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Abstract. Following the classical Green’s equivalences we examine, by 
means of some equivalence relations, the structure of the ternary semig
roup of linear mappings. The suitable results for the ternary semigroup of 
matrices are consequences of the considerations for the linear mappings.

1. Introduction

In this paper we introduce the notion of a ternary semigroup of linear 
mappings of two vector spaces. The ternary semigroup of linear mappings 
is a counterpart of the semigroup of endomorphisms of a vector space. By 
means of the ternary semigroup of linear mappings we can define a ternary 
(linear) algebra of linear mappings. The last one is isomorphic to a ternary 
(linear) algebra of matrices. The purpose of the present paper is to examine the 
structure of the ternary semigroup of linear mappings. To this end, we shall use 
the relations constructed after the pattern of Green’s equivalences in the theory 
of semigroups. We shall show that the structure of the ternary semigroup of 
linear mappings is similar to that of the semigroup of endomorphisms of a 
vector space, but it is more varied. Moreover, we shall give a certain clear 
characterization of the structure of the inverses in the ternary semigroup of 
linear mappings.

The results concerning a ternary semigroup of matrices will be immediate 
consequences of those obtained for the ternary semigroup of linear mappings.

2. Some definitions and results on ternary semigroups

A ternary semigroup is a particular case of the m-semigroup (cf. [5], [6]). 
We will list some basic definitions and results concerning ternary semigroups 
which will be needed in this paper.
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D efin ition  2.1
A ternary semigroup is an algebraic structure (A ,/)  such that A is a 

nonempty set and /  : A3 — > A is a ternary operation satisfying the following 
associativity law:

f ( f ( x 1,X2,X3),Xi ,X5) =  f ( x 1,f(X 2,X3,Xi),X5) ^  ^

=  f ( x i ,x 2, f ( x 3,x 4,x 5))

for all x i , . . . ,  x3 £ A.

Because of (2.1) we may write f ( x i , . . .  ,£ 5) for x i , . . .  ,x 3 £ A. If 7Q C A 
for * =  1, 2,3 , then we set

f(X x ,X 2,X 3) =  { f ( x i , x 2,x 3) £ A :  e  1 ;  for j  =  1 ,2 ,3 } .

For simplicity we will write / (A 2, a, A2) =  f  (A, A, a, A, A). Throughout this 
paper the letter /  will be reserved to denote the ternary operation in a ternary 
semigroup.

D efin ition  2.2
Let (A, / )  be a ternary semigroup. A nonempty subset 7 C A is called:

(a) a left ideal if /(A , A, I)  C 7,

(b) a right ideal if / (7 , A, A) C 7,

(c) a lateral ideal if /(A , 7, A) C 7,

(d) a two-sided ideal if 7 is both a left and right ideal,

(e) an ideal if 7 is a left, right, and lateral ideal.

Let a £ A be an arbitrary fixed element of a ternary semigroup (A ,/) . 
The symbols 7 ;(a), I r (a), I c(a), Ij(a ), 1(a) denote the principal left ideal, 
right ideal, lateral ideal, two-sided ideal, and ideal generated by the element a, 
respectively.

A straightforward reasoning yields the following 

P ropo sitio n  2.3
Let (A, / )  be a ternary semigroup. Let a be an arbitrarily fixed element of 

A. Then

(a) Ifia) =  aU  f(A ,A ,a ) ,

(b) I r (a) =  a l)  f(a ,A ,A ) ,

(c) 7c(a) =  a U / (A ,a , A) U / (A 2,a , A2),

(d) Ij(a ) =  a  U /(A , A ,a) U / (a ,  A, A) U / (A 2,a , A2),

(e) 7(a) =  a l)  f(A ,A ,a )  U / (a ,  A, A) U / (A ,a , A) U / (A 2,a , A2).



