Annates Academ iae Paedagogicae Cracoviensis

Folia 4 Studia Mathematica I (2001)

Hans-Heinrich Kairies

On a Banach space automorphism and its connections to functional equations and continuous now here differentiable functions

Abstract. Denote by H the Banach space of functions $\varphi : \mathbb{R} \to \mathbb{R}$ which are continuous, 1-periodic and even. It turns out that $F: \mathcal{H} \to \mathcal{H}$, given by

$$
F[\varphi](x):=\sum_{k=0}^\infty \frac{1}{2^k}\varphi(2^k x)
$$

is a Banach space automorphism. Important properties of *F* **are closely** related to a de Rham type functional equation for $F[\varphi]$.

Many continuous nowhere differentiable functions are of the form $F[\varphi]$. A large part of them can be identified by simple properties of the **generating function** φ .

1. Introduction

The set *H* of functions $\varphi : \mathbb{R} \to \mathbb{R}$ which are continuous, 1-periodic and even, equipped with the uniform norm on \mathbb{R} , is a Banach space. Several prominent continuous but nowhere differentiable *(end)* functions can be generated from functions $\varphi \in \mathcal{H}$ via the linear operator $F: \mathcal{H} \to \mathcal{H}$, given by

$$
F[\varphi](x) := \sum_{k=0}^{\infty} \frac{1}{2^k} \varphi(2^k x). \tag{1}
$$

As examples we mention the Takagi function $T : \mathbb{R} \to \mathbb{R}$, given by

$$
T(x) := \sum_{k=0}^{\infty} \frac{1}{2^k} D(2^k x), \quad D(y) := \text{dist}(y, \mathbb{Z})
$$
 (2)

and the Weierstrass type function $W : \mathbb{R} \to \mathbb{R}$ given by

$$
W(x) := \sum_{k=0}^{\infty} \frac{1}{2^k} C(2^k x), \quad C(y) := \cos 2\pi y.
$$
 (3)

AMS (2000) Subject Classification: Primary 47B38, Secondary 39B22, 26A27.

The *end* property of *W* has been proved by Hardy [4] 1916, the *end* property of *T* by Takagi [11] 1903 and later by many other authors. The *end* property of functions defined by general series of type (1) has been investigated by Knopp [8] 1918, Behrend [1] 1949, Mikolas[9] 1956 and Girgensohn [2] 1993, [3] 1994. These authors stated properties of the generating function $\varphi : \mathbb{R} \to \mathbb{R}$ which imply the nondifferentiability of $F[\varphi]$. We mention two results which can be deduced from [1] respectively [9]:

THEOREM 1 (Behrend)

Assume that $\varphi \in \mathcal{H}$ *is polygonal with a finite number of vertices in* [0,1] *all of which have rational abscissae with* $\varphi'_{+}(0) \neq 0$. Then $F[\varphi]$ is end.

THEOREM 2 (Mikolás)

Assume that $\varphi \in \mathcal{H}$ *is convex on* $[0, \frac{1}{2}]$ *and on* $[\frac{1}{2}, 1]$ *(or concave on both intervals)* with $\varphi(0) \neq \varphi(\frac{1}{2})$. Then F[φ] is cnd.

These results show that there is an ample supply of *end* functions in *F[TL\.* In this note we pay special attention to the operator $F : \mathcal{H} \to \mathcal{H}$ given by (1). A detailed analysis of *F* is the subject of Section 2. It turns out that $F : \mathcal{H} \to \mathcal{H}$ is a Banach space automorphism. In proving this and other properties of F, a simple functional equation for $F[\varphi]$ is very useful. It can be shown in a few lines: for any $x \in \mathbb{R}$ we have (with $\psi := F[\varphi]$) $\frac{1}{2} \psi(2x) =$ $\frac{1}{2}\varphi(2x) + \frac{1}{4}\varphi(4x) + \frac{1}{8}\varphi(8x) + \cdots$, hence

$$
\psi(x) - \frac{1}{2}\psi(2x) = \varphi(x). \tag{4}
$$

Equation (4) has been investigated by de Rham [10] 1957 for $\varphi = D$, the distance function defined in (2). The general case and other functional equations for $F[\varphi]$ have been discussed by Kairies [5] 1997, [6] 1998, [7] 1999.

