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On the stability of the generalized cosine  
functional equations

Abstract. The aim of this paper is to study the stability problem of the 
generalized cosine functional equations for complex and vector valued 
functions.

1. Introduction

One of the trigonometric functional equations studied extensively is the 
equation

f ( x  +  y) + f ( x - y )  =  2 f(x ) f(y ) ,  for x ,y  £ G (C )
(Wilson [8], Kannappan [6], Dacic [3]) known as the cosine or d ’Alembert’s 
functional equation where /  : G —> C, G, a group (not necessarily Abelian) and 
C, the set of complex numbers. It is known (see [6]) that if /  satisfies (C) and 
the condition

f ( x  +  y +  z) =  f ( x  +  z +  y), for X, y, z € G, (K)

then there is a homomorphism m : G —)■ C* (C* =  C\{0})

m (x +  y) =  m (x)m (y), for x ,y & G ,  (1)

such that /  has the form

f(x )  =  +  m (—x)), for x £ G. (2)

Ever since Ulam [7] in 1940 raised the stability problem of the Cauchy 
equation f ( x  +  y) =  f(x )  +  f(y ) ,  many authors (see Hyers [5], Ger [4], etc.) 
treated the stability problem for many other functional equations. Baker [2] 
proved the result:

Let £ ^  0 be a given number and let G (+)  be an Abelian group. Let 
/  : G —> C be such that

I f ( x  +  y ) +  f ( x  - y ) ~  2f(x)f(y)\  <  e, for x ,y  G G.
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Then either |/(a;)| ^  |(1 +  \/l +  2e) for all x £ G or /  is a solution of the 
cosine equation (C).

Badora [1] presented a new, short proof of Baker’s result.
The aim of this paper is to investigate the stability problem of the functional 

equations
f ( x  +  y) +  f ( x - y )  =  2g(x)f(y), x ,y  £ G (3)

and
f ( x  +  y) +  f ( x - y )  =  2 f(x)g(y), x ,y  £ G (4)

in the next two sections modelled after [1], where G is a group.

2. Stability of ( 3 )  and ( 4 )  for complex functions

In this section we will consider the stability of (3) and (4) and their variants. 
First we will take up (3) and prove the following theorem.

T heorem  1
Let £ ^  0 and f , g : G —> C satisfy the inequality

\f(x +  y ) + f ( x - y ) - 2 g ( x ) f ( y ) \ ^ e  (3)'

with f  satisfying the (K) condition, where G (+ ) is a group. Then either f  and 
g are bounded or g satisfies (C) and f  and g satisfy (3) and (4). Further, in 
the latter case there exists a homomorphism, m : G —> C* satisfying (1) such 
that ^

f(x )  =  +  m ( ~ x )) and 9(x ) =  + m (-a ;))> (5)

for  x £ G, where b is a constant.

Proof. We will consider only the nontrivial /  (that is, f  ^  0). Put y =  0 
in (3)' to get

\f(x ) ~  9(x ) f ( 0)1 <  for x £ G. (6)

If g is bounded, then using (6), we have

l/(* ) l  =  \f(x) ~  9(x)f(0 ) +  9(x)f(0)\

^ f  +  l<?(*)/(0)|,

which shows that /  is also bounded. On the other hand if /  is bounded, choose 
2/o such that f(yo)  0 and then use (3)',

|P(*)I
f ( x +  Vo) +  f ( x  -  y0) 

2 f(Vo)
€ f ( x +  Vo) +  f ( x  -  y0) 

2 / ( 2 / o)
■ 9{x)

2|/(ift>)|

to get that g is also bounded on G.



It follows easily now that if /  (or g) is unbounded, then so is g (or / ) .  Let 
/  and g be unbounded. Then there are sequences {x n} and {yn} in G such 
that g(xn) ^  0 , \g(xn)\ ->  oo as n ->  oo and f (y n) ^  0 , lim \f(yn)\ =  oo.n

First we will show that g indeed satisfies (C).
From (3)' with y =  yn we obtain

f i x  +  y„) +  f ( x  -  yn) _
2 f(V n )  9 [  } 2| / W I ’

that is,
f i x  +  yn) +  f i x  -  yn) 

"  2fiVn)
Using (3)' again and (K) we have

9(x)- (7)

I f i x  +  iy +  yn)) +  f i x  ~ i y  +  yn)) -  2 gix ) f (y  +  yn)

