(x) =  o (^), x —> +oo, we have

lim xR(x) =  0. (15)
x—H-oo

Consequently lim ^o o  An =  0 and by (14) lim ^o o  log an =  0, which gives

Similarly, by (11),

where

lim an =  1.n—> oo

logftn+i =  o _ log[(n +  1)!] 
logfe„ "  log(n!)

hn.|_i -  h o  f (n  +  2 +  x)

(16)

(17)

Bn = hn -  h o  f (n  +  1 +  x)
and by (1) we have 

(»-
™ -  % +  R (n ') ~ m +  f(n+l+x) -  R  [ / ( n +  1 +  * )]

m  -  ( ^ y r  + R [ {n  +  1)!] -  m  +  /(„+a2+x) -  R [f(n  +  2 +  x)}
Dn ~  ----------------------------------------------------------------------------------------

and further



B„ =
n\

(n +  1)!

x / ( i+ 2+x) -  a  +  { n  +  1)!-R [ { n  +  1)!] -  ( n  +  1)!-R [/(n +  2 +  a;)] 

f(n+i+x) ~ a +  n 'R (n'-) ~  n\R [f(n  +  1 +  a?)]

Because f (n  +  1 +  a;) =  x(x +  1 ) . . .  (a; +  n) f(x ) ,  we have (by (r„ ))

n\ „  , s 1

and

f (n  +  l  +  x)

lim

=  r„(a;)

n!
n-Hx> f(n  +  1 +  a;)

f(x )  nx

=  0 .

Note that

n\R [f(n  +  1 +  a;)] =  f (n  +  1 +  x)R  [f(n  +  1 +  a;)] 

so that by (15) we have

n!
f (n  +  l  +  x)

(18)

lim n! R [f(n  +  1 +  a;)] = 0 .

Thus (18) yields lim, 
finally

n—> oo

B n =  0 whence limn^.00 logfe„ =  0 (by (17)), and

lim bn =  1.n—yoo
Similarly (using (12)) we can prove that

lim cn =  1.n—yoo

Finally, by (13) it follows that 

log dn+1
=  D,

log(n +  1)

where

We can observe that

Dn =

Dn =

log dn log n

hn+  i -  h o  f (n  +  1 +  x)
hn — h o  f  (n +  x) 

f (n  +  x) Sn+1
f (n  +  l  +  x)

with

But

Sn :=  a — f(n  +  x) — -  R [f(n  +  x)] +  R(n!)

f (n  +  x) nxf ( x ) f(x )
nl r„(a;) x +  n r„(a;) (^  + 1) n1“

(19)

(20)



and because of a; € (0 , 1) we have

lim
n—yoo

f (n  +  x) 
n\

=  0 .

The identity

f (n  +  x) R(n\) =  n\ R(n\) ■ ^ n "I" X̂
n\

together with (15) imply

lim f (n  +  x) R(n\) =  0.
n—yoo

So linijj^oo Dn =  0 because of (15) and (21), whence lim ^o o  logd„ =  0 and 
finally

lim dn =  1. (22)
n—yoo

Thus by relations (8), (9), (16), (19), (20) and (22) we obtain

lim ln =  lim rn =  1. (23)
n—yoo n—yoo

This implies that f(x )  =  T(x) for x £ (0, 1] (as /(1 )  =  1 =  T (l)).
Applying the same inductive argument as in the proof of Theorem 3 we 

find that f(x )  =  T(x) for x £ M+ , and the proof is completed.

The starting point of the proofs of Theorem 3 and of Theorem 4 is analogous 
to that in Artin’s proof [1] of the Bohr-Mollerup Theorem.

We notice that in a vicinity of +oo the function arctan is represented by
7T 1 1 1

“ c«anx =  5 - -  +  ^ - ^  +

Thus we have the following

R em ark  7
The function arctan • log is in M .

3. Special convex compositions with r

It is known that g o T is convex on M+ for g =  log. We want to present 
other functions g with this property.

T heorem  5
Let the functions g i,g 2 ■ —> M be defined by g\ :=  log +  arctan and

52 :=  logo (idR+ +  a ), where a >  0. Then there is a 7  >  0, such that 51 ° T 
and 5 2  0 r  are convex on (7 , + 0 0 ).

Proof. 1°. Let ip : M+ —)• M be given by ip =  (log oT)7, and let 51 =  log + h  
(where h =  arctan). We notice by (T) that the function ip =  ^  is represented 
by the formula



i>{x) =  logo; -  ^ 2
n=0

1 -  log ( 1  +  1
X +  Tl X +  Tl

so (by the inequality log(l +  a;) ^  a;) we have

tp(x) ^  log a;.

Moreover, the derivative of ip is given by

r"(a;)r(a;) — [ry (a?)]2 1 1 /-+0°
tp'(x) =

1 1  r
x +  2x2 +  J 0

4 tx
(t2 +  x2) (e2^ - l )

(24) 

dt (25)

(see [4] p. 250-251). Thus ip' =  (logor)” ^  0 on (0 ,+oo). By the definition of 
gi we see that

(< ? i° r )"  =
F T  -  (T' )2

F 2
+  ( / i " o f )  (T ' f  +  (h' oT)T".

By properties of h we can see that

Va; € M+ : ti oT (x )-T " (x ) ^  0,

and
h " o T  =

- 2  T

So we obtain:

h" oT (x)-[T '(x)]2 ^

( i  +  r 2r

-2r '( * )

[T(*)]‘

=  - 2
T'(x)

T(x)
—2 [ip(x)Y 

T(x)№ )

Thus by conditions (24) and (25) we have:

for sufficiently large x, say for x Js 7 . Hence g\ o T is convex on (7 , + 00).

2°. Now let a  >  0 and let g2 =  logo (idR+ +  a). The function (g2 o T)" is 
given by the formula

(02 o r ) "  (a;) =
T"(a;)r(a;) — [T'(a;)]2 +  aT"(a;)

[r(®) +  a]

Because log o r and T are convex and twice differentiable, we have 

Va; € M+ : r " ( a ; ) r ( a ; )  -  [ r ' ( a ;)]2 ^  0 and r " ( a ; )  ^  0 

Hence g2 o log is convex on R + .
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Report of Meeting
7th International Conference on Functional 
Equations and Inequalities, Zlockie, 
Septem ber 1 2 -1 8 ,1 9 9 9

The Seventh International Conference on Functional Equations and In
equalities, in the series of those organized by the Institute of Mathematics of 
the Pedagogical University in Kraków, was held from September 12 to Septem
ber 18, 1999, in the hotel “Geovita” at Zlockie. The preceding ICFEI took 
place at: Sielpia (1984), Szczawnica (1987), Koninki (1991), Krynica (1993) 
and Muszyna-Zlockie (1995 and 1997). The substantial support of the Polish 
State Committee for Scientific Research (KBN) and of the Foundation for Ad
vancement of Science “Kasa im. Józefa Mianowskiego” is acknowledged with 
gratitude.

The Conference was opened by the address of Prof. Dr. Eugeniusz Wach- 
nicki, the Dean of the Faculty of Mathematics, Physics and Technics of the 
Pedagogical University in Kraków. He conveyed participants’ best greetings 
and congratulations to Professor Janos Aczel, whom the University of Miskolc 
conferred on September 11, 1999 the degree of Doctor Honoris Causa. It was 
the fourth of Prof. Aczel’s honorary doctorates, after those granted by the 
Universities of Karlsruhe, Graz and Katowice.

There were 73 participants who came from: Austria (1), Canada (3), Czech 
Republic (2), Germany (3), Hungary (8), Italy (2), Japan (1), Russia (1), 
Sweden (1), Ukraine (3), The U.S.A. (1), Venezuela (1), Yugoslavia (1); and 
from Poland: Gdansk (1), Gliwice (1), Katowice (16), Kielce (1), Kraków (19), 
Rzeszów (5), Zielona Góra (2).

During 19 sessions 63 talks were delivered mainly on: functional equations 
in several variables, their stability, and applications; iteration theory (also for 
multifunctions) and dynamical systems; functional and general inequalities.

The organizing Committee was chaired by Professors Dobiesław Brydak 
and Bogdan Choczewski. Dr. Jacek Chmieliński acted as a scientific secre
tary. Miss Ewa Dudek, Mrs. Anna Grabiec, Miss Janina Wiercioch and Mr. 
Władysław Wilk (technical assistant) worked in the course of preparation of 
the meeting and in the Conference office at Zlockie.



At Wednesday, September 15, there was a half-day excursion to the Pie
niny region. A group of participants took part in the scenic rafting race on 
the Dunajec river through a gorge in the Pieniny mountains. Other group 
visited the castle Dunajec at Niedzica (constructed about 1310 and owned by 
Hungarian noble families till 1943) and the world famous wooden 15th century 
church at Dębno (with its polychromy which have kept its fastness for 500 years 
up to the present).

When closing the Conference, Professor D. Brydak first asked to commem
orate two our colleagues, who attended former meetings and passed away in 
the last two years.

Professor Gydrgy Targoński died at the age of 69, on January 10, 1998, 
in Munich. The European Conference on Iteration Theory held in September, 
1999, also in “Geovita”, was dedicated to his memory.

Mr. Martin Grinć, Slovakian citizen, who studied at the Silesian University 
in Katowice, died of cancer at the age of 28, on January 18, 1999, at Stara 
L'ubovna, a week after submitting his Ph. D. thesis.

Expressing cordial thanks to the participants, and especially to Professor 
Janos Aczel, Prof. Brydak pointed out that the present meeting was the best 
also in numbers: of participants (73), talks (63) and contributions (14) presen
ted on problems-and-remarks parts of many sessions. He extended best thanks 
to the members of the office staff at Zlockie for their effective and dedicated 
work and assistance, and to the managers of the hotel “Geovita” for their 
hospitality and quality of services.

The 8th ICFEI was announced to be held in 2001, most probably in Septem
ber, at the same place.

The abstracts of talks are printed in the alphabetical order, and the con
tributions to the problems-and-remark sessions — in the order of presentation. 
They were completed by Dr. J. Chmieliński and prepared for printing by him 
and Mr. W. Wilk.

