Karoly Lajko Generalized Hosszu functional equations

Dedicated to Professor Zenon Moszner on the occasion of his 70th birthday

Abstract. Pexiderizations of the Hosszu functional equation

 $f(xy) + f(x + y - xy) = f(x) + f(y)$

are considered on a variety of domains.

1. Introduction

The functional equation

$$
f(xy) + f(x + y - xy) = f(x) + f(y)
$$
 (H)

was first considered by M. Hosszú.

The general solution for real functions was given by Blanusa [1] and Daróczy [3]. They proved the following

THEOREM B-D

The function $f : \mathbb{R} \to \mathbb{R}$ *satisfies the functional equation* (H) *for all* $x, y \in \mathbb{R}$ *if and only if*

$$
f(x) = A(x) + C, \quad x \in \mathbb{R}, \tag{1}
$$

where A is an additive function on \mathbb{R}^2 *and* $C \in \mathbb{R}$ *is an arbitrary constant.*

Equation (H) was also studied on other structures (see [2], [5], [6], [7], [9], $[10], [14], [15], [16]$.

In [12] and [13] we studied the functional equation

$$
f(xy) + g(x + y - xy) = f(x) + f(y)
$$
 (GH1)

and we proved the following theorems.

AMS (2000) Subject Classification: 39B22.

Research supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. T-030082 and by the Hungarian High Educational Research and Development Found (FKFP) Grant No. 0310/1997.

THEOREM L1

If the functions $f, g : \mathbb{R} \to \mathbb{R}$ *satisfy the functional equation* (GH1) *for all* $x, y \in \mathbb{R}$ *then*

$$
f(x) = g(x) = A(x) + C, \quad x \in \mathbb{R},
$$

where $A : \mathbb{R} \to \mathbb{R}$ *is an additive function on* \mathbb{R}^2 *and* $C \in \mathbb{R}$ *is an arbitrary constant.*

THEOREM L2

The functions $f : \mathbb{R}_0 \to \mathbb{R} \ (\mathbb{R}_0 = \mathbb{R} \setminus \{0\})$ *and* $g : \mathbb{R} \to \mathbb{R}$ *satisfy the equation* (GH1) *for all* $x, y \in \mathbb{R}_0$ *if and only if*

$$
f(x) = A_1(x) + A_2(\log|x|) + C, \quad x \in \mathbb{R}_0,
$$
 (2)

$$
g(x) = A_1(x) + C, \quad x \in \mathbb{R}, \tag{3}
$$

where $A_1, A_2 : \mathbb{R} \to \mathbb{R}$ *are additive functions on* \mathbb{R}^2 *and C is a real constant.*

In this paper we shall deal with the following problems.

PROBLEM A

Let $f, g : (0,1) \to \mathbb{R}$ be real functions which satisfy the functional equation (GH1) for all $x, y \in (0,1)$. What is the general solution of (GH1) on the interval $(0, 1)$?

PROBLEM B

Let $f, h : \mathbb{R}_0$ (or $\mathbb{R}_1 = \mathbb{R} \setminus \{1\}$) $\to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be real functions satisfying the functional equation

$$
f(xy) + g(x + y - xy) = h(x) + h(y)
$$
 (GH2)

for all $x, y \in \mathbb{R}_0$ or $x, y \in \mathbb{R}_1$ respectively. Find the general solution of (GH2).

PROBLEM C

Let $f, g, h : (0,1) \to \mathbb{R}$ be real functions satisfying (GH2) for all $x, y \in (0,1)$. Find the general measurable solution of (GH2).

2. Problem A

Here we shall use the following result by Z. Daróczy and L. Losonczi (see $[4]$.

THEOREM D-L

If f is additive on an open connected domain of \mathbb{R}^2 , *then f has one and only one quasi-extension.*

THEOREM 1

The functions $f, g : (0,1) \to \mathbb{R}$ *satisfy the generalized Hosszu equation* (GH1) *for all* $x, y \in (0, 1)$ *if and only if*

$$
f(x) = A_1(x) + A_2(\log x) + C, \quad x \in (0, 1), \tag{4}
$$

$$
g(x) = A_1(x) + C, \quad x \in (0, 1), \tag{5}
$$

where A_1 and A_2 are additive functions on \mathbb{R}^2 and C is an arbitrary real con*stant.*

Proof. First we follow the idea used in [14] for the proof of Lemma 2. The function

$$
F(x,y) = f(x) + f(y) - f(xy)
$$

satisfies the equation

$$
F(xy, z) + F(x, y) = F(x, yz) + F(y, z)
$$
\n(6)

for all $x, y, z \in (0,1)$. On the other hand we have

$$
F(x,y) = g(x + y - xy).
$$

Putting this into (6), we obtain the equation

$$
g(xy + z - xyz) + g(x + y - xy) = g(x + yz - xyz) + g(y + z - yz)
$$
 (7)

for all $x, y, z \in (0, 1)$.

