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Hans-Heinrich Kairies
On a Banach space automorphism

and its connections to functional equations
and continuous nowhere differentiable functions

Abstract. Denote by H the Banach space of functions ¢ : R — R which are
continuous, 1-periodic and even. It turns out that F': H — H, given by

Flyl(2) : Z S 9(2'0)

is a Banach space automorphism. Important properties of F' are closely
related to a de Rham type functional equation for F[y].

Many continuous nowhere differentiable functions are of the form
F[yg]. A large part of them can be identified by simple properties of the
generating function ¢.

1. Introduction

The set ‘H of functions ¢ : R — R which are continuous, 1-periodic and
even, equipped with the uniform norm on R, is a Banach space. Several prom-
inent continuous but nowhere differentiable (¢nd) functions can be generated
from functions ¢ € H via the linear operator F' : H — H, given by

(o0}
1
=D ¥ (1)
E=0
As examples we mention the Takagi function T : R — R, given by

o0

T():= Y 2:D(@*), D(y):= dist (y,Z) (2)

2k
k=0

and the Weierstrass type function W : R — R given by

Z lk C(y) := cos2my. (3)

k=0

AMS (2000) Subject Classification: Primary 47B38, Secondary 39B22, 26 A27.



40 Hans-Heinrich Kairies

The end property of W has been proved by Hardy [4] 1916, the end property
of T by Takagi [11] 1903 and later by many other authors. The ¢nd property of
functions defined by general series of type (1) has been investigated by Knopp
[8] 1918, Behrend [1] 1949, Mikol4s[9] 1956 and Girgensohn [2] 1993, [3] 1994.
These authors stated properties of the generating function ¢ : R — R which
imply the nondifferentiability of F[p]. We mention two results which can be
deduced from [1] respectively [9]:

THEOREM 1 (Behrend)
Assume that @ € H is polygonal with a finite number of vertices in [0, 1] all
of which have rational abscissae with ¢!, (0) # 0. Then F[y] is cnd.

THEOREM 2 (Mikol4s)
Assume that ¢ € H is convez on [0,1] and on [3,1] (or concave on both
intervals) with ¢(0) # ¢(3). Then F[g] is cnd.

These results show that there is an ample supply of e¢nd functions in F[H].
In this note we pay special attention to the operator F : H — H given by
(1). A detailed analysis of F' is the subject of Section 2. It turns out that
F : H — H is a Banach space automorphism. In proving this and other
properties of F, a simple functional equation for F[y] is very useful. It can
be shown in a few lines: for any z € R we have (with ¢ := F[y]) $¢(2z) =
50(2z) + ;o(4z) + 50(8z) + - -, hence

¥(w) ~ 39(20) = p(a). @

Equation (4) has been investigated by de Rham [10] 1957 for ¢ = D,
the distance function defined in (2). The general case and other functional
equations for F[y] have been discussed by Kairies [5] 1997, [6] 1998, [7] 1999.

In Section 3 we derive the Fourier expansion of F[¢]. The Fourier coef-
ficients of F[y] are connected to the Fourier coefficients of ¢ by means of a
recursion formula which follows from (4) and can be interpreted in part as
a discrete analog of (4). As an application we compute the Fourier series of
Takagi’s function 7T'.

2. The Banach space automorphism F'
It is straightforward to check that

H:={p:R > R; ¢ continuous, 1 — periodic and even},

equipped with the uniform norm || ... ||, on R, is a real Banach space and that
the operator F, given by (1): F[p](z) = Y ey 2 "¢ (2*1), is linear and maps
H into H.
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In the following statement we describe the interaction of F' with the func-
tional equation (4): ¢(z) — 19(2z) = ¢(z).

ProrosITION 1
Let o € H. Then ¢ = Fly] iff ¥ is a bounded solution of (4) on R.

Proof. 1(z) = ¢(z)+L¢(2z)+ tp(4z)+- - - and ¢ € H imply the bounded-
ness of ¥ and because of

S¥(2e) = 20(22) + {0(4a) + Spz) +---,

we get ¢(z) — 39 (2z) = () for every zeR.
On the other hand, ¢(z) = ¥(z) — 39(2z) implies

b(z) = %¢(2x) + o(z)
— %{%¢(4x) +¢(22)} + o(z)

% %{%@[;(895) +o(4z)} + %w(%) + o(z)

,..

m—

' 1
= —1,[1 (2™z) + Q—kgo (2%z) for every z € R, m € N.
E=0
As 1 is bounded,
= 1
¥(a) = Jim v(e) = 3 (o) = Flil(o)

Now we shall list some important properties of the operator F. As usual,
|| F' ||:=sup{|| Fl¢] llu; ¢ € H, || ¢ ||« <1} denotes the operator norm of F.

THEOREM 3
F :H — H is a continuous Banach space automorphism with || F ||= 2.
The inverse operator F—1 is given by

_ 1
F](z) = ¢(z) - 5% (22)
and is continuous as well with || F~ || = 3

Proof. The linearity of F' was already stated. As we shall see, the bijectiv-
ity is an immediate consequence of Proposition 1.