Bogdan Choczewski

Abstracts of Talks

Jan os Aczel The strictly m onotonic solutions o f  a functional equation arising 
from  coordination o f  two ways to measure utility

Joint work with Gy. Maksa and Zs. Pales.
Gyula Maksa, Duncan Luce and I dealt in 1996 with the pair of functional 

equations
H (x ,y )z  =  H [x z ,y P (x ,z )} ,

G [H (x,y)] =  G (x)G (y),

(x and y are in [0,1 [, z in [0,1]) originating from a problem of utility theory 
described in the title of this talk. That problem makes it natural to assume



that G  is strictly monotonic and maps [0,1[ onto ]0, 1] (this determines H  from 
the second equation) and P  maps [0, l[x  [0,1] into [0,1]. From these conditions 
we proved that

P (x ,z )  =  g (x )/g (x z),

where g is continuous, strictly decreasing and maps ]0, 1 [ into the set of positive 
reals, while P (0 ,z )  =  z and P (x , 0) =  0. This reduces the first of the above 
equations to

G [yg{x ) /  g{x z )] =  G [H {x,y)z\ /G {xz),

with Pt defined, as before, by the second equation. We in 1996 and several 
others since then, however, succeeded to advance further to the complete solu
tion of the problem only under differentiability conditions. Eventually I came 
to the paradox idea that the limit equation (as y tends to 1; continuity has 
already been established)

G\g{x) /  g{xz)\ =  G (z)/G (x z)

may be easier to solve. We succeeded to do this with help of an idea (by now 
method) of Pales which derives the Jensen inequality from this equation. That 
is what this talk is about.

Rom an Badora On approximate additive derivations

The aim of the talk is to present a stability theorem for additive derivations.

K arol Baron  On a linear functional equation in a complex domain

Studies of the problem how the brain works have led Thomas L. Saaty 
(University of Pittsburgh) to the functional equation

f ( a 1z1, . .. , a NzN) =  b f ( z 1, . . . ,  zN),

where a±, , tqv and b are given complex numbers. It is the purpose of the
talk to present a result on its solutions /  : (C \{0})Ar —► C which are continuous 
on polycircles about the origin.

Lech Bartlom iejczyk Solutions with big graph o f  iterative functional equa
tions o f  the first order

We obtain a result on the existence of a solution with big graph of functional 
equations of the form

g (x ,ip (x ),ip (f(x )))  =  0

and we show that it is easily applicable to some particularly important equa
tions, both linear and nonlinear, as, e.g., those of Abel, Bottcher and Schroder. 
The graph of such a solution has some strange properties: it is dense and 
connected, has full outer measure and is topologically big.



B og d an  B a tk o  On the stability o f  an alternative Cauchy equation

The talk is based on the results obtained jointly with Jacek Tabor.
Let G  be a commutative semigroup and let /  : G —► IR. We deal with the 

stability (in the Hyers-Ulam sense) of the functional equation

\f(x +  y)\ =  \ f(x )+ f(y )\  for x , y e G

and its generalizations. We obtain the following results.

T h e o r e m  1

Let V  C G be such that fo r  every x  G  G \ {0 } there exists an n  G  N with 
kx  fL V  fo r  k f : n. Suppose that f  : G —► IR satisfies fo r  som e 6 >  0 the 
inequality

I \f(x +  y)\ -  \ f(x )+ f(y )\  | sj 6 fo r  (x ,y ) e  G x G \ V  x V .

We prove that there exists a unique additive function  7  : G —> ]R such that 

| f { x )  — 7 (x)| ^  3h fo r  x  G G.

The constant o f  the approximation is, in general, the best possible one.

We also show that an analogon of this result for functions /  : G —> ]R2 does not 
hold.

T h e o r e m  2

Let L  be a complete Archim edean Riesz Space. Suppose that F  : G  —> L  
satisfies fo r  som e e G the inequality

I \F(x +  y)\ -  |F (x ) +  F { y ) | | sj e fo r  x ,y  e  G.

Then there exists a unique additive mapping A : G  —> L  such that

|F (x ) — A(x) | ^  e fo r  x  G  G.

As the method of the proof we use the Johnson-Kist Representation Theorem.

Z oltan  B o ro s Stability o f  the Cauchy equation in ordered fields

Let R  be an ordered field and L C R  be an interval. We give sufficient 
conditions for R  and L so that the following statement hold: if (X , + )  is a 
commutative semigroup and /  : X  —> R  such that

/0*0 +  f ( y ) ~  f ( x  +  y) e  I  for every x , y e X ,

then there exists an additive function g : X  —> R  such that f i x )  — g(x) G  I*  
for every x  G  X , where L* =  L (if L denotes the set of infinitesimal or finite 
elements) or L* is infinitesimally close to L (if L is of the form [—S, <$]).



Janusz Brzdęk On the isosceles orthogonally exponential mappings

Let X  be a real normed space with dimX >  1 and K  be a field. We have 
the following theorem.

T h e o r e m  1

Suppose f  : X  —y K  satisfies

f ( x  +  y) =  f ( x ) f ( y )  whenever \\x +  y II =  \\x - y ||. (1)

Then f ( X  \ {0 }) =  {0 } o r O ^ f ( X ) .

Theorem 1 yields the subsequent two corollaries.

C o r o l l a r y  1

Suppose X  is not an inner product space and dimX >  2. Then every 
solution f  : X  —y K  o f  (1) is exponential, i.e.

f ( x  +  y) =  f ( x ) f ( y )  fo r  every x ,y  e  X . (2)

C o r o l l a r y  2

Let X  be as in Corollary 1, (S, •) be a commutative semigroup with the 
neutral elem ent e, and f  : X  —y S  be a solution o f  (1). Suppose that f ( x o) is 
invertible (in S ) fo r  som e xo £ X  \ {0 }. Then (2) holds.

Jacek  Chm ieliński Almost approximately inner product preserving mappings

Motivated by previous papers dealing with mappings preserving the inner 
product almost everywhere well as by stability results for the orthogonality 
equation we investigate a combination of these two problems. We show that 
a mapping that preserves inner product approximately and up to a negligible 
set of arguments has to be almost everywhere close to an exact solution of the 
orthogonality equation.

Jacek  Chudziak Continuous solutions o f  the generalized Gołąb-Schinzel equa
tion

We consider the functional equation

f{g{x)<j>{f{y)) +  h (y )p ( f(x )) )  =  f { x ) f ( y )  for x, y £ M, (1)

where f , g , h : l R —s- ]R and ( p ,  ip : f(M ) —> IR are unknown functions such that

(i) /  and (f>  are continuous;

(ii) /(0 ) =  i;

(iii) g, h  are bijections with <?(0) =  h(0) =  0.

The equation (1) is a generalization of the well known Golqb-Schinzel equa
tion.



K rzysztof Ciepliński On non-singular iteration groups on the unit circle

Let S 1 be the unit circle with positive orientation and V  be a vector space 
over Q such that dim V  ^  1 .

We consider non-singular iteration groups { F v , v 6 V }  of homeomorphisms 
of S'1, that is iteration groups possesing at least one element without periodic 
point. We present some results on such groups with no further assumptions 
as well as we give the general form of some particular non-singular iteration 
groups.

Stefan Czerwik Stability o f  the quadratic functional equation in L p spaces 

Joint work with Krzysztof Dłutek.
Let (X ,v )  be an abelian complete measurable group with v(X ) =  oo and 

let E  be a metric abelian group. A function /  : X  —► E  is called quadratic iff 
it satisfies the quadratic functional equation

f ( x  +  y) + f ( x - y )  =  2 f(x )  +  2 f(y ) , x p y e X .  (1)

We define the quadratic difference Q f  by

Q f(x , y) :=  2 f(x )  +  2 f(y )  -  f ( x  +  y) -  f ( x  -  y). ( 2 )

By L + , p >  0 we denote some generalization of the space L p. The following 
results can be proved.

L e m m a  1

Let E  be a space without elements o f  order two. I f  fix') =  q(x) +  c, x  6 A, 
where q is quadratic and c 6 E  is fixed and f  6 L+(x, E ) fo r  a certain p  >  0, 
then

q =  0 and c =  0.

L e m m a  2

Let G, H  be abelian groups. Then fo r  every f  : G —> H, the quadratic 
difference Q f  satisfies the functional equation:

Q f( x ,u  +  v) +  Q f ( x , u - v )  +  2 Q f(u ,v )
=  Q f(x  +  u, v) +  Q f(x  — u ,v ) +  2Q f(x , u ).

T h e o r e m  1

Let E  be uniquely divisible by two. Let f  : X  —y E  be such that Q f(x , y) =  
0. Then there exists a quadratic function q : X  —y E  such that



T h e o r e m  2

Let E  be a space without elements o f  order two. I f  f  : X  —y E  is such that

Zoltan Daroczy Characterization o f  Matkowski pairs 

This work is joint with Gy. Maksa and Zs. Pales.
Let /  C R be an open interval and let C M  (I) denote the class of all 

continuous and strictly monotonic real-valued functions defined on I . If f  G 
C M  (I), then we define

for all x, y G / . A pair of functions ( f ,  if) G C M  ( I )2 is called a Matkowski pair 
if the functional equation

holds for all x ,y  G I .  We characterize Matkowski pairs in the following two 
cases:

(i) there exists a nonvoid open interval K  C I  such that either f  or if is 
continuously differentiable on K ;

(ii) there exists a nonvoid open interval K  C I  such that Ay, and Ay, are 
strictly comparable in K.

Thom as M .K . Davison D ’A lem bert’s functional equation and the Chebyshev 
polynomials

The functional equation

is studied where the domain of /  is the additive group of the integers, and the 
codomain of /  is an arbitrary commutative ring R. We show there is a function

T  : Z  —► Z[X] denote n  i—► Tn

such that if /  : Z  —► R  satisfies d’Alembert and / ( 0 )  =  1  then, for all n  G  Z

/ ( n ) = T „ ( / ( l ) ) .

The sequence Tn of polynomials is identified with the sequence of Chebyshev 
polynomials using Kannappan’s fundamental result

Q f  G L p (X  x X ,E ) , then

(5)

A<p(x, y) +  A^,(x,y) =  x +  y

f ( x  +  y) +  f ( x  - y ) =  2f ( x ) f ( y ) (d’Alembert)

f (x )
e(x) +  e (—x)



where e(x +  y) 
In our case

e(x)e(y) and e(0) =  1.

ein) X  1 ' 
X 2 - 1  X n e  Z.

Certain consequences of our result are discussed.

[1] P. Kannappan, The functional equation f(x y ) +  f(x y  1) =  2 f{x )f(y )  for groups, 
Proc. Amer. Math. Soc. 19 (1968), 69-74.