By the substitution

$$
xy + z - xyz = t + \frac{1}{2}
$$

\n
$$
x + y - xy = s + \frac{1}{2}
$$

\n
$$
y + z - yz = \frac{1}{2}
$$
\n(8)

we obtain from (7) the functional equation

$$
g\left(t+\frac{1}{2}\right)+g\left(s+\frac{1}{2}\right)=g\left(t+s+\frac{1}{2}\right)+g\left(\frac{1}{2}\right)
$$

on the domain (t, s) defined by (8) , i.e. on

$$
D = \left\{ (t,s) \mid -\frac{1}{2} < t < 0, \frac{1}{2} + \frac{1}{2t-1} < s < \frac{1}{2} + t \right\}.
$$

Thus the function

$$
A^* : \left(-\frac{1}{2}, \frac{1}{2}\right) \to \mathbb{R}, \quad A^*(t) = g\left(t + \frac{1}{2}\right) - g\left(\frac{1}{2}\right) \tag{9}
$$

is additive on the open connected domain *D.* So, by Theorem D-L, *A** has one and only one quasi-extension A_1 with $A^*(x) = A_1(x)$ for all $x \in \left(-\frac{1}{2}, \frac{1}{2}\right)$. Now, using (9), we have

$$
g(x) = A_1\left(x - \frac{1}{2}\right) + g\left(\frac{1}{2}\right), \quad x \in (0, 1).
$$

This implies (5) with an arbitrary real constant $C = g\left(\frac{1}{2}\right) - A_1\left(\frac{1}{2}\right)$. Substituting (5) in (GH1), we get that the function ϕ defined by

$$
\varphi(x) = f(x) - A_1(x) - C, \quad x \in (0, 1)
$$
 (10)

satisfies the functional equation

$$
\varphi(xy)=\varphi(x)+\varphi(y),\quad x,y\in(0,1).
$$

On setting

$$
x = e^{-t}, y = e^{-s} \quad (t, s > 0), \quad B(t) = \varphi(e^{-t}), \tag{11}
$$

this is transformed into

$$
B(t + s) = B(t) + B(s), \quad t, s > 0.
$$

So, using again Theorem D-L, *B* has one and only one quasi-extension *A* with $B(t) = A(t)$ for all $t \in \mathbb{R}_+$. This, together with (11) implies

$$
\varphi(x) = A_2(\log x), \quad x \in (0, 1), \tag{12}
$$

where $A_2 = -A$ is an additive function on \mathbb{R}^2 .

Finally, from (10) and (12) , (4) follows for the function f. It is easy to see that (4) and (5) indeed satisfy (GH1).

3. Problem B

THEOREM 2

The functions $f, g, h : \mathbb{R} \to \mathbb{R}$ *satisfy the functional equation* (GH2) *for all* $x, y \in \mathbb{R}$ *if and only if*

$$
f(x) = A(x) + C_2, \quad x \in \mathbb{R}, \tag{13}
$$

$$
g(x) = A(x) + C_3, \quad x \in \mathbb{R}, \tag{14}
$$

$$
h(x) = A(x) + C_1, \quad x \in \mathbb{R}, \tag{15}
$$

where A is an additive function on \mathbb{R}^2 *and* $C_i \in \mathbb{R}$ (*i* = 1, 2, 3) *are arbitrary constants with* $2C_1 = C_2 + C_3$.

Proof. Putting into (GH2) $y = 0$ or $y = 1$, one gets

$$
g(x) = h(x) + h(0) - f(0), \quad x \in \mathbb{R}
$$
 (16)

and

$$
f(x) = h(x) + h(1) - g(1), \quad x \in \mathbb{R}
$$
 (17)

respectively. Substituting these into (GH2) we have

$$
h(xy)+h(x+y-xy)=h(x)+h(y), x, y \in \mathbb{R}.
$$

This is the Hosszu functional equation. So, by Theorem B-D *h* is of the form (15). Taking (16), (17) and (15) into consideration also, we have proved (13) and (14).