In Section 3 we derive the Fourier expansion of $F[\varphi]$. The Fourier coefficients of $F[\varphi]$ are connected to the Fourier coefficients of φ by means of a recursion formula which follows from (4) and can be interpreted in part as a discrete analog of (4). As an application we compute the Fourier series of Takagi's function *T.*

2. The Banach space automorphism *F*

It is straightforward to check that

$$
\mathcal{H} := \{ \varphi : \mathbb{R} \to \mathbb{R}; \ \varphi \text{ continuous}, \ 1 - \text{periodic and even} \},
$$

equipped with the uniform norm $|| \dots ||_u$ on \mathbb{R} , is a real Banach space and that the operator *F*, given by (1): $F[\varphi](x) = \sum_{k=0}^{\infty} 2^{-k} \varphi(2^{k}x)$, is linear and maps H into H .

In the following statement we describe the interaction of *F* with the functional equation (4): $\psi(x) - \frac{1}{2}\psi(2x) = \varphi(x)$.

PROPOSITION 1

Let $\varphi \in \mathcal{H}$. Then $\psi = F[\varphi]$ iff ψ is a bounded solution of (4) on \mathbb{R} .

Proof. $\psi(x) = \varphi(x) + \frac{1}{2}\varphi(2x) + \frac{1}{4}\varphi(4x) + \cdots$ and $\varphi \in \mathcal{H}$ imply the boundedness of ψ and because of

$$
\frac{1}{2}\psi(2x)=\frac{1}{2}\varphi(2x)+\frac{1}{4}\varphi(4x)+\frac{1}{8}\varphi(8x)+\cdots,
$$

we get $\psi(x) - \frac{1}{2}\psi(2x) = \varphi(x)$ for every $x \in \mathbb{R}$.

On the other hand, $\varphi(x) = \psi(x) - \frac{1}{2}\psi(2x)$ implies

$$
\psi(x) = \frac{1}{2}\psi(2x) + \varphi(x)
$$

= $\frac{1}{2}\left{\frac{1}{2}\psi(4x) + \varphi(2x)\right} + \varphi(x)$
= $\frac{1}{4}\left{\frac{1}{2}\psi(8x) + \varphi(4x)\right} + \frac{1}{2}\varphi(2x) + \varphi(x)$
= $\frac{1}{2^m}\psi(2^m x) + \sum_{k=0}^{m-1} \frac{1}{2^k}\varphi(2^k x)$ for every $x \in \mathbb{R}$, $m \in \mathbb{N}$.

As ψ is bounded,

$$
\psi(x)=\lim_{m\to\infty}\psi(x)=\sum_{k=0}^\infty\frac{1}{2^k}\varphi(2^kx)=F[\varphi](x).
$$

Now we shall list some important properties of the operator *F .* As usual, $|| F || := \sup{||F[\varphi] ||_u; \varphi \in \mathcal{H}, ||\varphi||_u \leq 1}$ denotes the operator norm of *F*.

THEOREM 3

 $F: \mathcal{H} \to \mathcal{H}$ is a continuous Banach space automorphism with $||F|| = 2$. *The inverse operator* F^{-1} *is given by*

$$
F^{-1}[\psi](x) = \psi(x) - \frac{1}{2} \psi(2x)
$$

and is continuous as well with $\| F^{-1} \| = \frac{3}{2}$.

Proof. The linearity of F was already stated. As we shall see, the bijectivity is an immediate consequence of Proposition 1.

Namely, to prove injectivity, observe that if $\varphi \in \mathcal{H}$ and $F[\varphi] = \mathbf{o}$ (the zero function) then, by Proposition 1, necessarily $\varphi = \mathbf{o}$.

To prove surjectivity, let $\psi \in \mathcal{H}$. Define $\varphi(x) := \psi(x) - \frac{1}{2}\psi(2x)$ for $x \in \mathbb{R}$. Then clearly $\varphi \in \mathcal{H}$. By Proposition 1, $\psi(x) = \sum_{k=0}^{\infty} 2^{-k} \varphi(2^k x) =$ hence $\psi = F[\varphi]$ for some $\varphi \in \mathcal{H}$.

For $\varphi \in \mathcal{H}$ with $\|\varphi\|_u \leq 1$ we obtain

$$
|| F[\varphi] ||_u = \sup \{ |\sum_{k=0}^{\infty} 2^{-k} \varphi(2^k x)|; x \in \mathbb{R} \} \leq \sum_{k=0}^{\infty} 2^{-k} \cdot 1 = 2,
$$

hence $|| F || \le 2$. On the other hand, for the constant function 1 $(1(x) = 1)$ we $\mathbb{E}\left[\left\Vert \mathcal{H}_{n} \right\Vert \mathcal{H}_{n} \right] = \left\Vert \mathcal{H}_{n} \right\Vert = \left\Vert \mathcal{H}_{n} \right$ $k=0$

The inverse operator F^{-1} can be explicitely given: By Proposition 1 it follows that $\psi = F[\varphi]$ iff $\varphi(x) = F^{-1}[\psi](x) = \psi(x) - \frac{1}{2}\psi(2x)$ for every $x \in \mathbb{R}$.