+  f i x  +  i y -  Vn)) +  f i x  - i y -  yn)) -  2 g ix )f(y  -  2 /„ )K  2e

so that

f i i x  +  y) +  Un) +  f  Hx +  y ) ~  yn) f j j x - y )  +  yn) +  f i i x  - y ) ~  yn)

-2gix)

2fiVn)
f iy  +  yn) +  f i y  -  yn)

\fiVn)\

2fiVn) 

for x ,y  £ G,
2fiVn)

which with the use of (7) implies that

I gix +  y ) +  gix  - y ) ~  2g(x)g(y)\ ^  0 , 

that is g is a solution of (C).
As before applying (3)' twice and the (K) condition, first we have 

"  2g[xn) (8)

and then

I f i i x n + x )  +  y) +  f ( ( x n +  x) -  y) -  2g{xn +  x )f(y )
+  f i ix n  - x ) + y )  +  f ( ( x n -  x) -  y) -  2 g{xn -  x)f(y)\ ^  2e

so that

f i x n +  ix +  y)) +  f i x n -  jx +  y)) f ( x n +  (x -  y)) +  f ( x n - ( x -  y))

- 2 -

2 gix„)
gjx„  +  x) +  gjx„ -  x) 

2gixn)

2gix„)

f iy) \gixn)\'

From (8) and g satisfying (C), it follows that



I f ( x  +  v) +  f ( x  - y ) -  2g(x)f(y)\ ^  0 ,

that is, /  and g are solutions of (3).
Choose 2/o such that f(yo)  ^  0. Then (3) gives

f ( x +  Vo) +  f ( x  -  yo)
9{ ) ~  V iv o)

so that g also satisfies the condition (K). Since g satisfies (K), from [6] we see 
that there exists a homomorphism m : G C* satisfying the second part of 
(5).

Finally, applying (3)', (7) and (K), we get

I / ( ( i n +  y) +  x) +  f ( ( x n +  y) -  x) -  2g(xn +  y) f (x)  +  f ( ( x n - y )  +  x) 
+  f ( ( x n - y ) - x ) ~  2g(xn -  y ) f { x ) I ^  2e

and that

f ( x n +  (x +  y)) +  f ( x n ~ ( x  +  y)) } { x n +  {x -  y)) +  f ( x n -  (x -  y))
2 g(xn) 2 g(xn)

_ 2f (  x g(xn +  y) +  g(xn -  y) e 
I {X>' 2g(xn) "  \g(xn)\

resulting to (4). From (3) and (4), it is easy to see that f(x )  =  bg(x), for some 
constant b.

This proves the theorem.

We now consider a slight variation of (3)'.

C orollary  2
Let e ^  0. Let f n : G —> C ( where G is a group) be a sequence o f functions 

converging uniformly to f  on G. Suppose f , g , f n : G —> C  be such that

\f(x +  y) +  f ( x  — y) — 2g(x)fn(y)\ ^  e, for  x ,y  £ G, (3)"

with f  satisfying (K). Then either f  is bounded or g satisfies (C) and f  and g 
satisfy (3) and (4).

Proof. Since { / „ }  is uniformly convergent to / ,  taking the limit with re
spect to n in (3)", we obtain (3)'. The result now follows from Theorem 1.

Now we take up the stability of (4). We prove the following theorems

T heorem  3
Let e  ^  0 and G be a group. Suppose f ,g  : G C satisfy the inequality

\f(x +  y) +  f ( x - y ) - 2 f ( x ) g ( y ) \  ^ e ,  for x,y £ G (4)'



with f  even ( that is, f ( —x) =  f ( x ) )  and f  satisfies (K). Then either f  and 
g are bounded or f  and g are unbounded and g satisfies (C) and f  and g are 
solutions o f  (4) and (3).

Proof. We consider only nontrivial / ,  that is, f  ^  0, When /  is bounded, 
choose xq such that f ( x o) ^  0 and use (4)' to get

|5 (y)| _  If ( x 0 + y )  + f ( x 0 - y )| ^
2l/(*o)|

/(* o  +V)  +  f { x o -  y)
2f ( x 0) ■ g(y)

£
2 | /M | ’

which shows that g is also bounded.
Suppose /  is unbounded. Choose x =  0 in (4)' to have \ f (y)  +  f ( —y) — 

2f(0)g(y)\ ^  e, that is, \f(y) — f(0)g(y)\ ^  | (this is the only place we use that 
/  is even). Since /  is unbounded, /(0 )  ^  0. Hence g is also unbounded.