One can easily to see that (13), (14) and (15) satisfy (GH2) if $2C_1 = C_2 + C_3$. THEOREM 3

The functions $f, h : \mathbb{R}_0 \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ *satisfy the functional equation* (GH2) *for all* $x, y \in \mathbb{R}_0$ *if and only if*

$$
f(x) = A_1(x) + A_2(\log|x|) + C_3, \quad x \in \mathbb{R}_0,
$$
 (18)

$$
g(x) = A_1(x) + C_2, \quad x \in \mathbb{R}, \tag{19}
$$

$$
h(x) = A_1(x) + A_2(\log|x|) + C_1, \quad x \in \mathbb{R}_0,
$$
\n(20)

where A_1 , A_2 *are additive functions on* \mathbb{R}^2 *and* $C_i \in \mathbb{R}$ ($i = 1, 2, 3$) *are arbitrary constants with* $2C_1 = C_2 + C_3$.

Proof. Setting $y = 1$ in (GH2) we obtain the identity

$$
f(x) = h(x) + h(1) - g(1), \quad x \in \mathbb{R}_0
$$
 (21)

and putting this into (GH2) we get

$$
h(xy) + g(x + y - xy) + h(1) - g(1) = h(x) + h(y),
$$

where $x, y \in \mathbb{R}_0$. This is an instance of the generalized Hosszú equation (GH1). Thus, by Theorem L1, h and g are of the forms (20) and (19) respectively, where $C_2 = C_1 + g(1) - h(1)$ is arbitrary constant. Finally, by (19), (20) and (21) , we get (18) for f.

An easy calculation shows that the functions (18), (19) and (20) satisfy (GH2) if $2C_1 = C_2 + C_3$.

THEOREM 4

The functions $f : \mathbb{R} \to \mathbb{R}$ and $g, h : \mathbb{R}_1 \to \mathbb{R}$ *satisfy the functional equation* (GH2) *for all* $x, y \in \mathbb{R}_1$ *if and only if*

$$
f(x) = A_1(x) + C_3, \quad x \in \mathbb{R}, \tag{22}
$$

$$
g(x) = A_1(x) + A_2(\log|1-x|) + C_2, \quad x \in \mathbb{R}_1,
$$
\n(23)

$$
h(x) = A_1(x) + A_2(\log|1-x|) + C_1, \quad x \in \mathbb{R}_1,
$$
\n(24)

where A_1 and A_2 are additive functions on \mathbb{R}^2 and $C_i \in \mathbb{R}$ $(i = 1, 2, 3)$ are *arbitrary constants with* $2C_1 = C_2 + C_3$.

Proof. Letting $y = 0$ in (GH2), we obtain

$$
g(x) = h(x) + h(0) - f(0), \quad x \in \mathbb{R}_1.
$$
 (25)

Using (25) in (GH2), we get

$$
f(xy) + h(x + y - xy) + h(0) - f(0) = h(x) + h(y), \quad x, y \in \mathbb{R}.
$$

Replacing here x, y by $1-x, 1-y$ respectively, we have

$$
f(1-(x+y-xy))+h(0)-f(0)+h(1-xy)=h(1-x)+h(1-y)
$$

for all $x, y \in \mathbb{R}_0$, which implies that the functions f^* and h^* defined by

$$
f^*(x) = f(1-x) + h(0) - f(0), \quad x \in \mathbb{R},
$$

\n
$$
h^*(x) = h(1-x), \quad x \in \mathbb{R}_0
$$
\n(26)

satisfy the functional equation

$$
f^*(x+y-xy)+h^*(xy)=h^*(x)+h^*(y), \quad x,y\in\mathbb{R}_0.
$$

This is (GH1). Now, using Theorem L2, we have

$$
h^*(x) = A_1^*(x) + A_2(\log|x|) + C_1^*, \quad x \in \mathbb{R}_0,
$$
\n(27)

$$
f^*(x) = A_1^*(x) + C_3^*, \quad x \in \mathbb{R}.\tag{28}
$$

From (26), (27) and (28), we obtain (22) and (24) with $A_1 = -A_1^*$, $C_1 =$ $A_1^*(1) + C_1^*$ and $C_3 = A_1^*(1) + C_3^* + f(0) - h(0)$. Finally (24) and (25) imply (23).

