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D'Alembert's functional equation 
and Chebyshev polynomials

Abstract. We consider D’Alembert’s functional equation (1) where the 
domain of the function /  is the additive group of the integers and the 
codomain is an arbitrary commutative ring with identity. We show that 
if /(0 )  =  1 then f(n )  is the value of the Chebyshev polynomial Tjrt 
evaluated at /(1 ).

1. Introduction

In 1750 d’Alembert introduced the functional equation

f ( x  +  y) +  f ( x - y ) = 2 f ( x ) f ( y ) .  (1)

This arose in modelling the motion of a stretched string and in the foundations 
of mechanics. See Aczel & Dhombres [1; Chs. 1 & 8] for more details. This 
equation is also called the cosine equation since the cosine certainly satisfies it.

To see how one can “find” the cosine in (1) assume that the not identically 
zero solution /  is twice continuously differentiable. Then from

f ( x  +  V) +  f ( x  ~ y ) ~  2 f(x )  =  . . .  f ( y ) +  f ( - y )  -  2/ ( 0)
y l  y l

using / ( —y) =  f(y )  and / ( 0) =  1 which follow from (1), and taking the limit 
as y tends to 0 , one obtains

/ " ( * ) = / ( * ) / " (  0). (3)

Hence
f(  \ -  f  c o s (c x ) i f  f" ( ° )  <  0

Icosh  (car) i f / " ( 0 ) > 0 (4)

where c :=  y j| / " ( 0) |.
It is worth remarking that d’Alembert was among those calling for a theory 

of limits that would justify the argument just given. It is also worth remarking 
that the technique of reducing a functional equation (such as (l))to  a differential
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equation (such as (3)) has been a mainstay for the past 250 years. Indeed 
Hilbert [1; p. 375], in proposing his fifth problem at the beginning of the 20th 
century, said

Specifically, we come to the broad and not uninteresting field of functional 
equations, hitherto largely investigated by assuming differentiability of 
the occurring functions. Equations treated in the literature, particularly 
the functional equations treated by Abel with such incisiveness, show no 
intrinsic characteristics that require the assumption of differentiability of 
the occurring functions...

Indeed Kannappan [3] solved (1) in great generality, in particular where 
x, y are elements of an additive abelian group and f(x )  is a complex number, 
without assuming any regularity (e.g. continuity) in the function. Kannappan 
proved that given a solution of d’Alembert’s functional equation with /(0 )  =  1 
there is a function e : dom ( / )  —> C such that e(0) =  1 and e(x +  y) =  e(x)e(y) 
and 2f(x )  =  e(x) +  e (—x) for all x £ dom ( / ) .  In the classical cases e(x) =  elcx 
for cos(ca;) and e(x) =  e cx for cosh(ca;).

In this paper equation (1) (d’Alembert’s equation) is solved when the do
main of /  is the additive group of the integers and the codomain of /  is a 
commutative ring R. It is here that, perhaps surprisingly, the Chebyshev poly
nomials show up.

T heorem

Let f  :Z  —)■ R with / (0 )  =  1. Then

f(m  +  n) +  f (m  — n) =  2 /(m )/(n ) ; ( m , n ) e Z 2, (5)

if, and only if
/ (n )  =  T|„| ( / ( ! ) ) ;  n £ Z .  (6)

D efinition  1
Tm £ Z[X\ is given by, for m Є N0,

Tm(X) =  £  (™k) x m ~2k {X 2 ~  1)" , (7)
k=o ^ 7

where q is the largest integer with 2q ^  m. For equation (7) see Temme [4] eq. 
(6.39).

If p  Є Z[X\, say

p ( X ) = p 0 + PlX  +  - - - + p dX d 

and if r £ R  then, as usual,

p(r) := p o + p !r -\ ------- VPd,rd-

The general reference for Chebyshev polynomials (Tchebycheff — hence T) is



Rivlin [3]. The occurrence of Tn here is really as a polynomial not a polynomial 
function as in Rivlin generally.

The necessity ((5) implies (6)) is proved in Proposition 2. The sufficiency 
is proved in Proposition 3. Both use Proposition 1 that reduces the d’Alembert 
equation to a second order linear difference equation.

The identically zero function satisfies (5) but is not of the form T („ )(/( l))  : 
this is why / ( 0) =  1 is a constant assumption.

It is important to note that the domain of an equation must always be 
made clear: the equations

f ( x  +  y) +  f ( x  - y )  =  2f (x ) f(y )  (x, y) € M2

and

f { x  +  y) +  f ( x  - y ) =  2 f (x ) f (y )  (x, y) € M + ( l +  =  { i e l : i )  0 } )  

are different even though for both of them dom ( / )  =  M.

2. Reduction to a difference equation

The result below shows that the two variables m, n in (5) can, over Z, be 
replaced by a single variable equation.