D efin ition  2.4
Let (A , f )  be a ternary semigroup. We define the following relations on 

the set A:
(a) aLb <=>■  I t (a) =  R(b),

(b) aRb 4=>- I r (a) =  I r (b),

(c) aCb •<=>• I c(a) =  I c(b),

(d) a Jb  4=>- Ij(a ) =  I  jib),

(e) aTb ^  1(a) =  1(b),

(f) H  =  L n R ,

(g) D =  L  o R.

Applying a similar argument as in the theory of semigroups we can prove 
that L  o R =  R  o L  and L  C J, R C  J, H  C J, D C J .  Thus, all the above 
relations are equivalences.

D efin ition  2.5 (cf. [6])
A ternary semigruop (A, f )  is said to be regular if

V a g i  3 x ,y  £ A [ f ( a ,x ,a ,y ,a ) = a ] .

Let X  and Y  be nonempty sets. Let T (X ,Y )  be the set of all mappings 
of X  into Y. Put T[X ,Y] =  T (X ,Y )  x T (Y ,X ). Define the ternary operation 
/  : T [X ,Y }3 — ► T [X ,Y } by the rule:

f ( (p i ,q i) ,(P 2,q2),(P3,q3)) =  (pi ° P 3,<a  op2 oq3) ( *)

for all (pi,qi) € T [X ,Y ], where i =  1 ,2 ,3 .
The algebraic structure (T [X ,Y ],f)  is a ternary semigroup.

D efin ition  2.6
The ternary semigroup (T[X, Y], f )  is called the ternary semigroup of 

mappings o f sets X  and Y. If X  n Y =  0, then (T [X ,Y ],f)  is called the 
disjoint ternary semigroup of mappings of sets X  and Y.

It is easy to check that the ternary semigroups (T[X, T], / )  and (T[Y, X], f )  
are isomorphic.

A slightly modified argument applied in the proof of Theorem 3 in [5] yields 
the following theorem.

T heorem  2 .7
Every ternary semigroup (A, f )  is embeddable into a disjoint ternary 

semigroup (T [X ,Y ],f)  o f mappings o f sets X  an dY .

In many areas of mathematics mutual connections between algebraic, orde
red, topological structures and semigroups (groups) of some morphisms of these



structures are studied. For characterizing two structures Si and S2 by means of 
their morphisms we should consider morphisms from Si into S2, and conversely. 
The ternary semigroups of morphisms of the structures Si and S2 meet above 
requirements, and they are useful to achieve the desirable aim. For many 
structures (e.g. ordered sets, lattices, affine spaces, topological spaces) using 
ternary semigroups of morphisms we can obtain some clear information about 
a degree of characterization of these structures by means of their morphisms 
(cf. [1], [2], [3]). Taking into account the above justification and the remarks 
contained in the Introduction, it is well-founded to investigate the ternary 
semigroups of morphisms of various structures.

3. A ternary semigroup of linear mappings

The following two theorems concerning the linear mappings will be needed 
in this paper:

T heorem  3.1
Let X  and Y be vector spaces over a field K . Let p  : X  — > Y be a linear 

mapping. Then there exists a subspace X 0 o f X  such that:

(i) Ker (p) (B X 0 =  X ,

(ii) p\x0 ■ X 0 — >■ Im (p) is an isomorphism o f the vector spaces X 0 and 
Im (p) .

T heorem  3.2 (cf. [4], Th. 2, p. 83)
Let X  and Y  be vector spaces over a field K . Let X 0 be a subspace of the 

space X . Then every linear mapping po : X 0 — > Y can be extended to a linear 
mapping p  : X  — ► Y , i.e. p\Xo =  Po-

Let X  and Y  be vector spaces over a field K .  Let L(X , Y) be the set of 
all linear mappings of the space X  into the space Y. Let us put L[X ,Y] =  
L (X ,Y )  x L{Y ,X ). Define the ternary operation /  : L [X ,Y ]3 — >L[X,Y\ by 
the formula (*) for all (P i,qi) G L[X ,Y], where i =  1 ,2 ,3 .