Jo a ch im  D o m sta  Regularly varying solutions o f  S chroder’s and related linear 
equations

This is a presentation of an extension of former results by B. Choczewski, 
M. Kuczma, E. Seneta, A. Smajdor and other authors on regularly varying at 
0 solutions of the linear equations

^ (/(* ) )  =  9 (x) ■ d/x), x e R + :=  (0,oo). (Sf ,g)

D e f in it io n

We say, that h  : ]R+ —y ]R+ is almost constant at 0, if 

(Co) h  is continuous and h (0+ ) G ]R+ ;

(Ci) at least one of the following conditions is fulfilled,

(a) h  is of bounded variation locally at 0 ;
(b) h(x) — h(0+ ) =  0(|logx|_1_ly) , as x  —► 0+ , where v >  0 .

The solutions are analysed with the use of the following assumptions and 
notation,

(Hi) /  is a nondecreasing continuous selfmapping of ]R+ , 0 <  /(x ) <  x  , for 
x G M+ and /1(0) :=  lima,^ 0+ ^  £ (0,1) ;

(H2 ) g is almost constant at 0;

Tn(x\y) G n(y) 
G n (x)

where G n (x) :=  J lL o  9 o ( f k (x) ) , g0 : 9 (0+) x G l + , n e  N.

L em m a

For every y e  M+, the limit y (x  | y) :=  limn^ o o 7 n(x | y), x  G M+, exists 
and form s a continuous slowly varying solution o f  (S fjgo).

C o r o l l a r y  1
I f  besides (Hi), x G R +, is almost constant at 0, then the canonical

Schröder equation <h(/(x)) =  /^_(0) • <&(x), x G M+, possesses exactly one (up



to a multiplicative constant) regularly varying solution; it equals the principal 
function, i.e.

$ ( x )  =  < L ( y )  • <p(x\y) where <p(x\y) :=  l i m  f n( x ) / f n (y), x ,y  G M +  .
n—>oo

C o r o l l a r y  2

Under the assumptions o f  the above Lem m a and Corollary 1, the linear 
equation (S f y9) possesses exactly one regularly varying solution; it is given by 
the form ula

V i z )  =  y ( y )  ' ( iP i . x \ y ) ) p ■ 7(x|y), x ,y  G M+ ,

where p l o g g ( 0 + )
l ° g ( / + ( 0 ) )  '

T ib o r  Farkas On the associativity o f algorithms

Let A be the set of the strictly decreasing sequences A =  (A„) of positive 
real numbers for which L (A) :=  A„ <  +oo. A sequence (A„) G A is
called interval filling if, for any x  G [0, L(A)], there exists a sequence (Sn) such 
that Sn G {0, 1} for all n  G N and x =  Xlfco ^n^n- (This concept has been 
introduced and discussed in Daroczy-Jarai-Katai [1].)

An algorithm  (with respect to an interval filling sequence A) is defined as 
a sequence of functions a n : [0, L(A)] —► {0 ,1 } (n G N) for which

OO

s = ^ a „ ( i ) A n (x G [0, L(A)]).
n= 1

The most important and frequently observed algorithms are the regular (or 
greedy), the quasi-regular and the anti-regular (or lazy) ones. In [2] Gy. Maksa 
introduced the following concept: an algorithm (a n) is called associative if the 
binary operation o : [0, L(A)]2 —► [0, L(A)] defined by

CO

x o y  =  ' ^ 2 a n (x )a n (y)\n (x, y G [0, L(A)])
n= 1

is associative. In the same paper the author characterized the associative al
gorithms and proved the associativity of the regular algorithm with respect 
to any interval filling sequence and the non-associativity of the anti-regular 
algorithm in the case of a special class of interval filling sequences.

The purpose of this presentation is to prove the non-associativity of the 
anti-regular and the quasi-regular algorithms and the existence of associative 
algorithms different from the regular one.

[1] Z. Daroczy, A. Jarai, I. Katai, Intervalfiillende Folgen und, volladditive Funktionen, 
Acta Sci. Math. 50 (1986), 337-350.



[2] Gy. Maksa, On associative algorithm, Acta Acad. Paed. Agriensis, Sectio Matem- 
aticae (to appear).

Carlos Finol Inequalities arising from  Schlum precht’s construction o f  an ar
bitrarily distortable Banach space

T. Schlumprecht (Israel J. of Math., 76 (1991), 81-95) furnished an explicit 
construction of an arbitrarily distortable Banach space. The construction is 
accomplished by using a concrete submultiplicative function,

log(l +  x)
log 2

x ^ l ,

whose Matuszewska-Orlicz index, at infinity, is zero; along with other proper
ties. That similar spaces can be constructed with functions which share some 
properties of that function is stated therein.

We single out those properties which characterize the ‘Schlumprecht Class’ 
of functions which produce such a spaces and derive a general inequality which 
all the functions in this class satisfy.

M argherita Fochi Conditional functional equations in norm ed spaces

Let X  be a real normed vector space with dim X ^  3 and /  : X  —> M. We 
study the exponential Cauchy equation

f ( x  +  y) =  f ( x ) f ( y )  for all x, y e  X  (1)

and its following conditional forms

f ( x  +  y) =  f ( x ) f ( y )  for all x ,y  e  X  with ||x|| =  ||y|| (l) i
and

f ( x  +  y) =  f ( x ) f ( y )  for all x ,y  e  X  with x ± r y  (1)2
where the James isosceles orthogonality i l iy  is defined as follows 

x ± iy  \\x +  y\\ =  \\x-y\\.

Referring to recent results of Gy. Szabd on the additive Cauchy equation con
ditioned in the above domains, we prove the equivalence of equations (1), (l)i 
and (1)2.

Rom an Ger Ring hom om orphism s equation revisited 

We deal with a functional equation

f ( x  +  y ) +  f{x y )  =  f ( x )  +  f ( y )  +  f { x ) f ( y )  (*)

considered by J. Dhombres (Relations de dépendance entre les équations fon c
tionnelles de Cauchy, Aequationes Math. 35 (1988), 186-212) for functions /  
mapping a given ring into another one. In this paper both rings were supposed 
to have unit elements; additionally the division by 2 had to be performable.



Without these assumptions the study of equation (*) becomes considerably 
more sophisticated (see author’s paper On an equation o f  ring homomorphisms, 
Publicationes Math. 52 (1998), 397-417). At present, we deal with equation 
(*) assuming that the domain is a unitary ring with no assumptions whatsoever 
upon the target ring.

A ttila  Gilanyi Hyers-Ulam stability o f  m onom ial functional equations on a 
general domain

In this talk the Hyers-Ulam stability of mononomial functional equations 
for functions defined on a power-associative, power-symmetric groupoid is in
vestigated.

Throughout the talk (S', o) denotes a groupoid, that is, a nonempty set 
S  with binary operation o : S  x S  —► S. The powers of an element x  G S  are 
defined by x 1 =  x  and, for a positive integer m , by xm+1 =  x m ox. An operation 
o (or the groupoid (S, o)) is called power-associative if x k+m =  x k o x m for all 
positive integers k, m  and each x  G S, it is said to be Ith -power-sym m etric (or 
simply power-symmetric) if l +  2 is a given integer such that (x o y )1 =  x l oy l for 
all x ,y  G S. Using this notation we call a function /  mapping from (S, o) into a 
linear normed space X  a m onom ial function o f  degree n  if A”/(x ) — n\f{y) =  0 
for all x ,y  G S, where A denotes the well-known difference operator.

Our main result reads as follows. If n  is a positive integer, (S, o) is a power- 
associative, power-symmetric groupoid, B  is a Banach space, /  : S  —> B  is a 
function, and, for a nonnegative real number e, we have

\\A y f ( x ) -™ !/(y )IK  e ( x , y e S ) ,

then there exists a unique monomial function g : S  —> B  of degree n  such that

1 1 /0 *0  - < ? ( + > I K  ( x e s ) .n\
In the special case when S  is an Abelian group, this result yields the Hyers-Ulam 
stability of monomial functional equations in a well-known form, furthermore, 
if n =  1, we get the stability of the Cauchy equation.

Roland Girgensohn Non-affine fractal interpolation functions

Let b G N and choose 6 + 1  data points (tv , yv), where 0 =  to <  t\ <  <
tb =  1 and yu G M. Then the fractal interpolation functions of M.F. Barnsley, 
which are defined via certain iterated function systems, satisfy f ( t v) =  yu and 
exhibit a fractal behaviour. The same functions can be defined as the solutions 
of systems of functional equations of the form

f { { t v+i - t v)x -\ -tv) =  a vf ( x )  +  gv(x) for v =  0 , . . . ,  6 -  1,

where \au\ <  1 and gu : [0,1] —► ]R are given, and /  : [0,1] —► ]R is unknown. In 
the talk, we will point out a connection with certain Schauder bases on C [0,1],



we will give an explicit formula for the box dimension of these functions in the 
case of equidistant tv, and we will discuss certain singular solutions.

Andrzej Grząślewicz On the functional equation F ix ,  y) • F (y , z) =  F ix , z)

Let (M, •) be a “group with zero” , (B , A) a linearly ordered set. M. Fréchet 
in [1] and Z. Moszner in [2] characterized the solutions of equation

F ( x > v) • F (y , z) =  F {x , z) (1)

and their extensions in the case, where M  =  M. =  B , » is  the usual multiplica
tion, ^  is the usual order in M and F  is a function defined on the set M x Mn ^  . 
A. Grząślewicz in [3] generalized these results assuming only, that F  is defined 
on the set B  x B  fl ^  .

In our report we present the general solution of (1) assuming, that A is a 
function defined on the set R a ,b  '■ = {(rc, y) G A x B  : x  ^  y }, where A is 
a subset of B . Moreover, as the common result with Angelo Grząślewicz, the 
extensions of considered solutions are characterized.

[1] M. Fréchet, Solution continue la plus générale d ’une équation fonctionelle de la 
théorie des probabilités en chaine, Bull. Soc. Math. France 60 (1932), 232-280.

[2] Z. Moszner, Ogólne rozwiązanie równania F{x, y) ■ F  (y, z) =  F{x, z) przy warunku 
x A V A z, Rocznik Nauk.-Dydakt. WSP w Krakowie, 25, Matematyka (1966), 
123-138.