P ropo sitio n  1
Let f  : Z —> R with / (0 )  =  1. Then f  satisfies equation (5) if, and only if, 

f (n  +  2) +  f(n )  =  2 / ( l ) / ( n  +  1) n € Z. (8)

Proof. Assume /  satisfies equation (5). Then

f (n  +  1 +  1) +  f (n  +  1 — 1) =  2/ (n  +  1) / ( 1); 

this is equation (8).
Assume conversely that /  satisfies equation (8). Then /  is even — that is

f ( ~ n )  =  f(n )  n € Z. (9)

It clearly suffices to prove (9) for all n £ No- This is proved by induction on 
n e  No- It is trivially true for n =  0. Also / ( —1) =  / (1 )  since /(0 )  =  1. 
Assume it is true for all n £ No with 0 ^  n ^  N, where N  ^  1. Then it is true 
for n =  N  +  1: using (8)

f (N  +  l)  +  f ( N - l ) = 2 f ( l ) f ( N ) .

Since f {N  — 1) =  — 1)) and f(N )  =  f ( —N) by the induction hypothesis

f (N  +  1) +  f ( l  — N) =  2 f ( l ) f ( —N). (10)

But again using equation (8) with n =  —N  — 1



f ( —N  +  1) +  f ( —N  — 1) =  2 f ( l ) f ( —N). (11)

Comparing (10) and (11) yields f ( —N  — 1) =  f (N  +  1). Thus (9) is true for 
all n G No by induction.

To show that /  satisfies equation (5) the function F  : Z2 —> R  defined next 
must be identically zero:

F ( k , £ ) : = f ( k  +  £) +  f ( k - £ ) - 2 f ( k ) f ( £ )  ( M ) e Z 2. (12)

Now since / ,  assumed to satisfy equation (8), has been shown to be even

F {k ,£ ) =  F {£ ,k ) =  F { - k ,£ )  {k ,£ )G l? .  (13)

So iterating the involutions (k ,£ ) —> (£,k) and (k, £) —> (—k,£) it follows that 
F  is identically zero on Z2 if, and only if, F  is zero on

X  :=  {(k ,£ ) G Z2 : 0 sC £ sC k }  . (14)

Using equation (8) to express f ( k  +  £) in terms of f ( k  +  £ — 1) and f ( k  +  £ — 2) 
and similarly f ( k  — £) in terms of f ( k  — £ — 1) and f ( k  — £ — 2) it follows that

F (k ,£ ) =  2 f ( l ) F ( k - l , £ ) - F ( k - 2 , £ ) -  ( M )  € Z2. (15)

The ‘size’ of (k, £) G X  is k +  £ — the taxicab distance from (0,0) to (k ,£ ) in 
X . By induction on the ‘size’ of (k ,£ ) G X  it is easy to show, using equation
(15) that F  is zero on X . [F (0 ,0 ) =  0 is true since / (0 )  =  1, as is F (1 ,0 )  =  0. 
F ( l ,  1) =  / ( 2) +  / ( 0) -  2/ ( l ) / ( l )  =  0 , since /  satisfies (8)].

This completes the proof that (8) implies (5).

C orollary  1
Let f  : Z R with / (0 )  =  1. Then f  satisfies equation (8) if, and only if, 

it is even (equation (9)) and

f(n  +  2) +  f(n )  =  2 / ( l ) / ( n  +  1); n € N0. (16)

Proof. Assume /  satisfies (8). Then as above /  must be even. Clearly /  
satisfies (16) as the domain of equation (8) includes the domain of equation
(16) . So this direction is proved.

Assume, conversely, that /  satisfies (16) and is even. Then

/ ( - 1) +  / ( 1) =  / ( 1) +  / ( 1) ( / ( - 1) =  / ( 1))

=  2 / ( l ) / ( 0 )  (/(0 ) =  1).

So /  satisfies equation (8) for n =  —1. Now let n G Z with n ^  —2. Then

f (n  +  2) +  /(n )  =  /(n )  +  f (n  +  2)

=  f { ~ n )  +  f  ( n -  2) ( n -  2, - n  G N0)
=  2 / ( l ) / ( —n -  1) ( n -  1 G N0)
=  2 / ( l ) / ( n + l ) .



So /  satisfies equation (8) for all integers n ^  — 1. Thus

f (n  +  2) +  f(n )  =  2 / ( l ) / ( n +  1); n € Z

as claimed.

Equation (16) is a linear difference equation of the second order: since 
/ (0 )  =  1 if / (1 )  is given then / (2 ) , and recursively / (3 ) , / ( 4 ) . . .  are determined.

3. The universal solution
D efin ition  2

T : Z —7 Z[X\ is given by T(0) =  1, T ( l )  =  X , T (—n) =  T (n ); n € No and

T(ji +  2) +  T (ti) =  2XT(n  1)5 n £ No* (IT)

It is customary to write T(n) as T„(X). Thus T2(X) =  2X 2 — 1, T3(X) =  
4X 3 — 3X, T4(X) =  8X a — 8X 2 + 1  follow immediately from equation (17). By 
Proposition 1 T : Z —> Z(X) is a solution of d’Alembert’s functional equation 
(5). Indeed more is true!

P ropo sitio n  2
Let f  : Z —7 R  with / (0 )  =  1. I f  f  satisfies equation (5) then

/ ( n ) = T „ ( / (  1)); n e  Z. (18)

where n 1— > Tn(X) is the family o f polynomials from Definition 2 above.