Consequently, for $|| \psi ||_{u} \leq 1$ we have $|| F^{-1}[\psi] ||_{u} = \sup\{|\psi(x) - \frac{1}{2}\psi(2x)|;\right.$ $x \in \mathbb{R} \} \leq 3/2$. On the other hand, let $\psi_0(x) := 4D(x) - 1$, i.e., $\psi_0 \in \mathcal{H}$ with $\psi_0(x) = 4x - 1$ for $0 \le x \le \frac{1}{2}$. Then $|| \psi_0 ||_{u} = 1$ and $|| F^{-1}[\psi_0] ||_{u} =$ $\sup\{|\psi_0(x) - \frac{1}{2}\psi_0(2x)|; x \in \mathbb{R}\}\geqslant \psi_0(1/2) - \frac{1}{2}\psi_0(1) = 3/2.$

REMARK 1

a) Let $\mathcal{A} := \{ \varphi \in \mathcal{H} : \varphi \text{ real analytic on } \mathbb{R} \}.$

Clearly *A* and $F[A] = \{F[\varphi]; \varphi \in A\}$ are subspaces of *H*.

The examples $1 \in \mathcal{A}$ and $C \in \mathcal{A}$ ($C(x) = \cos 2\pi x$) show that *F* does not preserve this kind of regularity: $F[1] = 2 \cdot 1$ is again analytic whereas $F[C] = W$ is *end* (this is in our context the worst possible regularity property which can occur).

In severe contrast, the operator F^{-1} obviously maps *A* into *A* and preserves similar types of regularity as well, e.g., differentiability of order $n \in \mathbb{N}$.

b) Let $\mathcal{B} := \{ \varphi \in \mathcal{H}; \varphi \text{ nowhere differentiable} \}.$ The last observation in a) shows that F does not map any $\varphi \in \mathcal{B}$ to some $F[\varphi] \in \mathcal{H} \cap C^n(\mathbb{R})$ with $n \in \mathbb{N}$ or even to some $F[\varphi] \in \mathcal{H} \cap BV [0,1].$

c) The operator equation $F[\varphi] = \psi$ has for any given $\psi \in \mathcal{H}$ exactly one solution: $\varphi = F^{-1}[\psi], \varphi(x) = \psi(x) - \frac{1}{2}\psi(2x)$.

Similarly, $F^2[\varphi] = \psi$ if and only if $\varphi(x) = \psi(x) - \psi(2x) + \frac{1}{4}\psi(4x)$.

In this manner, $F^{n}[\varphi] = \psi$ can be explicitely solved in terms of the given $\psi \in \mathcal{H}$ for every $n \in \mathbb{N}$.

3. Fourier series of $F[\varphi]$

First we fix some notations. The Fourier series of a function $g \in L^1[0,1]$ will be denoted by $S[q]$. Throughout this section we assume $\varphi \in \mathcal{H}$ and write

$$
S[\varphi](x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos 2\pi k x, \quad a_k = 2 \int_0^1 \varphi(t) \cos 2\pi k t \, dt
$$

and

$$
S[F[\varphi]](x) = \frac{u_0}{2} + \sum_{k=1}^{\infty} u_k \cos 2\pi kx, \quad u_k = 2 \int_0^1 F[\varphi](t) \cos 2\pi kt \, dt, \quad k \in \mathbb{N}_0.
$$

REMARK 2

a) For $\varphi \in \mathcal{H}$ the Fourier coefficients a_k and u_k exist and we have

$$
u_k = 2 \int\limits_0^1 \sum\limits_{n=0}^\infty \frac{1}{2^n} \varphi(2^n t) \cos 2\pi k t \, dt = 2 \sum\limits_{n=0}^\infty \frac{1}{2^n} \int\limits_0^1 \varphi(2^n t) \cos 2\pi k t \, dt,
$$

in particular,

$$
u_0 = 2 \sum_{n=0}^{\infty} \frac{1}{2^n} \int_0^1 \varphi(2^n t) dt = 2 \sum_{n=0}^{\infty} \frac{1}{2^n} \int_0^{2^n} \varphi(\tau_n) \frac{1}{2^n} d\tau_n \quad (\tau_n = 2^n t),
$$