[3] A. Grząślewicz, O pewnych homomorfizmach i homomorfizmach ciągłych grupoidu 
Brandta, Rocznik Nauk.-Dydakt. WSP w Krakowie, 41, Prace Matematyczne 6 
(1970), 15-30.

Grzegorz Guzik On embedding o f  a linear functional equation 

Let the iterative equation

<p{f{x )) =  g (x )<p(x ) +  K x ), ( L )
where / ,  g, h  are given continuous functions defined on an real interval X , have 
on A a continuous solution ip, and let /  be embeddable in a continuous iteration 
group F  defined on R x 1 .  We say that (L) has embedding with respect to F  if 
there exist functions G  and Ft defined o n R x I  and satisfying some functional 
equations such that G (l, •) =  g and H (l,  •) =  h  and each continuous solutions 
ip of (L) defined on X  satisfies

ip(F(t, x)) =  G(t, x)ip(x) +  H (t, x). (Lt)

We can prove that (L) has embedding with respect to F  whenever it has 
a one parameter family of continuous solutions. We can prove moreover when 
embeddability is possible if the zero function is the only continuous solution 
of (L). Our results yield an answer (under assumptions of continuity) to the 
problem of L. Reich posed in 1997 on the 35-th ISFE (24. Remark).



W ojciech Jabłoński On graph o f  non-affine continuous functions 

In 1970 Marek Kuczma and Roman Ger introduced a class

every convex function g : D —► ]R 
T  C IRn : where T  C D C IR", D is open and convex,

bounded from above on T  is continuous on D

In 1973 Marek Kuczma [2] proved that for every continuous non-affine 
function /  : [a, b] —> ]R we have Gr /  G  A rz- This result has next been generali
zed to higher dimensions by Roman Ger. In a special case his result reads as 
follows

T h e o r e m  G.
Let D yf 0 be an open and connected subset o/M" and let f  be a non-affine 

real-valued function o f  class C 1, defined on D. Then  Gr /  G  An-

(Even in this special case the assumption that /  is of class C 1 is necessary.) 
That theorem does not contain the result proved by Marek Kuczma as a 

particular case, because of the regularity assumptions on / . Therefore there 
arises a question whether these assumptions are necessary. It appears that the 
assumptions on /  can be weakened, and we have the following

T h e o r e m

Let D yf 0 be an open and connected subset o f  ]Rn and let f  be non-affine 
continuous real-valued function defined on D. Then Gr /  G  An-

[1] R. Ger, Note on convex functions bounded on regular hypersurfaces, Demonstratio 
Math. 6 (1973), 97-103.

[2] M. Kuczma, On some set classes occurring in the theory of convex functions, 
Annales Soc. Math. Pol., Comment. Math. 17 (1973), 127-135.

W ito ld  Ja rc z y k  On mutual relations between M ulholland’s and T ard iff’s the
orems

Joint work with J. Matkowski.
We give a complete solution to the following problem posed by B. Schweizer 

(presented also by A. Sklar during the 37th ISFE in Huntington this year): 
“Compare the assumptions imposed on p  : [0, oo) —► [0, oo) in Mulhol

land’s theorem [Proc. London Math. Soc. (2) 5 1  (1950), 294-307] and in 
Tardiff’s theorem [Aequationes Math. 27 (1984), 308-316] which guarantee 
that p  satisfies the inequality

p  1(<p(x1 + y f )  +  p (x 2 + y i ) )  ^  p  1 {p {x 1) +  p {x 2)) +  P 1 (p (y i) +  p {y i))  

for all x 1,x 2,y i,V 2 e [0, oo).”



P eter Kahlig On the Dido functional equation 

Joint work with J. Matkowski.
By some geometrical considerations we formulate an equation which is re

lated to the ancient isoperimetric problem of Dido. The continuous solution of 
this Dido functional equation depends on an arbitrary function. However, we 
show that in a class of functions of suitable asymptotic behavior at infinity, the 
Dido functional equation has a one-parameter family of “principal” solutions. 
Some applications are given.

H ans-H einrich K airies On a Banach space autom orphism  and its connec
tions to functional equation and end functions

Denote by 7i the Banach space of functions ip : M —► M which are continu
ous, 1-periodic and even. It turns out that F  : TL -s- 7i, given by

oo ..
F Yp]{x) :=  Tfp-'~p{2kx)

k= 0 Z

is a Banach space automorphism. Important properties of F  are closely related 
to a de Rham type functional equation for F[cp\.

The class F[7i\ contains many continuous nowhere differentiable functions 
F[p\. A large part of them can be identified by simple properties of the gene
rating function <p.

Palaniappan Kannappan On the stability o f  the generalized cosine functional 
equations

This is a joint work with G.H. Kim.
We study among others the stability problem of the functional equations

f ( x  +  y) +  f ( x  -  y) =  2f(x)g(y)  (1)

and
f ( x  +  y) +  f ( x  -  y) =  2g{x)f{y)  (2)

for complex and vector valued functions.

M ikio K ato  Clarkson-type inequalities and their relations to type and cotype

Joint work with Lars-Erik Persson and Yasuji Takahashi.
The celebrated Clarkson inequalities (C l) which might be regarded as the 

origin of the Banach space geometry, have been proved, originally for L p and 
for various concrete Banach spaces. On the other hand, as a multi-dimensional 
global version of C l ’s, “generalized Clarkson’s inequality” (G C I) was given for 
L p by M. Kato in connection with behavior of the operator norms of the Lit- 
tlewood matrices. This includes Boas’ and Koskela’s inequalities; the former, 
considered in the context with uniform convexity, is the first one of this type



(with two elements). G C I was further extended in parameters by L. Mali- 
granda and L.-E. Persson. Also related to G C I, A. Tonge proved random 
Clarkson inequality (RC I).

In this talk we characterize all these inequalities by means of type and 
cotype in the general Banach space setting. As far as we know in literature, 
M. Milman first observed Clarkson’s and type inequalities in the same frame 
work. Thus our results provide a conclusion to his observation (in an extended 
setting). Let A be a Banach space. Let 1 ^  p  ^  oo and ^ +  ^ 7  =  1.

C l for L p : D enote || • || =  || • ||p. Then fo r  all x ,y  6 L p

(\\x +  y\\p' +  \\x -  y\\p' Y  ^  2A (||ж||р +  \\y\\p)r  i f U f p ^ 2 ,  (1)

(||ж +  y\\p +  ||x -  y\\p)p ^  2 p (j|x||p' +  \\y\\p, ĵ P i f 2 ^ p ^ o o .  (2)

These (1) and (2) are characterized in a Banach space X  as follows. 

T h eo r em  1
(i) X  satisfies (1) i f  and only i f  X  is o f  type p and ‘type p constant’ is 1.

(ii) X  satisfies (2) i f  and only i f  X  is o f  cotype p and ‘cotype p constant’ is 
1.

Let 1 ^  p  ^  2. Then (1) for L p and (2) for L p> are equivalent. Indeed, it is 
easily seen by duality argument that (1) holds in a Banach space X  if and only 
if it holds in the dual space X '. Thus it is enough to treat C l (1) for the case 
1 ^  p  ^  2 in our discussion, which we refer to as (p,p')~ Clarkson inequality.

T h eo r em  2
Let 1 ^  p 2. Then

(i) G C I o f  K ato form , resp. o f  M aligranda-Persson form , holds in X , i f  and 
only i f  X  is o f  type p and ‘type p constant’ is 1.
In addition to this, the sam e implications fo r  the dual space X ' are equi
valent.

(ii ) R C I holds in X  with an ‘absolute constant’ К  i f  and only i f  X  is o f  type 
V-

T h eo r em  3
Let 1 ^  p  ^  2. G C I holds in X  i f  and only i f  R C I holds in L p>(X) with 

the absolute constant К  =  1.

Denis Khusainov Stability o f  difference systems with rational right hand side

The report describes the investigation of the stability of zero solution of 
difference equation systems with a rational right hand side with and without



delay. The investigation uses the quadratic Lyapunov’s function. The following 
system of difference equations is considered.

x (k  +  l)  =  [E +  X (k )D ]-1[A +  X (k )B ]x (k ) , k =  0 , 1 , . . .  (1)

with x(k) 6 ]Rn, E  -  identity matrices, X ( k ) ,B ,D  -  block structure matrix 
with corresponding size. The following results were obtained.

T h eo r em  1
Let A be asymptotically stable matrix (i.e. max |Aj(A)| <  1. Then zero

i=l,n

solution o f  system  (1) is asymptotically stable. Stability region contains the 
sphere Un with the radius

R V T p î ) W ) - W

\A\\D\ +  \B\ +  \D\ ^ 7 (if) +  * 2( i f ) - * ( i f )

1

y f f î H ) ’

where

7  ( H )
A m in  (H  ATHA)
— u u m — • * (H)

\HA\
A ma* ( i f ) ’

(P{H)
A min(g )
Amax(77)

The obtained results are extended to the system with several delays
-l

x (k  +  1) =  

Let us denote

E +  J 2 x ( k - j ) D j
j=o

J ^ A j x ( k  - j ) ,  n =  0 , 1 , 2 , . . . .  (2)
3 =  0

m m

A  =  J 2  a j Aj , a (H ) =  J 2 \Aj \ ( a j  +
j=o j=o

d(H) =  \D0\ +  ^ ( H ) J 2 \ Do\-
3 = 0

T h eo r em  2
Let the constants o t j ,j  =  0 ,m  and positive defined matrix H  exist with the 

condition
1i H ) >  a 2{H ) +2d{H)\A\.

Then zero solution o f  system  (2) is asymptotically stable. Stability region con
tains the sphere Ur  with radius

R
< H )  +  |A|

^ l { H )  +  \A ?

1

d (H )y / ï (H j'



B arb ara  Koclqga On a generalized Cauchy equation 

This is a joint work with Professor Roman Ger.
A description of all continuous (resp. differentiable) solutions /  mapping 

the real line M into a real normed linear space (X , || • ||) (not necessarily strictly 
convex) of the functional equation

\\f(x  +  y)\\ =  \\f(x ) + f ( v ) \ \

has been presented by Peter Schopf in [2]. Looking for more readable rep
resentations we have shown that any function /  of that kind fulfilling merely 
very mild regularity assumptions has to be proportional to an odd isometry 
mapping M into X .

To gain a proper proof tool we have also established an improvement of 
Edgar Berz’s [1] result on the form of Lebesgue measurable sublinear functionals 
on M.