Proof. Since both /  and T  are even (one by virtue of satisfying equation 
(5), the other by definition), it suffices to prove (18) for all n € No- Now 
/(0 )  =  1 =  T o (/(l)) , and /(1 )  =  T i ( / ( 1)). So assume it has been shown that 
f  (n) =  T „ (/(  1)) for all n € No with n ^  N  where N  € No and N  ^  1. Then

f (N  +  1) =  2 / ( l ) / (A 0  -  f (N  -  1) ( /  satisfies (5))
=  2Ti (/(1 ))T jv(/(1 ))  -  Tjv_ i ( / ( 1)) (induction hypothesis)

=  T W + i(/(l)) (T  satisfies (17)).

Thus the result is true for n ^  N  +  1. So the result follows for all n € No-

Note that what makes the preceding proof work is that for each r € R  the 
evaluation evr of p £ Z(X) at r is a homomorphism from Z(X) to R:

evr (p +  q) =  evr (p) +  evr (q) [(p +  q)(r) =  p(r) +  q(r)]

evr (p • q) =  evr (p) +  evr (q) [(pq)(r) =  p(r)q(r)\ .
Given /  satisfying equation (5) there is a unique homomorphism (of com

mutative rings) evf(i) such that /  =  e v f ^  o T. Also e v f ^  is completely spe
cified by



ew/( i) (1) =  1 ^  evf(i)(x ) =  / ( 1) :
there is one, and only one, ring homomorphism that sends 1 (of Z) to 1 (of R), 
and X  of Z[X] to r £ R.

4. Identification of fhe universal solution

The difference equation for T  is

T(ji +  2) — 2XT(n  +  1) +  T{n) =  0; n £ No* 

The (quadratic) indicial equation for this is

A2 -  2XA + 1  =  0.

This has roots

Ai =  X  +  V x 2 -  1, A2 =  X  -  V x 2 -  1. 

These roots lie in the quadratic extension A of Z[X] where

A = P q
( X 2 -  1) q p : p ,q €  Z[X]

so that, since 0 1 '
2 X 2 - l  0

( X 2 - ! )  0 0 X 2 - 1

A i —
X  1 

X 2 -  1 X A2 —
X  - 1  

1 - X 2 X

[Note that the characteristic polynomial of Ai is t2 — 2X t +  1.] 
Hence, for some ay and o 2 £ A

(19)

(20) 

(21)

2T(n) =  a iA " +  a 2A2 ; n £ N0. (22)

From the initial conditions T(0) =  1, T ( l )  =  X  and so a.\ =  1 and a 2 =  1. 
Thus

2 T n(X )  =  ( “ )  V ” - J  [ ( v/ y > -  i ) J  +  ! - 1 ;iJ  ( v / v =  i j J ]

k = 0 ^  '

where j  =  2k since for j  odd 1 +  (—l )-7 =  0. Hence the following result has been 
proved.

P ropo sitio n  3
Suppose T  : Z —> Z [X ] is given by Definition 2 (basically equation (17). 

Then T (n )(=  T „(X )) given by Definition 1. In other words: the universal



solution to the d ’Alembert equation over Z is given by the family o f Chebyshev 
polynomials.

Since

A2 — Aj-1 X  1 
X 2 - l  X

X  - 1  
1 - X 2 X

the solution is seen to agree with Kannappan’s general description. Define 
E(n) :=  A". Then E (m  +  n) =  E (m )E (n), and E (0) =  1 and

2 T(n) =  E(n) +  E (—n). (23)

5. Concluding remarks

One direction of the Theorem in section 1 says: if /  : Z —> R  satisfies 
d’Alembert’s equation then f(n )  =  T|„|(/(l)) for all integers n. This has been 
proved: Proposition 2 gives this for the universal T, but Proposition 3 identifies 
the universal T  as the Chebyshev family.

The other direction of the Theorem is just as easy now: the Chebyshev fam
ily is given by (E(n) +  E (—n)) /2  and so satisfies d’Alembert’s equation, and 
consequently so does any homomorphic image via evaluation maps Tn(X) —>
Tn ( f (  I ) ) -

Thus the Theorem has been proved.

Finally, the well-known definition of the Chebyshev polynomial [see Rivlin 
[3; eq 1.2]] is a consequence of the Theorem: define for 0 € R the function 
/  : Z 1  by n cos(n$). Then /  satisfies d’Alembert’s functional equation 
as was noted in the introduction. Hence, by the Theorem

cos (n6) =  f(n ) =  Tn( f (  1)) =  T„(cos0). (24)

In a similar way it can be shown that

cosh(nt) =  Tn (cosh t) n €  Z, f €  1 .  (25)

Equations (22) and (23) can be subsumed under the general result

x n +  x ~ n ^  f x  +  x - 1

2 “ T n  \  2
n € Z. (26)

where the theorem has been applied to the function

y n  1 y —n
n ^ ^ -------€ Q [ X , X " 1] .

So equation (22) follows from (24) by evaluating X  at e lB, as does (23) with 
evaluation at e l .
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