Let /  and so g be unbounded. Then there exist sequences {x n}  and {yn} 
in G such that f ( x n) ^  0, \f(xn)\ ->  oo, g(yn) ^  0, \g(yn)\ ->  oo.

Applying twice the inequality (4) and using (K) for /  twice, first we get

f{x „  +  y) +  f { x n -  y)

that is,

limn
and then we obtain

2f(x „ )

f ( x n +  y) +  f ( x n ~  y)
2f(x „ )

■ g(y) £
2|/(*n)|

=  g(y), for y G G, (9)

I f((x „  +  x ) + y )  +  f { { x n + x ) - y ) ~  2f ( x n +  x)g(y) +  f { { x n - x )  +  y) 
+  f ( ( x n -  x) -  y) -  2f ( x n -  x)g{y)I <  2e,

that is,

f ( x n +  (x +  y)) +  f ( x n - ( x  +  y) f ( x n +  (x -  y)) +  f ( x n -  (x -  y))

-  2g(y)

2 f{x „ )  
f ( x n +  x) +  f ( x n -  x)

2 f{x „ )

2f ( x n) €
\f(Xn)\

which by (9) leads to \g(x +  y) +  g(x — y) — 2g(y)g(x)\ ^  0, so that g satisfies
(C).

Again applying the inequality (4)' twice and using (K) condition for /  
twice, first we have

f ( x  +  yn) +  f ( x  -  yn)
2g (V n )

f ( x ) £
2|p(j/n)|

(10)

and then we get



\f(x +  (yn +  V)) +  f ( x  ~  (Vn +  V)) ~  2f(x )g (yn +  y) +  f ( x  +  (yn ~  y)) 
+  f ( x  ~  (Vn - y ) ~  2f{x)g{y„ - y ) K  2e

that is,

f ( ( x  +  y) +  yn) +  f ( ( x  +  y ) ~  yn) f ( ( x  - y )  +  yn) +  f ( ( x  -  y) -  yn) 
2g(yn) 2g(yn)

o t , ^ 9(yn +  y) +  g ( y n - y )  ,  £
’ 29 (yn) "  \g(yn)\

which by (10) and (C) yields

I f ( x  +  y ) +  f ( x  - y ) -  2f(x)g(y)\ ^  0 ,

so that /  and g are solutions of (4).
Consider the inequality

I/((Vn +  x ) + y )  +  f (y n +  x) -  y) -  2g(yn +  x) f (y)  +  f ( y n -  x) +  y) 
+  f((yn  -  X) -  y) -  2g(yn -  x ) f ( y ) I ^  2e.

As before using (K), (10), evenness of /  and (C) and the division by 2g(yn) 
yields

f ( ( x  +  y) +  yn) +  f ( ( x  +  y ) ~  yn)
2g(yn)

,g(yn +  x ) + g ( y n - x )  
~  -----------29\Un)

+  f ( ( x  - y )  +  yn) +  f ( ( x  - y ) -  yn) 
2g(yn)

— > 0 as n —> oo

so that /  and g are solutions of (3).
This completes the proof of this theorem.

Note that the evenness of /  is used to prove that g is unbounded when /  
is and nowhere else.

C orollary  4
Let e ^  0. Let f n : G —> C ( where G is a group) be a sequence o f functions 

converging uniformly to f  on G. Suppose f , f n, g : G —> C  be such that

\f(x +  y) + f ( x - y ) - 2 f n(x)g(y)\ ^ e ,  for  x, y € G, n € N, (4)"

where f  is even and it satisfies (K). Then either f  is bounded or g satisfies (C) 
and f  and g are solutions o f  (4) and (3).

Proof. Since { / „ }  is uniformly convergent to / ,  taking the limit with re
spect to n in (4)", we get (4)'. The result now follows from Theorem 3.



3. Stability of ( 3 )  and ( 4 )  for vector valued functions

In [1] Badora gave a counter-example to illustrate the failure of the super
stability of the cosine functional equation (C) in the case of the vector valued 
mappings. Here consider the following example. Let /  and g be unbounded 
solution of (3) (or (4)) where f ,g  : G —> C. Define / 1,51 : G —> M2(C) (2 x 2 
matrices over C) by

for x £ G where ci ^  0, c-2 ^  1. Then

9i(x)
g(x) 0 \ 

0 c2 j

\\fi(x +  y) + f i ( x - y )  -  2 f1(y)g1(x)\\ =  constant > 0

(or 11/1 (a? +  y) +  f i (x  -  y) -  2fi(x)gi(y)\\ =  constant >  0) for x ,y  € G. This 
/1 and g\ are neither bounded nor satisfy (C).