The functions (22) , (23) and (24) indeed satisfy $(GH2)$.

4. Problem C

We need the following result of A. Járai ([11] Theorem 2.7.2).

THEOREM J

Let $\mathcal T$ be a locally compact metric space, let Z_0 be a metric space, and let Z_i $(i = 1, 2, \ldots, n)$ be separable metric spaces. Suppose that D is an open subset *of* $\mathcal{T} \times \mathbb{R}^k$ and $X_i \subset \mathbb{R}^k$ for $i = 1, 2, ..., n$. Let $f_0 : \mathcal{T} \to Z_0$, $f_i : X_i \to Z_i$, $g_i: D \to X_i$, $H: D \times Z_1 \times Z_2 \times \ldots \times Z_n \to Z_0$ be functions. Suppose, that the *following conditions hold:*

 (1) *For every* $(t, y) \in D$

$$
f_0(t) = H(t, y, f_1(g_1(t, y)), \ldots, f_n(g_n(t, y))).
$$

- (2) f_i is Lebesgue measurable over X_i for $i = 1, 2, \ldots, n$.
- (3) *H is continuous on compact sets.*
- (4) For $i = 1, 2, \ldots, n$, g_i is continuous, and for every fixed $t \in \mathcal{T}$ the map*ping* $y \rightarrow g_i(t, y)$ *is differentiable with the derivative* $D_2g_i(t, y)$ *and with the Jacobian J*₂ $g_i(t, y)$; moreover, the mapping $(t, y) \rightarrow D_2 g_i(t, y)$ is con*tinuous on D and for every* $t \in \mathcal{T}$ *there exists a* $(t, y) \in D$ *so that*

$$
J_2g_i(t,y)\neq 0\quad \textit{for }i=1,2,\ldots,n.
$$

Then f_0 *is continuous on* \mathcal{T} *.*

Lemma 1

If the measurable functions $f, g, h : (0,1) \rightarrow \mathbb{R}$ *satisfy the functional equation* (GH2) *for all* $x, y \in (0,1)$ *then the functions* $f, g, h : (0,1) \to \mathbb{R}$ *are continuous.*

Proof. First we prove the continuity of f. From (GH2), with $t = xy$, we obtain

$$
f(t) = h\left(\frac{t}{y}\right) + h(y) - g\left(1 - \frac{t}{y} - y + t\right), \quad (0 < t < y < 1). \tag{29}
$$

Let $\mathcal{T} = (0,1), n = 3, Z_0 = Z_1 = Z_2 = Z_3 = \mathbb{R}, X_1, X_2, X_3 = (0,1),$ $D = \{(t, y) \in \mathbb{R}^2 \mid 0 < t < y < 1\}.$ Define the functions g_i on D by $g_1(t, y) =$ $g_2(t,y) = y$, $g_3(t,y) = 1 - \frac{t}{y} - y + t$ and let $H(t,y,z_1,z_2,z_3) = z_1 + z_2 - z_3$. It follows from (29) that the functions f_i ($i = 0, 1, 2, 3$) given by

$$
f_0 = f, \quad f_1 = f_2 = h, \quad f_3 = g
$$

satisfy the functional equation occurring in (1) of Theorem J for all $(t, y) \in D$ and f_i $(i = 0, 1, 2, 3)$ is measurable by the conditions of our lemma. *H* is clearly continuous and condition (4) of Theorem J holds too, since calculating D_2g_i one can see that for every $t \in \mathcal{T} = (0, 1)$

$$
D_2g_i(t,y) \neq 0 \quad \text{for } i = 1,2,3 \text{ if } y \neq \sqrt{t}.
$$

Thus, by Theorem J, $f = f_0$ is continuous on $(0,1)$.

The continuity of *g* can be proved by making the substitutions $x \to 1-x$, $y \rightarrow 1 - y$ in (GH2) and repeating the above argument.

Substituting $y = \frac{1}{2}$ in (GH2) and solving the equation obtained for *h* we get

$$
h(x) = g\left(\frac{x+1}{2}\right) + f\left(\frac{1}{2}x\right) - h\left(\frac{1}{2}\right), \quad x \in (0,1),\tag{30}
$$

whence, by the continuity of f, g it follows that h is continuous as well.