The algebraic structure (L [X ,Y ],f)  is a ternary semigroup.

D efin ition  3.3
The ternary semigroup (L[X ,Y], f )  is called the ternary semigroup of 

linear mappings o f vector spaces X  and Y over a field K .

Throughout this paper we shall consider vector spaces over a field K .  Sup
pose that p G L (X ,Y ). Put r(p) =  dimlm (p).

L emma 3.4
Let X  and Y be vector spaces. For arbitrary p,p' G L (X ,Y ), q G L(Y ,X ) 

the following conditions are satisfied:



(a) Im (p) C Im (p') <=>  3 pi € L(X , Y) 3 f t  € L(Y, X ) \p =  p1 о qx о p x];

(b) Ker (p) C Ker {p’) 3 pi G L(X , Y )3 qx  € L(Y, X ) [p' =  Pi ° ft ° p];

(c) r(p) r(p') <=^- 3 p i,p 2 € L (X ,Y )  3 f t , f t  € L (Y ,X )  [p =  pi о q1 o p 'о 
f t  0 P2];

(d) r (p ) i^ r (q )< = >  3 p 1,p2 £ L (X ,Y )  \p =  p 1 o q o p 2\.

Proof. The implications (-4=) for equivalences (a)-(d) are evident. We 
shall prove the implications ( => ■ ).

(a) By Theorem 3.1 it follows that there exists a subspace X 0 of the space 
X  such that:

(i) K e r (p ')© X 0 =  X ,

(ii) p'\x0 ■ X 0 — > Im (p') is an isomorphism.

Let f t  be an extension onto Y  of the isomophism (p'|x0)_1 : Im (p') — > X 0 
(see Th. 3.2). The implication ( = >  ) for condition (a) is a direct consequence 
of the equality p =  p' о qx op .

(b) Put Ker(p) ® X 0 =  X . Let ft  e  L (Y ,X )  be an extension onto Y  
of the isomorphism (p|x0) -1 : Im (p) — > X 0. For every x £ X  we have x =  
x' +  xq, where x' G Ker(p) and xq € X 0. Let us notice that p(x) =  p(x0). 
Since Ker (p) C Ker (p'), it follows that p'(x) =  p'(x0). Then (p' о qx o p )(ж) =  
p '(Qi (p (x0))) =  p'(x0) =  p'(x), consequently p' =  p' о qx op . The implication 
( => ■ ) for condition (b) is satisfied.

(c) Since r(p) ^  r(p'), there exists a monomorphism s : Im (p) — >■ Im (p'). 
Put h =  s o p .  Notice that Ker (h) =  Ker (p) and Im (h) C Im (p'). Applying 
conditions (a) and (b) we get p =  pi о qx о h and h =  p' о q2 о p2 for some 
p i,p 2 € L (X ,Y )  and f t , f t  € L(Y ,X ). Therefore p =  pi о q1 о p' о q2 о p2 for 
some p i,P 2 € L (X ,Y )  and f t , f t  € L(Y ,X ).

(d) Put Ker (p) © X 0 =  X  and Ker (q) © Y0 =  Y. In view of the inequality 
r(p) ^  r(q) and Theorem 3.1(ii) we have dim X 0 ^  dim Y0. Consider the 
following mappings:

7Г — the projection of X  onto X 0:

•q — a monomorphism of X 0 into lb ;

p2 = r]  о tt;

a  — an extension of the isomorphism (q о p) -1 : q(r](X0)) — > X 0 onto X ;

Pi =  p о a.

Notice that p =  (p\x0) 0 7r and p i,P 2 € L (X ,Y ). Therefore we have:



P i  o q o p 2 =  p o u  o q o p o - K  =  (p| Xo ) o i r o a o q o r ) O T r

=  (p|x0) 0 (tt|x 0) o H q(n(x0))) ° (q\v(x 0)) ° ' n ° n  

=  (p|x0) o P_1 o (qUiXo) ) - 1  ° (q\r,(X0)) ° P ° 7T

=  (p\ xo) o P _1 o  id „ (x 0) °  P °  7T =  (p\X o ) O T )-1 O p  O 7T 

=  (p|x0) 0 id x 0 0 7T =  (p|X o) O 7r 

=  p .