Therefore there is a need to consider the vector valued functions separately. 
We prove the following two theorems in this section. Let G be a group and A 
be a complex normed algebra with identity.

T heorem  5
Suppose f , g : G —> A satisfy the inequality

II f ( x  +  y) +  f { x  - y ) -  2g{x)f{y)\\ ^  £, (3)'"

for  x ,y  £ G with f  satisfying (K) and

\\f(x) ~  f{-x)\\ ^  T), fo r  x £ G, (11)

for  some e ,g  ^  0. Suppose there is a zq £ G such that g(zo)~' exists and 
||/(a;)5'(̂ o)|| is bounded for  x £ G. Then there is an m : G —> A such that

\\m(x +  y) -m(x)m(y)\\ ^  a1; for  x ,y  £ G (12)

and

f (x)  ~  ~(m (x) +  m (-x ) )

for  some constants asi and a2.

^  a2, fo r  x £ G (13)

Proof. Let M :=  supx6G ||/(a;)5'(̂ o)||- Then using (3)'" and (11), we get 
by using (K)

ll/(*)p(-^o)|| ^  \\f(-x)g(z0)\\ +  \\f(x)g(-z0) -  f ( - x ) g ( z 0)\\
^  M +  ±\\f(z0 - x )  +  f ( z 0 +  x) -  2g(z0) f ( - x )

~  ( f ( - Z o  +  x) +  f  ( Zq - x ) -  2 g (-z 0)f(x ))
-  ( f ( z0 + x ) ~  f  ( Z q - x ) +  f ( z 0 -  x) -  f  ( Z q +  x))||

^  M +  6 +  T}.



Define a function h : G —> A by the formula

h(x) =  for x £ G .

Then h is even, that is, h(—x) =  h(x),

\\h(x) ~  f ( x)\\ <  |  for x £ G, \\h(x)g(z0)\\ ^  M. (14)

Define a function m  : G —> A by

m(x) =  h(x) +  ig(zo), for x £ G.

Utilizing (14), we get (using first commutativity in A)

IIm (x +  y ) ~  m (x)m (y)|| =  ||h(x +  y) +  ig(z0) -  h(x)h(y)
+  i(h(x) +  h(y))g(z0) +  g(zo)2\\

<  \\Kx +  y)\\ +  \\h(x)h(y)\\
+  IKMx) +  % M *b )| |  +  I l f f M  +  l l ^ o )||2

<  \\Hx +  y) -  f ( x +  y )II +  \\f(x +  y)II
+  \\Hx )H y)y(zo)2 • g(zo)~2\\ +  \\h(x)g(z0)\\
+  \\h(y)g(zo)\\ +  \\g(z0)\\ +  \\g(zo)\\2 

^ 1l  +  M\\g(zo)\\-1 + M 2\\g(z0)\\-2 

+  2M +  \\g(z0)\\ +  \\g(zo)\\2
=  ai

(say) which is (12). Finally by (14), we have

f ( x ) ~  \ {m{x ) +  m {~ x)) f (x)  — h(x) +  h(x)

~ ^ (h (x) +  h ( -x ) )  - ig (z o )  

^  |  +  llfl^o)!! =  0,2

(say), which is (13). This proves the theorem.

Lastly we prove the following theorem.

T heorem  6
Let f , g : G —> A satisfy the inequality

\\f(x +  y ) + f ( x - y ) - 2 f ( x ) g ( y ) \ \  ^ e ,  x,y  € G, 

with f  satisfying (K) and

\\f(x ) ~  f ( ~ x)\\^V, for  x £ G,



for  some nonnegative e and rj. Suppose there exists a zq € G such that g(zo)~' 
exists and ||/(a;)fl,(-2o)|| bounded over G. Then there exists a mapping m : 
G A such that

\m(x +  y )-m (x )m (y )\ \ ^ a 1, f o r x , y & G

and
f (x)  -  \ {m{x) +  m (-x ) ) ^  a2, for  x G G,

for  some constants a\ and a2.

The proof runs parallel to that of Theorem 5.
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