[1] E. Berz, Sublinear functions on R, Aequationes Math. 12 (1975), 200-206.
[2] P. Schopf, Solution of ||/(£ +  rj)|| =  ||/(£) +  f{rj) ||, Mathematica Pannonica 8/1  

(1997), 117-127.

Zygfryd Kom inek On e-convex functions

Joint result with Bogdan Batko and Jacek Tabor.
We give a different proof of the known result of Hyers and Ulam on ap

proximately convex functions getting somewhat better estimation. Moreover, 
we prove that in an arbitrary infinite-dimensional linear space this result is no 
longer true.

Aleksandar K rapez Functional equations on almost quasigroups

Quasigroups may be defined as groupoids in which all left and right trans
lations are permutations. Almost quasigroups are groupoids in which some 
(but not all) of the translations may be constant mappings. If we additionally 
require that almost quasigroup has a unit, we get an almost loop. Similarly, 
associative (and commutative) almost quasigroup is an almost group (almost 
Abelian group).

A quasizero of a groupoid is a triple (p, q, r ) of elements such that for all 
x, y px =  xq =  r. If p =  q =  r, the notion of the quasizero reduces to the 
familiar notion of zero.

A quasigroup with quasizero is a groupoid with quasizero (p, q, r), such that 
equation xy =  z is uniquely solvable in x  for all y yf q and uniquely solvable in 
y for all x p. Note that a quasigroup with quasizero is not a quasigroup.

A quasizero of a quasigroup with quasizero which has a unit, reduces to 
zero. Therefore we get notions of loop with zero, group with zero and Abelian 
group with zero. The last two are familiar from the semigroup theory, in par
ticular the last one which is a multiplicative reduct of a field.



We have the following representation theorem:

T h eo r em  1
Any almost quasigroup is either a quasigroup or a quasigroup with quasi

zero.

This result enables us to solve the two classical functional equations in the case 
of almost quasigroups:

T h eo r em  2
I f  the fou r (six) almost quasigroup operations A, B , C, D(, E , F ) satisfy the 

generalized associativity (GA) (the generalized bisymmetry (GB)^ equation

A { x ,B ( y ,z ) ) = C ( D ( x ,y ) ,z )  (GA)

A (B (x , y), C(u, v)) =  D (E (x , u), F (y , v)) (GB)
then they are all isotopic to the sam e almost (Abelian) group.

The formulas of general solutions of these equations are also given.
In a similar way we can solve any generalized balanced functional equation 

on almost quasigroups.

D orota Krassowska A system o f  functional inequalities related to C auchy’s 
functional equation

Joint work with J. Matkowski.
We consider the system of functional inequalities

f ( a  +  x ) ^ c t  +  f ( x ) ,  f ( b  +  x) ^  /3 +  f ( x ) ,  x  G 1 .

Assuming the continuity of /  at least at one point and some algebraic conditions 
on a, b, a , /3, we show that every solution /  of that system must be an affine 
function.

We also show that if the algebraic conditions are not satisfied, then the 
continuous solution of the system of functional equations

f ( a  +  x) =  a  +  f ( x ) ,  f ( b  +  x ) = / 3  +  f ( x ) ,  x  G 1.

depends on an arbitrary function.
The relevant results for remaining three types of Cauchy’s system of func

tional inequalities or equations are also considered.

K aroly Lajko Further functional equations in the theory o f  conditionally spe
cified distributions

Let (X , Y ) be an absolutely continuous bivariate random variable with 
support in the positive quadrant. Let us denote the joint, marginal, and con
ditional densities by f x ,Y  , f x  , f y  j fx\Y , fy\x  , respectively. We can write 
f x ,Y  in two ways and obtain the relationship



fx\Y (x\y)fy(y)  =  fy \ x (y \ x ) fx (x )  ( x , y e R + ) .  ( 1)

It is natural to inquire about all joint densities whose conditional densities 
satisfy

fx\y{x\y) =  g i{x {c1 + c 2y))\ fy\x(y\x) =  g2(y(d1 +  d2x)) (2)

=  / v i - T W  =  s 4 f r 6‘ I M j ,  (3)
1 +  cy 1 +  dx J

where c\,c2,d i ,d 2,c ,d  G ]R+ , aq, a 2, hi, b2 G M. In case (2) or (3) we have from 
(1) the functional equation

g i(x (c! +  c2y ) ) fY {y) =  g2((di +  d2x )y ) fx {x )  ( x , y e R + )  (4)

or

(5)

respectively, for functions fx , fy ,9 i ,  92 '■ R +  —1- R +  , 93, 94 : M —■- M+ . Solving 
these functional equations, it is possible to determine the nature of the joint 
distributions associated with (2) or (3).

Zbigniew Lesniak Iterative roots o f  hom eom orphism s o f  the plane

We give a construction of iterative roots of a free mapping /  of the plane. 
In particular, we deal with the case where /  cannot be embedded in a flow.

Andrzej M ach La solution générale de l ’équation:
(p((p((p(...(p((p(a,xi),x2), .. . ),xn_ i ) , x n)

=  cp(a,x i ■ pl(x2) ■ p 2(x3) •.. . ■ pn^ 2{xn- i ) - x n)

Dans l’équation considérée nous avons: n  est un nombre naturel supérieur 
ou égal à deux, ip : T x G —> T, T est un ensemble arbitraire non-vide, (G; •} est 
un groupe binaire, p  G  Aut ((G; •}) et p n~ 1(x) =  x, x  G  G  ( p u dénote j^-ième 
itération).

Le travail [1] donne une construction générale des solutions de l’équation 
considérée et en conséquence donne une généralisation de la construction de 
l’équation de translation classique.

[1] A. Mach, The construction o f the solutions of the generalized translation equation, 
submitted.



Elena N. M akhrova Lim it sets o f  continuous mappings o f  dendrites with 
closed periodic points set

This is a joint work with L.S. Efremova.
In this report we consider piecewise monotone mappings of dendrites with 

countable ramification points set.
Let D be the class of dendrites such that for every X  G D the next pro

perties hold: (1) the ramification points set R (X )  is closed; (2) for any point 
x  G R (X )  the number of components of X  \ { x }  is finite.

A continuous mapping /  is called piecewise monotone if there exists a finite 
nonempty set A =  {ai,  <2 2 ,. .. , an}  such that for any component C  <Z X \ A  the 
restriction f\ c  is monotone.

Let us formulate the main results.

T h eo r em  A.
Let f  be a piecewise m onotone mapping o f  a dendrite X  G D into itself. 

Then the next statem ents are equivalent:

(Al) the periodic points set P e r ( f )  is closed;

(A2) C ( f )  =  P e r ( f ) ,  where C ( f )  is the center o f  f ;

(A3) Lu-limit s e t  o f  an y  tr a jec to ry  is a  p e r io d ic  o rb it ;

(A4) f2(/) =  UzEv w (z ,/) =  P e r ( f ) ,  w here  f2(/) is f-n o n w a n d e r in g  s e t , 
lu(z , / )  is u j-lim it s e t  o f  th e  p o in t  z  tra jec tory .

C o r o lla r y

I f  f  is a piecewise m onotone mapping with closed set o f  periodic points o f  
a dendrite X  G D into itse lf then the topological entropy o f  f  equals zero.

Note that there are a dendrite X  ^  D and a continuous mapping /  : X  —> X  
such that /  has the closed set P e r ( f )  and a recurrent nonperiodic point.

T h eo r em  B.
For every unbounded set M  o f  natural numbers there exist a dendrite X  G D 

with countable ramification points set and continuous mapping f  : X  —► X  such 
that

(B l) topological entropy o f  f  equals 0,

(B2) the set o f  the least periods o f  f-p er iod ic  points coincides with M.

The author is supported by grant 97-0-1.8-109 of General and Professional 
Education Ministry of Russia.

[1] L.S. Efremova, E.N. Makhrova, On dynamics o f monotone mappings of dendrites 
(in Russian), Algebra & Analisis, (1999) (to appear).



G yu la M ak sa  On a problem  o f  Matkowski 

This work is joint with Z. Daroczy.
Let I  C 1  be an open interval of positive length and let C M  ( I )  denote 

the class of all continuous and strictly monotonic real-valued functions defined 
on / . A function M  : / 2 —► /  is called quasi-arithmetic mean if there exists 
4> G C M  (I)  such that

for all x, y G I . J. Matkowski proposed the following problem: for which pair 
of functions (f,tp G C M (I)  does the functional equation

A<p(x, y) +  Ap(x, y) = x  +  y

hold for all x, y G I .
In this talk we give a partial solution of this problem supposing comparab

ility properties for and A-p in addition.

Lech M aligran d a The failure o f  the Hardy inequality and interpolation o f  
intersections

The main idea here is to clarify why it is sometimes incorrect to interpolate 
inequalities in a “formal” way. For this we consider two Hardy type inequalities, 
which are true for each parameter a  different from 0 but they fail for the 
“critical” point a  =  0. This means that we cannot interpolate these inequalities 
between the noncritical points a  =  1 and a  =  — 1 and conclude that it is also 
true at the critical point a  =  0. Why? An accurate analysis shows that this 
problem is connected with the investigation of the interpolation of intersections 
(N  PI L p(w o),N  PI L p(w i)), where N is a linear space which consists of all 
functions with the integral equal to 0.
We calculate the A'-functional for the couple (N C lLp(wo), N r\Lp(w i)), which 
occurs to be essentially different from the A'-functional for (Lp (wq) , L p(w i)) , 
even for the case when N  l~l L p(wi) is dense in L p(wi) (i =  0, 1). This essential 
difference is the reason why the “naive” interpolation gives a wrong result.

[1] N. Krugljak, L. Maligranda, L.E. Persson, The failure of the Hardy inequality and 
interpolation o f intersections, Arkiv Mat., to appear.

Jan u sz  M atkow ski On a functional equation satisfied by pairs o f  exponential 
functions

We prove that the functions / ,  g : ]R —► (0, oo), satisfy the functional equa
tion

/  +  f ( v ) ) ] + 9  1(t[g(x) +  g ( y ) ] ) = x  +  y, x , y e R , t >  0,



if, and only if, the function is an exponential bijection, and the product 
f g  is a constant function.

For t =   ̂ this functional equation was considered recently by Z. Daroczy, 
Gy. Maksa, Zs. Pâles, and the present author.