Namely, to prove injectivity, observe that if ¢ € H and F[p] = o (the zero
function) then, by Proposition 1, necessarily ¢ = o.
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To prove surjectivity, let 1 € H. Define ¢(z) := ¢(z) — 1¢(2z) for z € R.
Then clearly ¢ € 7. By Proposition 1, ¥(z) = Y po 27%0(2%2) = Fly](z),
hence ¢ = F[¢p] for some ¢ € H.

For ¢ € H with || ¢ ||u < 1 we obtain

o] o]
I Fle] e =sup {| S 27 2k a)); z e Ry < D 27F - 1=2,
k=0 k=0

hence || F' ||< 2. On the other hand, for the constant function 1 (1(z) = 1) we
o0

have 1 € H,|| 1 |l,=1and || F[1] ||, = ). 27%-1 =2, hence || F ||> 2.
k=0

The inverse operator F~! can be explicitely given: By Proposition 1 it
follows that ¥ = F[y] iff ¢(z) = F~1[¢](z) = ¥(z) — 3(2z) for every z € R.

Consequently, for || 9 [l.< 1 we have || F71[¢] ||u= sup{|¢)(z) — 39 (22)|;
z € R} € 3/2. On the other hand, let ¢o(z) := 4D(z) — 1, ie., oo € H
with 9o(z) = 4z —1for 0 < = < 1. Then || ¢ [lu=1 and || F7'[3o] |lu=
sup{Jtfo(z) — Lebo(20)]; 2 € R} > 1o (1/2) — Seko(1) = 3/2.

REMARK 1

a) Let A := {p € H; p real analytic on R}.

Clearly A and F[A] = {F[p]; ¢ € A} are subspaces of H.

The examples 1 € A and C € A (C(x) = cos 2wz) show that F does not
preserve this kind of regularity: F[1] = 2-1 is again analytic whereas F[C] = W
is cnd (this is in our context the worst possible regularity property which can
occur).

In severe contrast, the operator F'~! obviously maps A into A and preserves
similar types of regularity as well, e.g., differentiability of order n € N.

b) Let B := {p € H; ¢ nowhere differentiable}. The last observation in a)
shows that F' does not map any ¢ € B to some Flp] € HNC"(R) with n € N
or even to some Fp] € H N BV [0,1].

c¢) The operator equation F[y] = ¢ has for any given ¢ € H exactly one
solution: ¢ = F~'[¢p],¢(z) = ¢(z) — 1¢(22).

Similarly, F2[¢] = v if and only if ¢(z) = ¥(z) — ¥(2z) + ;v (4z).

In this manner, F"[p] = ¢ can be explicitely solved in terms of the given
1) € H for every n € N.

3. Fourier series of F'[¢]

First we fix some notations. The Fourier series of a function g € L'[0,1]
will be denoted by S[g]. Throughout this section we assume ¢ € H and write

1
Slel(z) = %0 + Z ap cos2nkx, ap = 2/g0(t) cos 2wkt dt
k=1 °
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S[F[e)(z) = % + f: up cos 2wkz, up

1
2/F t)cos 2rkt dt, Kk € Np.
k=1 4

REMARK 2
a) For ¢ € H the Fourier coefficients a; and uy exist and we have

=2
=0

o

1 > 1 7
Z 2—ng0 (2"t) cos 2wkt dt = 2 Z on /go (2™t) cos 2wkt dt,
n=0 0

in particular,

1 2m

1 1
n=0 0

8

0 1 I 0 1
£l fue- i
=2- ap.

b) In general it is not true that ¢ € # coincides with its Fourier series
Slp]: Fejér’s famous example of a continuous function v whose Fourier series
is divergent at the point zero can be modified in such a way that the new
function ¥ belongs to # and S[¥](0) diverges. However, if (cx) € £* and ¢(z) :=

o0
2+ kz ¢y, cos 2wkz, then clearly ¢ € H and S[y] =
—1

THEOREM 4
a) Let o € H. Then

1
Ugp — §uk = agp and Uspt1 = Gopt1 for every k € No. (5)

b) The recursive system (5) has, for any given sequence (ax) of real num-
bers, a unique solution (ug), namely

1
Ug = 20,0, U = u2m(2j+1) = Z W(ng(gﬁ_l) f07" k eN. (6)
A=0

Proof. a) By Proposition 1 we have Fg](z) = 3F[¢](2z) + (). This
implies
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2/F[g0](x) cos 2nkz dz = 2/ {%F[go](Zx) cos 2rkz + ¢(z) cos 2rkz} dz,

hence (2z = t)

l\.’)lv—l

2
/F Ycoswkt dt + a, (k€ Np).
0

In particular,

N =

2
Uk /F )cos 2wkt dt + asg
0

Fl](t) cos 2rkt dt + aop,

I
— O\H

—Ug + A2
2 b

because the integrand has period 1 and

Ugk+1 =

N | =

2
/F Ycos (2k + 1)t dt + asg+1 = a2p+1,
0

because the integrand is odd with respect to 1/2 in [0, 1] and odd with respect
to 3/2 in [1,2].
b) ug = 2a¢ follows immediately from (5).
Every k € N has a unique representation 2™ (2 + 1) with some m,j € Ny.
For m = 0, the second equation of (5) gives ugjt1 = ag;41 for every j € Np.
For m > 1, by repeated use of the first equation of (5), we get