Suppose that (p, </), ip',q') £ T [X , Y], We set:

Im(p,<?) =  (Im (p), Im (q));

Ker (p, q) =  (Ker (p), Ker (<?)); 

r(p,q) =  (r(p ),r(q ));

Im (p, ?) C Im (p',q') 4 = ^  Im (p) C Im (p') A Im (q) C Im (<?');

Ker (p, q) C Ker (p', </') Ker (p) C Ker (p') A Ker (q) C Ker (</'); 

K p >?) ^  r(p',q') 4 = ^  r(p) ^  r(p') A r(g) ^  r(g'); 

r(p,q) ^ * 7-(p',gf') 4 = ^  r(p) ^  r(g') A r(g) ^  r{p').

According to Lemma 3.4 we have the following

T heorem  3.5
Assume that (p, q), (p1, q') £ L[X ,Y]. Then:

(i) Im (p, q) C Im (p1 ,q') •<=>• 3 (p1,q 1),(p 2 ,q2) £ L[X,Y]
[(p ,q ) =  f((p ' ,q ') ,(p i,q i) ,(P 2,q2))]-,

(ii) Ker (p', q') C Ker (p, q) 4=>- 3 (pi,<?i), (p2,<?2) € L[X, Y]
[(p ,q ) =  f( (p i ,q i) ,(P 2,q2),(p',q'))];

(iii) r(p,q) ^  r(p',q') 4 = ^  3 (p;,<?;) £ L [X ,Y ] (i =  1 ,...,4 )
[(p,q) =  f ( (p i ,q i) ,  (P2,qa), (p',q'), (P3,as), (pi,qî))\;

(iv) r(p,q) ^ * r(p',q') 4==* 3 (pi,<?i), (p2,<?2) € L [X , Y]
[(p,<?) =  f((p i,q i) ,(p ' ,q ') ,(P 2,q2))]-

In view of Theorem 3.5, Proposition 2.3, and Definition 2.4 we can formu
late the following

C orollary  3.6
Assume that (p ,q), (p ',q') £ L[X ,Y ]. The following conditions are satis

fied:

(i) (p', q') e  I r (p, q) 4 = ^  Im (p',q') Ç Im (p, q);

(ii) I r (p, q) =  I r (p', q') Im (p, q) =  Im (p', q');



(iii) (p, q) R  (p q ' )  Im (p, q) =  Im (p1, q')-,

(iv) (p',q') € I t(p,q) < = ^ K er (p ,q )  C  K er(p',q');

(v) Ii (p, q) =  Ii (p1, q') Ker (p, q) =  Ker (p1 ,q');

(vi) (p , q) L  (p q ' )  Ker (p , q) =  Ker (p q ' ) ;

(vii) (p , q) H  (p q ' )  Ker (p , q) =  Ker (p q ' )  Л Im (p , q) =  Im (p q ' ) .

The following known fact concerning vector spaces will be useful in the 
proof of the next theorem.

Let X\ and X -2 be subspaces of a space X  such that X\ C I 2. Then

d im (X /X 2) <; d im (X /X i). (3.2)

T heorem  3.7
Let ip ,q),{p',q') Є L[X ,Y ], then:

(І) (p ',Q') є  I j (p ,q )  r(p',q') ^  r(p ,q);

(ii) Ij(p , q) =  Ij(p',q') r(p, q) =  r(p',q');

(iii) (p , q) J  (p q ' )  r(p, q) =  r(p', q').

Proof. First we will prove (i). Assume that (p',q') Є Ij(p ,q ). According 
to Proposition 2.3(d) we consider the following cases:

(a) If (p',q') =  (p ,q ), then r(p',q') =  r(p,q).