The solutions / ,  g of the above functional equation satisfy the functional 
equation

/  1[tf(x ) +  ( z - t ) f ( y ) ] + g  1[(z -  t)g(x) +  tg(y)} =  x +  y

for all x, y G M, z >  0, t G (0,2:). Specializing 2  and t we obtain some new 
functional equations. Open problems will be presented.

Janusz Morawiec On compactly supported solutions o f  the two-coefficient 
dilation equation

We consider the equation

(p(x) =  aip(2x) +  b(p(2x — 1) (1)

and its compactly supported solutions ip : M —► M, where a  and b are real 
parameters. In the present contribution we determine the sets B a>& and C aj, 
defined in the following way: Let x  G [0,1]. We say that x  G B a b [resp. 
x  G C ajf\ if and only if the zero function is the only compactly supported 
solution of (1) which is bounded in a neighbourhood of x  [resp. continuous at 
x[.

Zenon Moszner Sur les généralisations du wronskien 

T h é o r è m e

Les fonctions f i ,  . .. , f n réelles (complexes) différentiables ju squ ’à l ’ordre 
n — 1 sur un intervalle réel I  sont linéairem ent dépendantes sur cet intervalle 
si et seulem ent si le wronskien généralisé

f i ( x i )  . . .  f n{x l)
Ïi(x 2 ) ■ ■ ■  fû (x 2 )

/ j n_1)(ïn ) • • • À ^ ^ iX n )  

reste nul pour tous x i, . . .  ,x n dans I .

T h é o r è m e

Pour une fonction  h réelle (complexe) de deux variables réelles (complexes), 
ayant les dérivées ju squ ’à hyn- iæn-i sur I  x J ,  où I  et J  sont des ensembles 
connexes dans M, le wronskien généralisé



K x i , y i ) , h v ( x 1 , y 2 ), ■ . . ,  h y n - i  ( x \ , 2/n)

h x ( x 2 , y i ) , h Vx{x-2 ,y-2) ,  . . h y n - i x { x n ^yr )̂

,x n i ( x n , y i ) ,  h y Xn i ( x n , 2/2)7 •. . , h y n - i x n - i  ( x n , 2/n)

reste nul pour tous x i , . . . x n dans I  et y i , . . . y n dans J  si et seulem ent si
h (x ,y ) =  ai(x)&i(y) H-------h a n—i(x )bn—i(y ), où a k : I  —y ]R et bk : J  —► ]R pour
k =  1, . . . ,  n  — 1.

P r o b l è m e

Est il vrai le théorème suivant: Si pour une fonction h  comme dans le 
théorème 2 la matrice de Wronski de h

(  h(x, y), hy(x, y), . . . ,  hyn- i ( x ,y ) \
h x{x ,y ), hyx(x ,y ), . . . ,  hyn- i x(x ,y )

\ h xn -i(x ,y ) , hyxn- i(x ,y ) ,  .. ., hyn- i xn - i(x ,y ) /

a le rang égal à p <  n  pour chaque point (x ,y ) G /  x J ,  alors h {x ,y ) =  
a i(x )b i(y )  +  . . . +  ap (x)bp (y) pour certaines a„ : /  —► ]R et bu : J  —> ]R et
v =  1, • • • ,P?

T h é o r è m e

La réponse est “ou i” dans le cas reel si p =  1 pour chaque n >  1 et si p =  2 
et n =  3 et si h a les dérivées considérées continues.

Frantisek Neuman Iteration groups and functional differential equations

Iteration groups of continuous functions were studied by many authors in 
connection with flows, dynamical systems, fractional iterates, etc. At the be
ginning of the eighties the study of solutions of a system of Abel equations, 
or equivalently, embedding of a finite number of functions into an iteration 
group as its elements, was initiated by investigating functional differential equa
tions. These questions became important when we considered transformations 
of functional differential equations with several deviating arguments into spe
cial, canonical equations with deviations in the form of shifts: t +  Ci, Ci being 
constants (systems of Abel equations), or in the form of rays: Cj • t (systems of 
Schroder equations).

First we discovered several sufficient conditions for the existence of a solu
tion of a system of Abel equations, then a systematic research was done by 
M.C. Zdun.

We explain why systems of Abel equations (or systems of Schroder equa
tions) are important for transforming functional differential equations into their 
canonical forms.



Jolanta Olko O n an  a p p lica tio n  o f  B a n a c h -S te in h a u s  th eo rem

Applying a set-valued version of Banach-Steinhaus theorem on the uniform 
boundedness, we generalize theorems concerning iteration semigroups of linear 
continuous set-valued functions.

Zsolt Pales S o lu tion  a n d  regu larity  th eo ry  o f  com p os ite  fu n c t io n a l equ ation s  

We deal with the functional equation

f { x  +  y ) ~  f (x )  +  <t>(g(y +  z ) ~  g{y))
=  i>{g{x +  y +  z) -  g(y +  z) -  g(x +  y) +  g{y))

(x,y, z >  0 , x +  y +  z <  a),

where 0  <  a  <  oo and f  : I  —> R,  g : I  —> R,  <f : J  —> ]R, ip : H  —y №. are strictly 
monotonic functions defined on the sets

/  :=  ] 0 , a[,  J  :=  {g(y +  z)  -  g(y) \ y ,z  >  0 , y +  z <  a } ,

H  ■ = {g(x +  y +  z) -  g(y +  z)  -  g(x +  y) +  g(y) \ x, y, z >  0 , x +  y +  z <  a } .

The solution of the above equation is done in two steps. First, using the 
Bernstein-Doetsch theorem and the Lebesgue theorem on the almost every
where differentiability of monotonic functions, we show that J ,  H  are intervals 
and all the functions / , <?, (f>  and if are everywhere differentiable. Then, after 
differentiation with respect to the variables x, y, z, we eliminate the parts 
where composite functions appear. Thus, an equation containing only f  and 
g' is obtained, which can be solved by using standard techniques.

Tomasz Powierza S et-v a lu ed  itera t iv e  sq u are  roots o f  b ijec t ion s

There are different ideas how to generalize the notion of an iterative root, 
especially when a function does not have such a root. We consider a multifunc
tion as a substitute for this notion.

Following an idea of S. Lojasiewicz [Ann. Soc. Polon. Math. 24  (1951), 88- 
91] we show how to construct a set-valued iterative square root of a bijection 
which is single-valued if the function has a “real” square iterative root. We 
show also that every square iterative root of a bijection can be obtained using 
our construction.

Zbigniew Powqzka F u n c tio n a l equ ation  con n ec ted  w ith S c h r o d e r ’s equ ation

Let a ,  b be positive real numbers. Let /  : [0 , oo) —► ]R, g : ]R —► ]R fulfill 
equation

a f{x )  +  bf(y) =  f ( a x  +  by)g(y — x). (1)

There are mostly studied solutions of (1) in the class of locally integrable func
tions in M.



Thomas Riedel On som e functional equations on the space o f  distance dis
tribution functions

Joint work with Kelly Wallace.
We present some lattice theoretic properties of the space of distance distri

bution functions which are then employed to solve various functional equations 
on this space. Some of the known results are reviewed and we will present 
new, joint work with Kelly Wallace on a Pexider type equation on the space of 
distance distribution functions.

Maciej Sablik On a C hini’s functional equation

This is a report on a joint work with Thomas Riedel and Prasanna Sahoo. 
In connection with some problems related to actuarial mathematics, 

M. Chini had considered in [1] the following equation

f ( x  +  y) + f ( x  +  z) =  c f ( x  +  h (y ,z )) , (E)

where /  : M —> M and h  : ]R2 —> ]R are unknown functions, and c is a non
zero fixed constant. Chini gave all differentiable solutions of the equation. We 
present the continuous solutions of (E) and of some more general equations.

[1] M. Chini, Sopra un’equazione funzionale da cui discendono due notevoli formule 
di Matematica attuariale. Periodico di Matematica 4 (1907), 264-270.

Alexander N. Sharkovsky Asymptotical behavior o f  solutions o f  the sim 
plest nonlinear q-difference equations

Joint work with G.A. Derfel and E.Yu. Romanenko.
We consider nonlinear q-difference equations of the form

x(qt +  1) =  f(x(t)),  q >  1, t E R + .

The behavior of solutions is studied as 1 -> +oo. The investigation of asymp
totical properties of solutions is based, in particular, on the comparison of these 
with the properties of solutions of the difference equation x(t +  1) =  f(x ( t ) ) .  
We show that asymptotical properties of solutions of the q-difference equations 
are “similar” to those of the corresponding difference equations when q >  1 is 
not “very large”.

Justyna Sikorska On a functional equation related to the power means

M.E. Kuczma in [1] has considered analytic solutions of the functional 
equation

x +  g(y +  f(x ) )  =  y +  g(x +  f {y ) )

on the real line. In [2] solutions in the class of twice differentiable functions are 
given.

We present solutions in other classes of functions.



[1] M.E. Kuczma, On the mutual noncompatibility of homogeneous analytic non
power means. Aequationes Math. 45 (1993), 300-321.

[2] J. Sikorska, Differentiable solutions o f a functional equation related to the non
power means. Aequationes Math. 55 (1998), 146-152.

Stanislaw Siudut Cauchy difference operator in som e F * -spaces

Some abstract stability theorems with applications are presented. In par
ticular, a necessary and sufficient condition of stability of the Cauchy equation 
in certain class of F * - spaces is proved.

Fulvia Skof On som e mutually equivalent alternative quadratic equations

The search of connections between the classes of solutions to different al
ternative equations stemming from the quadratic equation

f ( x  +  y) +  f ( x  - y ) ~  2f { x )  -  2f(y )  =  0

for operators /  with values in a real normed space, points out a variety of 
situations in dependence on some peculiarities of the norm of the space (pre- 
Hilbert, strictly convex etc.). More specially, we consider here the property 
of pairwise equivalence of such equations, with special regard to the case that 
equivalence occurs if and only if the target space is endowed with a suitable 
norm.

Some remarks in this context, giving rise to new characterizations for the 
kind of norm involved, are presented in this talk.

Andrzej Smajdor Concave iteration semigroups o f  linear set-valued functions 
and differential problems

Let A  be a closed convex cone with the nonempty interior in a real Banach 
space and let cc(K )  denote the set of all nonempty compact convex subsets of
K . Suppose that {A f : t ^  0} is a concave iteration semigroup of continuous 
linear functions A* : K  —► cc (K )  such that A°(x) =  {x } .  Then there exists a 
continuous linear set-valued function G  such that

D tA \x) =  At (G (x)),

where D t denotes the Hukuhara derivative of At (x) with respect to t.
An existence and uniqueness theorem for the differential problem

D t^f(t,x ) =  y ( t ,G (x )) ,

^ ( 0 ,x ) =  'Lo(x)
is given.