Lemma 2

If the measurable functions $f, g, h : (0, 1) \rightarrow \mathbb{R}$ *satisfy the functional equation* (GH2) *then they are differentiable infinitely many times on* (0,1).

Proof. Write (GH2) in the form (29) and let $[\alpha, \beta] \subset (0,1)$ be arbitrary and choose the interval $[\lambda, \mu]$ such that $\sqrt{\beta} < \lambda < \mu < 1$ (then $[\alpha, \beta] \times [\lambda, \mu] \subset$ $D = \{(t, y) | 0 < t < y < 1\}$ holds). Integrating (29) with respect to *y* on [λ, μ] we obtain

$$
(\mu - \lambda) f(t) = \int\limits_{\lambda}^{\mu} h\left(\frac{t}{y}\right) dy + \int\limits_{\lambda}^{\mu} h(y) dy - \int\limits_{\lambda}^{\mu} g\left(1 - \frac{t}{y} - y + t\right) dy.
$$

We use the substitutions $g_1(t,y) = \frac{y}{y} = u$ and $g_3(t,y) = 1 - \frac{y}{y} - y + t = u$ in the first and third integral respectively. It is easy to check that these equations can uniquely be solved for *y* if $t \in [\alpha, \beta]$. In the case of $\frac{t}{y} = u$ this is clear. In the case of $1 - \frac{t}{y} - y + t = u$ this uniqueness is ensured by the assumption $\sqrt{\beta} < \lambda$, namely, by this condition, the derivative of the function $y \to g_3(t, y)$:

$$
D_2 g_3(t,y)=\frac{t}{y^2}-1
$$

is negative on $[\alpha, \beta] \times [\lambda, \mu]$ hence our function is strictly decreasing. The solutions

$$
y = \frac{t}{u} = \gamma_1(t, u)
$$
 and $y = \frac{1 + t - u + \sqrt{(1 + t - u)^2 - 4t}}{2} = \gamma_2(t, u)$

are infinitely many times differentiable functions of *t* and *u.* Performing the substitutions we have for $t \in [\alpha, \beta]$

$$
f(t) = \frac{1}{\mu - \lambda} \left[\int\limits_{\frac{t}{\lambda}}^{\frac{t}{\mu}} h(u) D_2 \gamma_1(t, u) du - \int\limits_{1 - \frac{t}{\lambda} - \lambda + t}^{1 - \frac{t}{\mu} - \mu + t} g(u) D_2 \gamma_2(t, u) du + C \right],
$$

where $C = \int_{\lambda}^{\mu} h(y) dy$. The functions *h*, *g* are at least continuous. Hence, by repeated application of the theorem concerning the differentiation of parametric integrals (see e.g. Dieudonné [8]), the sum on the right hand side is differentiable infinitely many times on $[\alpha, \beta]$. Since $[\alpha, \beta]$ is an arbitrary subinterval of $(0,1)$, we have that f is differentiable infinitely many times on $(0,1)$. The differentiability of *g* can be obtained similarly. Finally, from (30), we can deduce that h is also differentiable infinitely many times on $(0,1)$.

Lemma 3

If the functions f, g, h : $(0,1) \rightarrow \mathbb{R}$ *satisfy the functional equation* (GH2) *and they are twice differentiable in* $(0,1)$ *, then there exist constants* γ *,* C_i *,* $\delta_i \in \mathbb{R}$ $(i = 1, 2)$ *such that*

$$
f(x) = C_1 \ln x + \gamma x + \delta_1, \quad x \in (0, 1), \tag{31}
$$

$$
g(x) = C_2 \ln(1-x) + \gamma x + \delta_2, \quad x \in (0,1), \tag{32}
$$

$$
h(x) = C_1 \ln x + C_2 \ln(1-x) + \gamma x + \frac{\delta_1 + \delta_2}{2}, \quad x \in (0,1).
$$
 (33)

Proof. Differentiating (GH2) with respect to x , then the resulting equation with respect to *y,* we have

$$
f'(xy) + xyf''(xy) - g'(x+y-xy) + (1-x)(1-y)g''(x+y-xy) = 0,
$$

$$
x, y \in (0,1).
$$

This can hold if and only if

$$
tf''(t) + f'(t) = \gamma = (s-1)g''(s) + g'(s), \quad t, s \in (0,1)
$$

for some constant γ .