(b) Suppose that

(p',q') =  f( (p i ,q i) ,(P 2,q2),(p ,q))  for some (p i ,<?i ) ,(p 2,<?2) є l [x , y \.

It follows from Theorem 3.5(h) that Ker (p) C  Ker (pr) and Ker (q) C  
Ker (</'). By formula (3.2) we get

r{p') =  dim (X/K er {p')) ^  dim (X/K er (p)) =  r{p).

Similarly, r(q') ^  r(q). Hence r(p',q') ^  r(p,q).

(c) Suppose that

(p',q') =  f( (p ,q ) ,(p u q i) ,(P 2,q2)) for some (p i,q i) ,(P 2,q2) є l [x , y \. 

By Theorem 3.5(i), Im (p',q') C  Im (p, q), and therefore r(p', q') ^  r(p, q).

(d) Suppose that

(p',q') =  f((p i,q i),(P 2 ,q2 ),(p ,q ),(P 3 ,q3 ),(P i,q i))  for some
(Pi,qi) Є L[X ,Y ], і =  1, ...,4 .

By Theorem 3.5(iii), r(p',q') ^  r(p,q).



Conversely, assume that r(p',q') ^  r(p,q). In view of Theorem 3.5(iii), 
(p',q') G Ij(p ,q ).

According to (i) and Definition 2.4(d) we get (ii) and (iii).

P ropo sitio n  3.8
The relations D and J  in the ternary semigroup L[X ,Y] are identical.

Proof. It is enough to prove that J  C D . Suppose that (P ,q )J(p ',q ') for 
ip,q), ip',q') € L[X ,Y]. This means that r(p,q) =  r(p',q'). Since dim(Im (p)) 
=  dim(Im ip')), there exists an isomorphism b : Im (p) — > Im (p1 ). Put p\ =  
b o p .  Notice that Ker (p\ ) =  Ker (p) and Im (p\ ) =  Im (p1 ). Similarly one 
can construct the linear mapping qi G L(Y ,X )  such that Ker (q\ ) =  Ker (q) 
and Im (çi) =  Im (q1). Thus (p,q )L (p i,q i)  and (p i,q i) R  (p',q'), and so 
(p ,q)D (p',q').

According to Proposition 3.8 and Theorem 3.7(iii) we obtain the following 

C orollary  3.9
I f  (p,q),(p',q') e  L[X ,Y ], then (p ,q ) D (p',q') if and only if r(p,q) =  

r(p',q').

The next result is an immediate consequence of Proposition 2.3, Theorems 
3.5(iii) and 3.5(iv).

T heorem  3 .10
I f  (p,q),(p',q') e  L[X ,Y ], then ip',q') G I c(p,q) if and only if rip', q') ^  

r(p,q) or rip',q') ^ * r(p,q).

Assume that (p, q), (p',q') G L[X ,Y]. Notice that r(p,q) r(p',q') and 
r(p',q') R* r(p,q) iff r(p) =  r(q') and r(q) =  r(p'). Therefore we set

r(p,q) =  r(p',q') 4 = ^  r{p) =  r(q') A r{q) =  r{p').

L emma 3.11
If r(p,q)  ^  r(p',q') and r(p',q')  ^ * r(p,q), then r(p,q) =  r(p',q') for 

(p,q), (p',q') € L[X ,Y].

Proof. Since r(p') ^  r(q) ^  r(q') ^  r(p) and r(q') ^  rip) ^  r(p') ^  r(q), 
it follows that r(p',q') ^  r(p,q). Consequently r(p,q) =  r(p',q').

T heorem  3 .12
If ip, q), ip',q') e  L[X, Y], then I  dp, q) =  Idp', q') if and only if rip, q) =  

rip',q') or r(p,q) =  r(p/,qf).