W ilhelmina Smajdor Entire solutions o f  a functional equation 

Joint work with Andrzej Smajdor.
All entire solutions of order less than 4 of the equation



are
\f(s +  i t ) f ( s  -  it) I =  |/(s)2 -  f { i t f  I, s , i e R

f ( z )  =  az  and f ( z )  =  asin bz ,

where a, b are arbitrary complex constants.

Tomasz Szostok Equation o f  Jen sen  type and orthogonal additivity in normed  
spaces

A conditional functional inequality that is often considered in papers by 
authors dealing with Orlicz spaces is studied. Namely, under some assumptions 
on the arguments, the right-hand side of the Jensen inequality is multiplied by 
a constant. Related equation is considered. For functions defined on (0, oo) 
solutions of this equation are expressed in terms of multiplicative functions. 
After suitable modifications the same equation can be considered in normed 
spaces. Close connection between the resulting equation and that of orthogonal 
additivity is obtained.

Laszlo Székelyhidi On a functional equation fo r  a two-variable function  

This is a joint work with Prasanna Sahoo.
In this work we prove that the function /  : G  x G —> C, where G is a 

2-divisible abelian group, satisfies the functional equation

f ( x - t , y )  +  f ( x  +  t , y  +  t) +  f ( x , y - t )  =  f ( x - t , y - t )  +  f ( x , y  +  t) +  f ( x  +  t ,y)

for all x, y, t in G  if and only if

f ( x ,  y) =  B(x, y) +  <p(x) +  ip(y) +  x(x ~  y),

where B  : G x G  —s-Cisa biadditive function and ip, -ip, x  '■ G —► C are arbitrary 
functions.

Jaromir Simsa Som e finite decompositions o f  three-place functions

In the early 80’s, F. Neuman found and stated a general criterion for a 
given two-place function h : X  x X  —> ]R (or C) to be decomposed in the form

m
K x ,y) =  ^ 2 a i(x )bi(y) ( x e X , y e Y )  (1)

4=1

(see e.g. the book Th.M. Rassias and J.S . Finite sums decompositions in math
em atical analysis, John Wiley and Sons, 1995.) Later on, M. Cadek and J.S. 
showed that a tree-place function h  can be represented as

m n p

K x , y , z ) =  E E E  a i j k a i ( x ) b j ( y ) c k ( z ) (x e  X,  y e  Y, z  G  Z)
i= 1 j=  1 k= 1



if and only if h  possesses the following three decompositions
m n p

K x , y , z ) =  ^ ~ 2 a i (x ) u i (y ,z ) =  ^ & , - ( y ) v j ( x , z )  =  ^ ~2ck (z )w k ( x ,y ),
i— 1 j — 1 k= 1

which are of type (1) and hence the criterion of F. Neuman applies to them. 
In the present talk, we discuss decompositions of the form

m n p

K x ^V^z ) =  ' ^ 2 a i (x )u i (y , z )  +  ' ^ 2 b j (y)vj ( x , z )  +  ^ 2 c k (z )wk (x,y) .
i= 1 j = 1 k= 1

The main interest is devoted to the crucial case m  =  n =  p =  1.

Jozef Tabor Stability and the Chebyshev center

We study the existence and uniqueness of the best approximate of a given 
function in classes of solutions of the Cauchy type functional equations. The 
notion of the Chebyshev center is applied to get the results.

M aryna B . Vereykina Dynamics o f  solutions o f  a class o f  nonlinear boun
dary value problems

We consider the simple boundary value problem, namely, the system of two 
equations with one spatial variable

du
~dt
dv
~dt

du
a —  +  btu, 

dx
dv

- a —  +  b2v 
dx

( 1 )

where x G [0, 1], t G for a, b\, b2 G R, with nonlinear boundary conditions

w,|æ=0 — ^|æ=0>
u\x=i =  f(v(t))\x=1, i  £ R

(2)

and with the initial conditions

u\t=o =  u0(x), 
v\t= 0 = v 0(x), x G [0,1]

(3 )

and assume that a  >  0 and /  is a nonlinear function.
The solutions of the BVP (1) -  (3) are represented as solutions of difference 

equations with continuous arguments

w (t  +  2) =  e ^  2 f { w { r ) )  (4)

with initial conditions



vo(—t ) ■ e <? (T+ 1) for t G [-1 ,0 ), 

u 0 (t ) ■ e 1 « 2 for r  G [0, 1).

Peter Volkmann On a Cauchy equation in norm

Jointly with Roman Ger we investigate the equation

\\f(x +  y)\\ =  \\f(x)f(y)\\ (C)

for functions /  : ]R —s- C (K ), K  being compact, K  0. We have the theorem: 
Let /  : ]R —► C (K )  solve the inequalities

№ ) I H I / ( - * ) K i  ( i i )
and (for n  ^  2)

II/Og H------- \-xn)\\ sf ||/(xi).../(x„)||. (In)

Then there are r  G  K  and ip : ]R —> ]R, such that <p(x +  y) =  ip(x)ip(y) and 
||/(x)|| =  | / ( x ) ( t )| =  ip(x) (for x ,y  G  M). The inequalities (Ii), (I2 ) imply 
(C), and it is an interesting question, whether the theorem holds, when only 
requiring these two inequalities for / .

Anna Wach-Michalik On special convex compositions with E u ler’s Gamma 
function

Let /  : M_|_ —► M_|_ be a function satisfying the following properties:

V iG  M+ : f ( x  +  1) =  x f(x )  and /(1 ) =  1. (*)

Thus fix') =  p(x)T(x), where p  : ]R+ —> ]R+ is a periodic function of period 1 
and p( 1) =  1 and T is the Euler T-function defined by the formula

T(x) lim —
n —>00 X

n xn\
(x +  1) . . . (x +  n) ( r )

Prof. H. H. Kairies proposed to investigate the following set:

if /  : M+ —► M+ satisfies (*) 1
and g o /  is convex, then /  =  T J "

By Bohr-Mollerup’s theorem we know that log G  M. We find some further 
elements of the set M  and study its properties.

Janusz Walorski On a problem  connected with convexity o f  derivatives

The aim of the talk is to present an answer to the question posed by Milan 
Merkle in [Conditions fo r  convexity o f  the derivative and som e applications to 
the Gam m a function, Aequationes Math. 5 5  (1998), 273-280.]



Problems and Remarks

1. Rem ark. Let /  be a real interval and /  be a homeomorphisms mapping /  
onto I .

During the 6th International Conference on Functional Equations and In
equalities (Muszyna-Zlockie, 1997) I proved that

I f  f  has no fixed points, then it can be represented as a composition o f  at 
most 2 continuous involutions.

Now I can prove essentialy more:
I f  f  is increasing [decreasing], then it can be represented as a composition 

o f  at m ost f  [at most 3] continuous involutions.
The functions (0, 1) 3 x ^  x 2, (0, oo) 3 x ^  x 2, and (0, 1) 9 x  i—► 1 — x 2 

serve as examples showing that the numbers 2, 4, and 3 are the best possible 
here.

2. Rem ark and Problem . Inscribe a convex n-gon (n ^  3) in the unit circle. 
Now, by drawing tangents, you get a circumscribed n-gon to the circle. Laszlo 
Fuchs and I proved fifty years ago (Compos. Math. 8 (1950), 61-67) that the 
sum of the areas of these two n-gons have the minimum 6, independent of n, 
realized by a pair of squares. The proof was analytical, using a function which 
is first strictly concave then strictly convex.

No elementary (not using calculus, say geometrical) proof has been found 
since. It seems very difficult to find one.

Clearly no minimal pair of n-gons exists for n >  4 because one can always 
slightly distort squares by joining (several) small additional sides.

Pal Erdos asked several years ago whether among pairs of triangles (“3- 
gons”) constructed as above the pair of regular (equilateral) triangles has the 
minimal area-sum. I proved, by analytic tools similar to those used for the 1950 
theorem, that this is true. I believe for this an elementary proof (geometric or 
at least without derivation) would be relatively easy to find.

Witold Jarczyk

Jan os Aczel

3. Problem . Let /  : ]0, oo[—► ]R. If /  is Jensen-convex, i.e.

then the inequality

also holds. Therefore, with z =  ^ fxy ,



X +  y +  ^ / x y \ <  f ( x )  +  f ( y ) +  f { y / x y )
(x ,y  >  0). (2)

If /  is continuous, then we can prove that (2) implies (1) as well. Is it true that 
(1) follows from (2) without any regularity assumptions?

Zoltan Daroczy and Zsolt Pales

4. Rem ark. In a recent issue of the Bulletin of the London Mathematical 
Society Braden and Byatt-Smith [1] have considered the equation

1, 1, 1 
/0*0, m ,  f(z )
f  (x), f ( y ) ,  f ( z )

0; x +  y +  z =  0.

Solutions include f ( x )  =  x, f ( x )  =  expx, and f ( x )  =  p(x) where p(x) is the 
Weierstrass pe function.

This equation arises from an equation of Sutherland (1974)

F (x )F (y )  +  F (y )F (z )  +  F (z )F (x )  =  G (x) +  G (y) +  G(z)

subject to x  +  y +  z =  0.
This was solved by Calogero (1970) at least in the physical situation that 

gave rise to Sutherland’s equation.

[1] H.W. Braden, J.G.B. Byatt-Smith, On a functional differential equation o f de- 
terminental type, Bull. London Math. Soc. 31 (1999), 463-470.

Thom as M.K. Davison

5. Problem . (Presented by Janos Aczel.)
What is known about the system of equations

F (x , x) =  x, F [F (x , y ),z] =  F (x , z) (x , F  : ]R2 —► M)?

I can prove that if y ► F ix , y) is differentiable, then F ix , y) =  x  and F ix , y) =  
y are the only solutions. The original question is also of interest in (general) 
vector spaces.