= $2 \sum_{n=0}^{\infty} \frac{1}{2^n} \int_0^1 \varphi(\tau) d\tau = \sum_{n=0}^{\infty} \frac{1}{2^n} \cdot a_0$
= $2 \cdot a_0$.

b) In general it is not true that $\varphi \in \mathcal{H}$ coincides with its Fourier series $S[\varphi]$: Fejér's famous example of a continuous function γ whose Fourier series is divergent at the point zero can be modified in such a way that the new function $\tilde{\gamma}$ belongs to H and $S[\tilde{\gamma}](0)$ diverges. However, if $(c_k) \in \ell^1$ and $\varphi(x) :=$ $\sum_{k=0}^{\infty} c_k \cos 2\pi kx$, then clearly $\varphi \in \mathcal{H}$ and $S[\varphi] = \varphi$. *k=i*

THEOREM 4

a) Let $\varphi \in \mathcal{H}$. Then

$$
u_{2k} - \frac{1}{2}u_k = a_{2k} \text{ and } u_{2k+1} = a_{2k+1} \text{ for every } k \in \mathbb{N}_0.
$$
 (5)

b) The recursive system (5) has, for any given sequence (a_k) of real num*bers, a unique solution* (*Uk), namely*

$$
u_0 = 2a_0, \ u_k = u_{2^m(2j+1)} = \sum_{\lambda=0}^m \frac{1}{2^{m-\lambda}} a_{2^{\lambda}(2j+1)} \ \text{for } k \in \mathbb{N}. \tag{6}
$$

Proof. a) By Proposition 1 we have $F[\varphi](x) = \frac{1}{2}F[\varphi](2x) + \varphi(x)$. This implies

$$
2\int_{0}^{1} F[\varphi](x) \cos 2\pi kx \, dx = 2\int_{0}^{1} \left\{ \frac{1}{2} F[\varphi](2x) \cos 2\pi kx + \varphi(x) \cos 2\pi kx \right\} dx,
$$

hence $(2x = t)$

$$
u_k=\frac{1}{2}\int\limits_0^2F[\varphi](t)\cos\pi kt\ dt+a_k\quad (k\in\mathbb{N}_0).
$$

In particular,

$$
u_{2k} = \frac{1}{2} \int_{0}^{2} F[\varphi](t) \cos 2\pi kt \, dt + a_{2k}
$$

=
$$
\int_{0}^{1} F[\varphi](t) \cos 2\pi kt \, dt + a_{2k}
$$

=
$$
\frac{1}{2} u_k + a_{2k},
$$

because the integrand has period 1 and

$$
u_{2k+1}=\frac{1}{2}\int\limits_{0}^{2}F[\varphi](t)\cos\pi(2k+1)t\;dt+a_{2k+1}=a_{2k+1},
$$

because the integrand is odd with respect to 1/2 in [0, 1] and odd with respect to 3/2 in [1,2].

b) $u_0 = 2a_0$ follows immediately from (5).

Every $k \in \mathbb{N}$ has a unique representation $2^m(2j+1)$ with some $m, j \in \mathbb{N}_0$. For $m = 0$, the second equation of (5) gives $u_{2j+1} = a_{2j+1}$ for every $j \in \mathbb{N}_0$. For $m \geq 1$, by repeated use of the first equation of (5), we get

$$
u_k = u_{2^m(2j+1)} = \frac{1}{2}u_{2^{m-1}(2j+1)} + a_{2^m(2j+1)}
$$

= $\frac{1}{4}u_{2^{m-2}(2j+1)} + \frac{1}{2}a_{2^{m-1}(2j+1)} + a_{2^m(2j+1)}$
= $\frac{1}{2^m}u_{2^0(2j+1)} + \sum_{\lambda=1}^m \frac{1}{2^{m-\lambda}}a_{2^{\lambda}(2j+1)}$
= $\sum_{\lambda=0}^m \frac{1}{2^{m-\lambda}}a_{2^{\lambda}(2j+1)}$.