Proof. We have I c(p,q) =  I c(p',q') iff (p,q) € I c(p',q') and (p',q') € 
I c(p,q). In view of Theorem 3.10 and Lemma 3.11, applying a straightforward 
calculation we get the desired result.

The following corollary results from Definition 2.4(c) and Theorem 3.12. 

C orollary  3.13
I f  (P,q),(p',Q') e  L[X ,Y ], then (p ,q ) C  (p',q') if and only if r(p,q) =  

r(p',q') or r(p,q) =  r(p',q').

By Proposition 2.3(e) and Theorem 3.5(iv) applying an argument similar 
to that in the proof of Theorem 3.7(i) we get the following result:

T heorem  3 .14
I f  ip ,q),ip',q') e  L[X ,Y ], then {p',q') € I(p ,q ) if and only ifr(p ',q ')  ^  

r(p,q) or r(p',q') r(p,q).

P ropo sitio n  3.15
I f  (P,Q) e  L[X ,Y ], then I(p ,q ) =  I c(p,q)■

The proof follows from Theorems 3.10 and 3.14.
By Proposition 3.15, Theorem 3.12, and Definition 2.4(e) the following 

corollaries hold.

C orollary  3.16
I f  (P,q), ip',q') e  L[X ,Y ], then

(i) I(P ,q) =  I(p',q') i f fr (p ,q )  =  r(p',q') or r(p,q) =  r(p',q'),

(ü) (P,q) T  {p',q') iff r(p, q) =  r(p',q') or r(p,q) =  r(p',q').

Corollaries 3.13 and 3.16 yield

C orollary  3 .17
The relations C and T  in the ternary semigroup L[X ,Y] are identical. 

C orollary  3.18
The relations C and D in the ternary semigroup L[X ,Y] satisfy the set- 

inclusion D C C .

This statement follows from Corollaries 3.9 and 3.13.
Let 5  be an equivalence relation. The symbol S(x) denotes the equivalence 

class of S  containing x.

T heorem  3.19
I f  (P,Q) e  L[X ,Y] and r(p) =  r(q), then C(p,q) =  D (p,q).



Proof. By Corollary 3.18, D(p, q) C C(p, q). Suppose that (p',q ') £ C(p, q). 
If r(p',q') =  r(p,q), then (p',q') £ D (p,q). If r(p',q') =  r(p,q), then r(p) =  
r(q) =  r(p') =  r(q'), and so r(p',q') =  r(p,q). This means that (p',q') £ 
D(p, q).

L emma 3 .20
Assume that (p ,q ) £ L[X ,Y] and r(p) ^  r(q). Then there exists a pair of 

linear mappings (p',q') £ L[X ,Y] such that:

(i) r(p,q) ^ r ip ' ,q ’),

(ii) r(p,q) =  rip',q').

Proof. First we will construct p' £ L (X ,Y )  such that rip') =  r(q). Con
sider Ker(</) © Y0 =  Y  and put g =  q\y0. There exists an epimorphism 
s : X  — > Im (q). Put p' =  g~x o s. Thus p' £ L(X , Y) and rip') =  riq). Si
milarly one can construct q' £ L {Y ,X )  such that riq') =  rip). Therefore the 
conditions (i) and (ii) hold.

T heorem  3.21
Assume that ip,q) £ L[X ,Y] and rip) ^  riq). Then the C-class C ip ,q) is 

the union of the two distinct D-classes D\ and D -2 defined by the formulas:

D1 =  { ip ' ,q ')£ L [X ,Y ]  : rip',q') =  r ip ,q )} , (3.3)

D2 =  { ip ' ,q ' )£ L [X ,Y } : rip',q') =  rip, q)}. (3.4)

Proof. Since rip) riq), it follows from Lemma 3.20 and C orollary 3.18 
that the C-class C ip,q) contains at least two distinct .D-classes. Suppose 
that the C-class C ip,q) contains three pairwise distinct D-classes D{p\,q\), 
DiP2,q2),D ip 3,q3). Thus r (p ,,© ) =  rip2,q2) and rip2,q2) =  rip3,q3). Con
sequently r(p i) =  riq2), r (? i)  =  r(p2), rip2) =  riq3), riq2) =  rip3), and 
so rip i) =  rip3) and riq\) =  riq3). Therefore D(p\,qf) =  D(p3,q3). This 
contradicts our assumption.