Gunter P ickert (G iessen)

6. Rem ark. Remarque au problèm e de G. Pickert.
La théorème suivant est démontré dans la note [L. Piechowicz, S. Serafin, Solu
tion o f  the translation equation on som e structures, Zeszyty Naukowe Uniwer
sytetu Jagiellońskiego, Prace Mat. 21 (1979), 109-114]:

T h eo r em

A mapping F  : M  x S  —> M  is a solution o f  F (F (x , a), h) =  F (x , h) i f  and 
only i f  it is constructed as follows



a) We take a partition o f  M .

b) We denote by T  the set o f  all functions f  : M  —> M  such that

A ( / ( M i ) c M i  A card/(M j) =  1). (*)
i e l

c) We take an arbitrary function ip : S  —y T .

d) We define F (x , a) :=  (p (a ))(x ) fo r  (x, a) 6 M  x S.

Nous avons des relations suivantes:
(*) •<=>• /  est stable sur chaque Mi et sa valeur sur Mi est dans Mi =>• f
est l’idéntité sur l’ensemble de ses valeurs •<=>• f\xeM / ( / (x ) )  =  /(x ). 
Passons au cas M  =  S  =  M. Nous avons des équivalences suivantes:

F (a ,a )  =  a  (<p(a))(a) =  a  a6<p(a)(]R).

La solution générale du problème de G. Pickert est donnée par la construction 
dans le théorème avec (p(a) remplissante la condition: A  a  € <p(fl)(]R).

E x e m p l e s

!) A (p(a)(x ) =  x, donc F (x , a) =  x

2)

3 )

A  (é(a)(x) =  a > donc F ( x ,a ) =  
a,æEM

les exemples de Pickert.

M a)(x) =  ! a  P° Ur X G W 1 =  F (x  a)F  ) | pour x  G [k, k +  1) et k  [a] et k =  0, ± 1 , . . .  J v i J

Zenon M oszner

7. Problem . (Presented by Janos Aczel).
What is the general solution of the integral equation (somewhat similar to the 
“integrated Cauchy equation”)

pOO
2f (u )  =  2 / f ( x  +  u ) f(x )  dx (if the integral exists).

J o

/(A) =  Ae Xx is a solution. There are applications in Statistics.
Jo z s e f  Bukszar (M iskolc)

8. Problem . (Presented by Janos Aczel).
1. After the “fermatian” statement “I do not think it right to occupy 

space by a very full development of the demonstration: the following will be



enough for anyone who has an ordinary acquaintance with functional algebra 
and the differential calculus” , A. De Morgan states in a paper that (with slightly 
changed notation)

<p(x +  u) +  <p(y +  u) =  <p[z{x, y) +  u] (x, y, u and ip nonnegative) (1)

implies that there exist nonnegative functions c and F  such that

ip{x +  u) =  c(x )F (u ). (2)

Ingram Olkin and I were unable to fill in what was missing here. (There are 
applications to actuarial mathematics, among others.)

2. Could the injectivity assumption be weakened?
Albert W. M arschall (Lumnisland, WA, UBC, Canada)

9. Rem ark. To A. W. M arschall’s Problem  1.
If p  is an injection, then we get from (1) with u =  0: z(x, y) =  <£>_1[<£>(x) +  <£>(y)]. 
Putting this into (1) and writing

Pu{x) ■ ■ = p {x  +  u), s =  p (x ), t =  p (y ) (3)
we get

Pu ° p ^ 1 (s +  t) =  p u o p - 1 (s) +  p u o p - 1 (t) ( s , t e [ p ( 0), lim p {x )[),
x—*-oo

the Cauchy equation on a domain from which it can be extended to [0, oo[2 (or 
to ]R2). Since p u ^  0 (cf. (3)): p u o p ^ 1(s) =  cus ; thus tp(x +  u) =  p u(x) =  
cup(x ) =  c(u )p(x). This proves (2), moreover p(x ) =  b e (b ^  0). Here 
A is an arbitrary injective additive function. This is not enought to guarantee 
A(x) =  ax, thus p{x) =  beax but local boundedness (on a small proper interval 
or on a set of positive measure) of p  is enough.

Jan os Aczel

10. Rem ark. The following generalization of the regularity result presented 
in Zs. Pales’ talk holds.
Consider the functional equation

n
f ( x  +  y) -  f ( x )  +  ^2<j>i[gi(y +  Zi) ~  gi(y)}

i=  1
n ( ! )

=  ^2 ip i[g i(y  +  x +  Zi) -  gi(y +  x) -  gi(y +  zt) +  g^y)}
i — 1

(x ,y , Zi >  0, x  +  y +  Zi <  a ; i =  1, . . . ,  n), 

where 0 <  a  ^  oo, / ,  : /  —► ]R, (pi : J i  —► ]R, tpi : Fdi —► ]R and

I  =  (0, a),



J i  =  {9 i{y  +  Zi) -  gi{y) | y,Zi >  0, y +  Zi <  a } ,
Hi =  {g i(y  +  x +  Zi) -  gi(y +  x) -  gi(y +  zt) +  g^y) \ x, y, Zi >  0, 

y +  x  +  Zi <  a } ,

for i =  1 , . . . ,  n. Suppose, that the functions (p i,. . . ,  <pn , tp i,. . .  ,tpn , g i , . . .  ,gn 
and /  satisfy (1), furthermore, (pi, , (pn ; tpi, . .. ,tpn and gi, .. . ,gn are strictly 
monotonic in the same sense, respectively.
Then

-  /  is strictly convex or strictly concave and continuously differentiable 
on I ;

-  9i, ■ ■ ■  ,9n are strictly convex or strictly concave on / ;

-  J i ,  . . .  , J n and H i, .. ., Hn are open intervals;

-  (pi, .. ., (pn and tp i,. .. ,tpn are differentiable on J i , . . . ,  J n and Hi , ,  Hn , 
respectively.

Attila Gilanyi and Zsolt Pales

11. P ro b lem . Let p  : [0, oo) —► [0, oo) be an increasing convex function such 
that p ( 0) =  0. The complementary function in the sense of Young to p  is 
defined by

p*{u ) =  sup{uu — p(v) : v >  0}, u ^  0.
We can describe p* also by the formula p* (u) =  p ^ 1 (t) dt, where p denotes
the inverse of p  from the integral representation of p, i.e. p(u) =  p it) dt. 
Consider a new function h v : (0, oo) —y [1, 2] given by

hep (A)
p - \ u ) { p * ) - \ u )

u >  0.

The function h v stems from the theory of Orlicz spaces. In fact

(u)
IIX(0,i)llLv
l l x ( o , i ) I U -

where || • ||^ denotes the Orlicz norm and || • \\l v the Luxemburg norm (cf. [1],
[ 2 D -
Since ||x||iv> ^  \\x\\% ^  2||x||iv> for any x  in the Orlicz space L v it follows that 
1 ^  h v (u) ^  2 for all u >  0.

1 _LNotice also that if p(u) =  up , 1 ^  p <  oo, then h v (u) =  pp(jp')p' where 
 ̂ =  1. It is easy to show that if h v {u) =  2 for all u >  0, then p(u) =  cu2

for some c >  0 (cf. [2]). I have a rather complicated proof that if

h v (u) =  a  (1 <  a <  2) for all u >  0

then



ip(u) =  cuP
for some c >  0 and p  >  1.

My question is: to find a simple proof of the last statement.

[1] M.A. Krasnoselskii, Ya.B. Rutickii, Convex Functions and Orlicz Spaces, Noord- 
hoff Groningen 1961.

[2] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math. 5, Univ. of 
Campinas, Campinas SP, Brazil. 1989.

Lech Maligranda

12. Problem . Let ipn , tpn , Xn '■ Z —► C be functions, B n : Z x Z —► C biadditive 
functions, and Fn : Z x Z —► C 2Z-periodic functions in both variable, that is

Fn (x +  2 z ,y ) =  F n(x ,y  +  2z)

is satisfied for all x, y, z in Z. let

fn (x ,y )  =  ifin(x) + ipn (y ) +  Xn(x - y )  +  B n (x ,y ) +  F n (x ,y )

for all x ,y  in Z and for n =  1 , 2 , . . . .  Suppose that the sequence { f n}  is 
pointwise convergent on Z to the limit / .  Is it true, that /  has the form

f ( x ,  y) =  f {x) +  ip(y) +  x {x  - y )  +  B (x , y) +  F (x , y)

where <p, ip, x  : Z —► C are arbitrary, B  : Z x Z -> C is biadditive and F  is 
2Z-periodic in the above sense?

Laszlo Szekelyhidi

13. Rem ark. On A. W. MarschaWs problem.
The equation <p(x +  u) +  ip(y +  u) =  <p\z{x, y) +  u] is Chini’s equation (cf. [Talk 
by M. Sablik, p. 187], [2]). Using [3], it suffices to assume that z is continuous 
in each variable and ip is locally bounded (either from above or below) and non 
constant to obtain the continuity of ip. This allows us to use [4] to reduce the 
equation to

<p{x +  z) =  M (x )p (z ) +  P (x ) (x, z ^  0) 
and using z =  0 and g(x) =  p{x ) — p(0) we obtain

g(x +  z) =  M (x)g(z) +  g(x) ( x , z ^ 0 ) .

By Corollary 2 in Chapter 15 of [1], we obtain, after the elimination of ex
traneous solutions, that

<p(x) =  K e ax and z(x, y) =  — ln (eax +  eay) for K  >  0, a  yf 0.
a

We further note that with the direct methods presented in M. Sablik’s talk, 
it suffices to assume that z is continuous in one variable, but we then need to 
assume the continuity of ip.



[1] J. Aczel, J . Dhombres, Functional Equations in Several Variables, Cambridge 
University Press, 1989.

[2] M. Chini, Sopra u n ’equazione funzionale da cui discendono due notevoli form ule  
di M atematica attuariale. Periodico di Matematica 4 (1907), 264-270.

[3] C.T. Ng, Local boundedness and continuity fo r  a functional equation on topological 
spaces, Proc. Amer. Math. Soc. 39 .3  (1973), 525-529.

[4] C.T. Ng, On the functional equation f ( x )  +  9i{yi) =  h ( T ( x ,  y\, . . . , yn)),
Ann. Polon. Math. 27  (1973), 329-336.

Thom as Riedel and M aciej Sablik

14. P ro b lem . Characterize

T  :=  {p  G Z[X\ : V i G JR \p (x )\ ^  1 \x\ ^  1}.

Comments. X n,T n (X ) G T . If p  G T , then —p  G T . Ifp, g G T  fh e n p o q  G T . 
But there are more than these: k X A — k X 2 +  1 G T  for A: G {1,2,3,  4, 5, 6, 7, 8}.

Thom as M.K. Davison
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