1
Uk = Ugm(2j+1) = 5U2m=1(2j+1) + Qom(25+1)

1
= glem2(2j+1) T 502m-1(2j41) + G2m(2j41)

1 1
= om0+ T > om—x 32 (2j+1)
A=1

2w

X 822 (2j+1) -
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On the other hand, any sequence (uy) given by (6) satisfies in fact (5):
The case k = 0 is trivial. For k = 2™(25 + 1) and m = 0 we get immediately
Ugj+1 = G2j+1, whereas for m > 1 we obtain

1
Uggp — §Uk = Ugm+1(2541) — §U2M(2j+1)

1 m—+1 1 1 m 1
2 > gm— 22+ T 5 > om—x 92 (25+1)
A=0 A=0
11

5 91 B2mi(2j+1) = G2k
As a first useful consequence of Theorem 2 we note

PRrROPOSITION 2
Assume that (ci) € £* and that

1 (o0}
p(x) = 260 + ; ¢y cos 2wkz.

Then ¢ € H, S[p] = ¢ and with

S[F[e]l(z) = %Uo + ) v cos2rka
k=1

we have (v) € €' and S[F[y]] = Flyp)].

Proof. Clearly ¢ is continuous, 1-periodic and even, hence ¢ € H. The
uniform convergence of the series representing ¢ implies that ¢ coincides with
its Fourier series S[¢]. By Theorem 2 we have

m
|vol = 2[co| and [vam(2jin)| < D 22 ™|epa (241 | for m, j € No.
A=0

Consequently, for every j € Np,

o] o] m
D laemen| < Y0 Y0 2 e o)
m=0 m=0 A=0

1
= |egja| + (§|C2j+1| + leaezjrnyl)

1 1
+ (Z|C2j+1| + §|c2(2j+1)| +leaz@jpnl) + -

(o0}
=2 Z |62m(2j+1)|‘
m=0
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Moreover,

(o0} (o0} (o0} (o0} (o0}
Z > Ivamasn)] < Z D 2eam iy =2 lex| < oo

7=0 m=0 7=0 m=0 k=1

o0
because of (c;) € £!. By the main rearrangement theorem, " |vg| < oo, i.e.,
k=1
(vr) € £ as well.
This implies the convergence of S[F[¢]](z) for every z € R, thus by Fejér’s
theorem FY[y] coincides with its Fourier series S[F[¢]].

As a second consequence of Theorem 2 we derive the Fourier series of
Takagi’s function T' = F[D].

PROPOSITION 3
If T is given by (2), then

1 (o0}
S[T(z) = 5t Z up, cos 2wkz
k=1
with 1
U = u2""(2j+1) - 2m_17T2(2J + 1)2

for m,j € Ny.
This series is absolutely and uniformly convergent on R and S[T|=T.

Proof. It is well known that the distance function D has the Fourier series

1 2 .1 1 1
S[D](z) = 1l cos2mrx + 32 cos(3 - 2rz) + = cos(5 - 2mz) + - - }.
1 _
Hence ag = 2’ asy =0for k € N and agj41 = m for j € Ng. Clearly
(an) € £.
-2

By Theorem 2 we have ug = 2ap = 1,u2j41 = agj41 = W for

j € Ny and, because of ag;, =0,
1 — B -1 tor i

Ugm (2j41) = 2—m(12j+1 + Zap@jﬂ) = mig2(gj 1+ 12 or j € Ng, meN.

A=1

By Proposition 2, T' coincides with its Fourier series S[T] and (uy) € 1.
Therefore we have the following representation of Takagi’s function by an
absolutely and uniformly (on R) convergent trigonometric series:
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1 1 2 1 2
T(z) = 37 2 {1—2 cos(1 - 27z) + 1 cos(2 - 27z) + 3 cos(3 - 27x)
1 2 1
+t3 cos(4 - 2wz) + =] cos(5 - 2wz) + 3 cos(6 - 2mz)
2

1 2
+ - cos(7 - 2mz) + %) cos(8 - 2wz) + 7] cos(9 - 27z)

1 2
+ = cos(10 - 2wz) + 'VEl cos(11 - 27wz) +

cos(12 - 27z)

2-32
+ -2 cos(13 - 273) + — cos(14 - 2mz) + — cos(15 - 27z)
132 €08 mE) + o cos z) + 75 CO8 T
1
+§cos(16-27rx)+---}.

Note that in our approach we did not need an explicit calculation of the
1

o0
rather unpleasant series up =2 Y. o~ [ D(2"z) cos2rkz dz, k € No.

n=0 0
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