We can extend the notion of an inverse in a binary semigroup to the ter
nary semigroup L[X ,Y]. A pair ip', q') £ L[X ,Y] is called an inverse of a pair 
ip,q) £ L [X ,Y ]  if

f i ip ,q ) ,ip ' ,q ') ,ip ,q ))  =  ip,q) and fiip ',q '), ip,q), ip',q')) =  ip',q'). 

T heorem  3 .22
For every pair ip, q) £ L[X ,Y] there exists an inverse ip', q') £ L[X ,Y].

Proof. Let X 0, Y0 be such that Ker ip) CD X 0 =  X  and Ker (</) CD Y0 =  Y. 
The mappings g\ : X 0 — >■ Im ip) and g2 : Y0 — >■ Im iq) such that g\ =  p\x0 
and g2 =  q\ y0 are isomorphisms.Let Si : X  — Im (q) and s2 : Y  —  ̂Im (p)



be epimorphisms such that Si|im(9) =  idim(9) and S2|im(P) =  idim(P)- Set 
p' =  gif1 о s! and q' =  g f 1 o s2. Evidently (p',q') Є L[X ,Y]. First we 
will prove that f( (p ,q ) ,  (p',q'), (p ,q )) =  (p,q). We have f((p ,q ) ,  (p',q'), (p ,q )) 
=  (po q' op, qop' oq). Observe that (po q' op){x) =  ( p o g f1 o s2 °p)(x) =  p(x) 
for every x Є X . Similarly, (q op' o q)(y) =  q(y) for every у Є У . Next we will 
show that f((p',q'), (p ,q ), (p',q')) =  (p',q ')• We have f((p',q'), (p ,q ), (p',q')) =  
(p1 o q o p 1, q' o p o q ') .  Notice that

(p1 o q o p ')(x )  =  (p1 o q o g - 1 o Sl)(x) = p ' ( s 1(x))

=  92 і (s i (« iW ))  =  g ^ is i ix ) )
=  p'(x)

for every x Є X . Similarly, (q1 о p  o q')(y) =  q'(y) for every у Є У . Therefore 
(p',q') is an inverse of (p, q) in L[X ,Y].

From Definition 2.5 and Theorem 3.22 it follows

C orollary  3.23
The ternary semigroup L[X, Y] is regular.

P ropo sitio n  3 .24
I f  (p',q') Є L[X ,Y] is an inverse o f  (p ,q ) Є L[X ,Y ], then r(p,q) =  

r(p',q').

This fact follows immediately from Theorem 3.5(iv).
Taking into account Corollary 3.13 and Proposition 3.24 we get

C orollary  3.25
I f  (p',q') Є L[X ,Y] is an inverse o f  (p ,q ) Є L[X ,Y ], then (p ,q ) C  (p',q').

Assume that E  =  {(p ,q ) є L[X ,Y] : r{p) =  r(q)}  and E* =  L[X, Y] \ E. 
From Corollary 3.9 it follows that D (p,q) C E  for every (p,q) Є E. Therefore 
E  =  \ J { D ( p ,q ) : (p ,q )€ E } .

P ropo sitio n  3.26
For every C-class Co Q L[X ,Y] precisely one o f the following two condi

tions holds:

(i) Co C E ,

(ii) C o C E * .

Proof. Suppose that there exists a C-class Co Q L[X, Y] such that (p\ ,q\ ), 
(P2,<?2) Є C0, (p i,q i)  Є E , and (p2,<?2) Є E*  for some (pi,<?i), (Р2,<й) Є 
L[X, У]. From the foregoing and Theorem 3.19 it follows that Co =  C(p\ ,q\ ) =  
D (p i,q i)  C E. We have obtained a contradiction.