On the other hand, any sequence (u_k) given by (6) satisfies in fact (5) : The case $k = 0$ is trivial. For $k = 2^m(2j + 1)$ and $m = 0$ we get immediately $u_{2j+1} = a_{2j+1}$, whereas for $m \geq 1$ we obtain

$$
u_{2k} - \frac{1}{2}u_k = u_{2^{m+1}(2j+1)} - \frac{1}{2}u_{2^m(2j+1)}
$$

= $\frac{1}{2}\sum_{\lambda=0}^{m+1} \frac{1}{2^{m-\lambda}} a_{2^{\lambda}(2j+1)} - \frac{1}{2}\sum_{\lambda=0}^m \frac{1}{2^{m-\lambda}} a_{2^{\lambda}(2j+1)}$
= $\frac{1}{2} \frac{1}{2^{-1}} a_{2^{m+1}(2j+1)} = a_{2k}.$

As a first useful consequence of Theorem 2 we note

PROPOSITION 2

Assume that $(c_k) \in \ell^1$ *and that*

$$
\varphi(x) := \frac{1}{2}c_0 + \sum_{k=1}^{\infty} c_k \cos 2\pi k x.
$$

Then $\varphi \in \mathcal{H}$, $S[\varphi] = \varphi$ and with

$$
S[F[\varphi]](x) = \frac{1}{2}v_0 + \sum_{k=1}^{\infty} v_k \cos 2\pi k x
$$

we have $(v_k) \in \ell^1$ and $S[F[\varphi]] = F[\varphi].$

Proof. Clearly φ is continuous, 1-periodic and even, hence $\varphi \in \mathcal{H}$. The uniform convergence of the series representing φ implies that φ coincides with its Fourier series $S[\varphi]$. By Theorem 2 we have

$$
|v_0| = 2|c_0|
$$
 and $|v_{2^m(2j+1)}| \le \sum_{\lambda=0}^m 2^{\lambda-m} |c_{2^{\lambda}(2j+1)}|$ for $m, j \in \mathbb{N}_0$.

Consequently, for every $j \in \mathbb{N}_0$,

$$
\sum_{m=0}^{\infty} |v_{2^m(2j+1)}| \le \sum_{m=0}^{\infty} \sum_{\lambda=0}^m 2^{\lambda-m} |c_{2^{\lambda}(2j+1)}|
$$

= $|c_{2j+1}| + (\frac{1}{2}|c_{2j+1}| + |c_{2(2j+1)}|)$
+ $(\frac{1}{4}|c_{2j+1}| + \frac{1}{2}|c_{2(2j+1)}| + |c_{2^2(2j+1)}|) + \cdots$
= $2 \sum_{m=0}^{\infty} |c_{2^m(2j+1)}|.$

Moreover,

$$
\sum_{j=0}^{\infty} \sum_{m=0}^{\infty} |v_{2^m(2j+1)}| \le \sum_{j=0}^{\infty} \sum_{m=0}^{\infty} |2c_{2^m(2j+1)}| = 2 \sum_{k=1}^{\infty} |c_k| < \infty
$$

because of $(c_k) \in \ell^*$. By the main rearrangement theorem, $\sum |v_k| < \infty$, i.e., $k=1$ $(v_k) \in \ell^1$ as well.

This implies the convergence of $S[F[\varphi]](x)$ for every $x \in \mathbb{R}$, thus by Fejér's theorem $F[\varphi]$ coincides with its Fourier series $S[F[\varphi]]$.

As a second consequence of Theorem 2 we derive the Fourier series of Takagi's function $T = F[D]$.

PROPOSITION 3

If T *is given by* (2), *then*

$$
S[T](x) = \frac{1}{2} + \sum_{k=1}^{\infty} u_k \cos 2\pi k x
$$

with

$$
u_k=u_{2^m(2j+1)}=\frac{-1}{2^{m-1}\pi^2(2j+1)^2}\quad\textit{for $m,j\in\mathbb{N}_0$}.
$$

This series is absolutely and uniformly convergent on \mathbb{R} and $S[T] = T$.

Proof. It is well known that the distance function *D* has the Fourier series

$$
S[D](x) = \frac{1}{4} - \frac{2}{\pi^2} \{ \frac{1}{1^2} \cos 2\pi x + \frac{1}{3^2} \cos(3 \cdot 2\pi x) + \frac{1}{5^2} \cos(5 \cdot 2\pi x) + \cdots \}.
$$

Hence $a_0 = \frac{1}{2}$, $a_{2k} = 0$ for $k \in \mathbb{N}$ and $a_{2j+1} = \frac{-2}{\pi^2 (2j+1)^2}$ for $j \in \mathbb{N}_0$. Clearly $(a_n) \in \ell^1$.