The general solutions of the differential equations

$$
tf''(t) + f'(t) = \gamma, \quad t \in (0,1)
$$

and

$$
(s-1)g''(s) + g'(s) = \gamma, \quad s \in (0,1)
$$

have the following forms

$$
f(t) = C_1 \ln t + \gamma t + \delta_1, \quad t \in (0, 1),
$$

\n
$$
g(s) = C_2 \ln(1 - s) + \gamma s + \delta_2, \quad s \in (0, 1).
$$

Then, from (30), (31) and (32), we get (33) for *h.*

Thus we have proved our lemma.

We may sum up the results of Lemmas 1, 2 and 3 in the following theorem.

THEOREM 5

If the measurable functions $f, g, h : (0, 1) \rightarrow \mathbb{R}$ *satisfy the functional equation* (GH2) *for all* $x, y \in (0, 1)$ *, then there exist constants* γ , C_i , $\delta_i \in \mathbb{R}$ $(i = 1, 2)$ *such that f , g, h have the forms* (31), (32) *and* (33) *respectively.*

References

- $[1]$ D. Blanusa, *The functional equation* $f(x+y-xy)+f(xy)=f(x)+f(y)$, Aequa**tiones Math. 5 (1970), 63-70.**
- ^[2] Z. Daróczy, *Über die Funktionalgleichung* $f(x + y xy) + f(xy) = f(x) + f(y)$, **Publ. Math. Debrecen 16 (1969), 129-132.**
- **[3]** Z. Darôczy, On the general solution of the functional equation $f(x + y xy) + f(y)$ $f(xy) = f(x) + f(y)$, Aequationes Math. 6 (1971), 130-132.
- **[4] Z. Darôczy, L Losonczi,** *Uber die Erweiterung der auf einer Punktmenge additiven Funktionen,* **Publ. Math. Debrecen 14 (1967), 239-245.**
- [5] **T.M.K.** Davison, *On the functional equation* $f(m+n-mn) + f(mn) = f(m) + \frac{f(m)}{2}$ *fin),* **Aequationes Math. 10 (1974), 206-211.**
- **[**6 **] T.M.K. Davison,** *The complete solution of Hosszu's functional equation over field,* **Aequationes Math. 11 (1974), 273-276.**
- **[7] T.M.K. Davison, L. Redlin,** *Hosszu's functional equation over rings generated by their units,* **Aequationes Math. 21 (1980), 121-128.**
- **[**8 **] J. Dieudonné,** *Grundzüge der modernen Analysis,* **VEB Deutscher Verlag der Wissentschaften, Berlin, 1971.**
- **[9] I. Fenyô,** *On the general solution of a junctional equation in the domain of distributions,* **Aequationes Math. 3 (1969), 236-246.**
- [10] I. Fenyő, *Über die Funktionalgleichung* $f(a_0 + a_1x + a_2y + a_3xy) + g(b_0 + b_1x + b_1y)$ $b_2y + b_3xy$ = $h(x) + k(y)$, Acta Math. Hung. 21 (1970), 35-46.
- **[11] A. Järai,** *On measurable solutions of functional equations,* **Publ. Math. Debrecen 26 (1979), 17-35.**
- **[12] K. Lajko,** *Több ismeretlen függvenyt tartalmazo függvenyegyenletek,* **Ph. D. Thesis, Debrecen, 1969.**
- **[13] K. Lajko,** *Über die allgemeinen Lösungen der Funktionalgleichung F (x) + F (y) —* $F(xy) = G(x + y - xy)$, Publ. Math. Debrecen **19** (1972), 219-223.
- **[14] K. Lajko,** *Applications of extensions of additive functions,* **Aequationes Math. 11 (1974), 68-76.**
- [15] H. Swiatak, *Remarks on the functional equation* $f(x+y-xy)+f(xy)=f(x)$ *+ f(y),* **Aequationes Math. 1 (1968), 239-241.**
- [16] H. Swiatak, *Remarks on the equation* $f(x + y xy) + f(xy) = f(x) + f(y)$, **Aequationes Math. 4 (1970), 250-251.**

Institute of Mathematics and Informatics Lajos Kossuth University H-4010 Debrecen P.O. Box 12 Hungary E-mail: **lajko@math.klte.hu**

Manuscript received: November 23, 1999 and in final form: May 8, 2000