Summarizing we get the following theorem.



T heorem  3.27
Given the ternary semigroup L[X ,Y].

(A) Assume that a C-class Co C E . Then every inverse (p',q') o f (p,q) £ Co 
is an element of the C-class Co (Co a D-class).

(B) Assume that a C-class Cq C E * .  Then Co =  Di U D2, where the D- 
classes D\ and D2 are defined by the formulas (3.3) and (3.f). Every 
inverse (p',q') o f  (p ,q ) £ D\ is an element o f D2. Every inverse (p',q') 
o f (p, q) £ D i is an element of D\.

Proof. The condition (A) is an immediate consequence of Corollary 3.25. 
To prove (B), assume that Co =  C(po,qo). Therefore

Di =  { (p ,q ) € L[X ,Y] : r(p,q) =  r(p0,q0)}
and

D2 =  { (P ,q ) G L[X ,Y] : r(p,q) =  r(p0,q0)}.
Suppose that (p,q) £ D\ and (p',q') is an inverse of (p, q). In view of Propo
sition 3.24 we get r(p,q) =  r(p',q'), and so r(po,qo) =  r(p', q'). Consequently 
(p1, q') £ Di- Suppose that (p, q) £ D2 and (p',q') is an inverse of (p, q). By 
Proposition 3.24, r(p,q) =  r(p',q'), and so r(po,qo) =  r(p',q'). Consequently
(p',q') GDi .

4. A ternary semigroup of matrices

Let K  be a field. Let M  (m, n) denote the set of all m x n matrices 
over K .  Put M[m,n] =  M (m ,n) x M (n,m ). Define the ternary operation 
/  : M [m ,n ]3 — > M [m ,n] by the formula:

/ ( (A 1, B 1) , (A2, B 2) , (A3,B 3)) =  (A1B 2A3, B ^ B s )

for all (A i,B i) £ M [m,n], where i =  1,2,3.
The algebraic structure (M [m,n], f )  is a ternary semigroup.

D efin ition  4.1
The ternary semigroup (M [m,n], f )  is called the ternary semigroup of 

m  x n matrices over a field K .

Assume that A £ M (m ,n). Let 1(A) denote the subspace of the vector 
space K m spanned by all the columns of the matrix A. Consider the homogen
eous system of linear equations

A X  =  0. (4.5)

Let K (A ) denote the subspace of the vector space K n of all the solutions of 
the system (4.5). Consider the linear mapping pa G L (K n, K m) determined 
by the matrix A with respect to the canonical bases ( e i , ..., e„) and (ei, ...,e m)



in the vector spaces K n and K m, respectively. It is easy to notice that 
K (A ) =  Ker (p a ) and 1(A) =  Im (p a )- The rank r(A) of the m atrix A is 
identical with the rank of the linear mapping p a , i.e. r(A) =  r(pA)- As
sume that (A ,B )  € M [m ,n\. We set K (A ,B ) =  (K (A ) ,K (B )), I(A ,B ) =  
(1(A), 1(B)), r(A ,B ) =  (r(A ),r(B )). The pair of matrices (A ,B ) €  M [m,n\  
represents the pair of linear mappings (p a ,Qb ) €  L [K n, K m]. Consider the 
pairs of matrices (A i,B{) €  M [m ,n ], where i =  1 ,2 ,3 . Then the pair of 
matrices (A ,B )  =  f((A\,B\), (A2,-B2), (A3, B 3)) represents the pair of linear 
mappings (p a ,P b ) =  f  ((PAi, ) ,  (PA2,qB2), (pA3,qB3))-

Taking into account the foregoing considerations we can formulate all the 
results obtained for the ternary semigroup of linear mappings to get the similar 
results for the ternary semigroup of matrices.
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