By Theorem 2 we have $u_0 = 2a_0 = 1, u_{2j+1} = a_{2j+1} = \frac{-2}{\pi^2(2j+1)^2}$ for $j \in \mathbb{N}_0$ and, because of $a_{2k} = 0$,

$$
u_{2^m(2j+1)} = \frac{1}{2^m} a_{2j+1} + \sum_{\lambda=1}^m a_{2^{\lambda}(2j+1)} = \frac{-1}{2^{m-1}\pi^2(2j+1)^2}
$$
 for $j \in \mathbb{N}_0$, $m \in \mathbb{N}$.

By Proposition 2, *T* coincides with its Fourier series $S[T]$ and $(u_k) \in \ell^1$.

Therefore we have the following representation of Takagi's function by an absolutely and uniformly (on R) convergent trigonometric series:

$$
T(x) = \frac{1}{2} - \frac{1}{\pi^2} \left\{ \frac{2}{1^2} \cos(1 \cdot 2\pi x) + \frac{1}{1^2} \cos(2 \cdot 2\pi x) + \frac{2}{3^2} \cos(3 \cdot 2\pi x) + \frac{1}{2} \cos(4 \cdot 2\pi x) + \frac{2}{5^2} \cos(5 \cdot 2\pi x) + \frac{1}{3^2} \cos(6 \cdot 2\pi x) + \frac{2}{7^2} \cos(7 \cdot 2\pi x) + \frac{1}{2^2} \cos(8 \cdot 2\pi x) + \frac{2}{9^2} \cos(9 \cdot 2\pi x) + \frac{1}{5^2} \cos(10 \cdot 2\pi x) + \frac{2}{11^2} \cos(11 \cdot 2\pi x) + \frac{2}{2 \cdot 3^2} \cos(12 \cdot 2\pi x) + \frac{2}{13^2} \cos(13 \cdot 2\pi x) + \frac{1}{7^2} \cos(14 \cdot 2\pi x) + \frac{2}{15^2} \cos(15 \cdot 2\pi x) + \frac{1}{2^3} \cos(16 \cdot 2\pi x) + \cdots \right\}.
$$

Note that in our approach we did not need an explicit calculation of the rather unpleasant series $u_k = 2 \sum_{n=0}^{\infty} \frac{1}{2^n} \int_0^1 D(2^n x) \cos 2\pi k x \ dx$, $k \in \mathbb{N}_0$.

References

- **[1] F.A. Behrend,** *Some remarks on the construction of continuous nondifferentiable functions,* **Proc. London Math. Soc. (2) 50 (1949), 463-481.**
- **[2] R. Girgensohn,** *Functional equations and nowhere differentiable functions,* **Aequationes Math. 46 (1993), 243-256.**
- **[3] R. Girgensohn,** *Nowhere differentiable solutions of a system of functional equations,* **Aequationes Math. 47 (1994), 89-99.**
- **[4] G., H. Hardy,** *Weierstrass's nondifferentiable function,* **Trans. Amer. Math. Soc.** 17 **(1916), 301-325.**
- **151 H.-H. Kairies,** *Functional equations for peculiar functions,* **Aequationes Math. 53 (1997), 207-241.**
- **[6] H.-H. Kairies,** *Takagi's function and its functional equations,* **Wyż. Szkoła Ped. Kraków. Rocznik Nauk.-Dydakt. Prace Mat.** 15 **(1998), 73-83.**
- **171 H.-H. Kairies,** *A remarkable system of eiqht functional equations,* **Aequationes Math.** 58 **(1999), 183-191.**
- **[8] K. Knopp,** *Ein einfaches Verfahren zur Bildung stetiger nirgends differenzierbarer Funktionen,* **Math. Z. 2 (1918), 1-26.**
- **[9] M. Mikolas,** *Construction des familles de fonctions partout continues non dérivables,* **Acta Sci. Math. (Szeged)** 17 **(1956), 49-62.**
- **[10] G. de Rham,** *Sur une example de fonction continue sans dérivée,* **Enseign. Math. 3 (1957), 71-72.**
- **[11] T. Takagi,** *A simple example of the continuous function without derivative,* **Proc. Phys. Math. Soc. Japan 1 (1903), 176-177.**

48 Hans-Heinrich Kairies

Institut für Mathematik Technische Universität Clausthal Erzstraße 1 D-38678 Clausthal-Zellerfeld Germany E-mail: kairies@math.tu-clausthal.de

Manuscript received: October 13, 1999