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Abstract. This text deals with the domain of existence of the solution of 
Schroder’s equation, related to a two-dimensional real iteration process, 
defined by functions which do not satisfy the Cauchy-Riemann condi­
tions. Its purpose is limited to the identification of the difficulties gen­
erated by the determination of this domain. When the Cauchy-Riemann 
conditions are verified the answer to this problem was given by Fatou at 
the beginning of the 20th century. The qualitative theory of dynamical 
systems permits to identity the difficulties which may be met, from the 
notion of immediate basin of an attractor (stable fixed point in our case), 
and the singular set generated by the iteration associated with Schroder’s 
equation.

1. Introduction

An evident link exists between autonomous recurrences (equivalent denom­
inations depending on the mathematical field: iterations, maps), and some 
functional equations like those of Schröder, or Böttcher, or Abel, or Perron- 
Frobenius in some special case, or the equation of automorphic functions. This 
paper is essentially devoted to Schroder’s functional equation. It is well known 
that the first set of studies on this equation appeared from the end of the 
19th century in n-dimensional problems. The fundamental contributions are 
those of Grevy, Leau, Koenigs, Lattes whose papers concern a “local” study 
of the solution, i.e. its determination inside a sufficiently small neighborhood 
of a fixed point, or a cycle. A first “global” study is due to Julia (1918) [1], 
and Fatou (1919) [2] [3]. It concerns one-dimensional “rational” iterations 
with a complex variable, i.e. equivalently, two-dimensional iterations defined 
by functions with real variables satisfying the Cauchy-Riemann conditions. In 
particular Fatou’s results suppose the existence of a stable fixed point with a 
non-zero multiplier, the boundary of its basin (domain of convergence toward
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this point) being what is called now a “ Julia set". In this case it was stated that 
the fundamental solution of the Schroder’s equation is a holomorphic function 
inside the immediate basin of the fixed point, the basin boundary belonging to 
the set of the essential singular points of this solution. As far as I know, this 
question has remained unexplored after these results for Schroder’s equations 
related to classes of two-dimensional real iterations which do not satisfy the 
Cauchy-Riemann conditions. In this last more general case, it is a question of 
knowing if the notion of immediate basin can play the same role. In fact for 
noninvertible maps, and maps with canceling denominators, it appears that it 
is prudent to consider only a part of the immediate basin as domain of existence 
of the solution of the Schroder’s equation associated with a stable fixed point 
of the iteration.

This paper does not pretend to deal with a close mathematical presentation 
of an extension of the Fatou’s results in the case of two-dimensional iterations 
with real variables. Such a presentation would imply very long developments 
related to the convergence of series expansions, or infinite products, with the 
inherent difficulties induced by the boundaries of the domains of convergence. 
The aim is more modest. Indeed this text only tries to show how the dynam­
ical approach permits to outline an extension of the Fatou’s results. For the 
mathematicians specialists of functional equations this might give some first 
indications about the “landscape” of this question and its difficulties, from a 
point of view external to their field of study. For such a limited purpose, in 
the framework of the qualitative theory o f Dynamics, it is sufficient to expose 
with commentaries a summarized presentation of certain results, obtained since 
some 30 years, on the basins structure generated by two-dimensional iterations 
with real variables. About the qualitative methods, it is well known that the 
solutions of equations of nonlinear dynamic systems are in general not clas­
sical transcendental functions of the Mathematical Analysis, which are very 
complex. So analytical methods generally failing, the “qualitative strategy” is 
of the same type as the one used for the characterization of a function of the 
complex variable by its singularities: zeros, poles, essential singularities. Here, 
for two-dimensional maps with real variables (topic of the paper) the com­
plex transcendental functions are defined by the singularities of continuous (or 
discrete) dynamic systems such as:

— stationary states which are equilibrium points (fixed points), or periodical 
solutions (cycles); which can be stable, or unstable;

— trajectories (invariant curves) passing through saddle singularities of two 
dimensional systems;

— stable and unstable manifold for a dimension greater than two;
— boundary, or separatrix, of the influence domain of a stable (attractive) 

stationary state, called domain of attraction, or basin-,
— homoclinic, or heteroclinic singularities-,



— or more complex singularities of fractal, or nonfractal type.

The qualitative methods consist in the identification of two spaces associ­
ated with the map (iteration, recurrence relationship). The first space, called 
phase space (defined by the map variables), is related to the nature of the above 
singularities. The second space, called parameter space, characterizes the sin­
gularities evolution when the system parameters vary, or in presence of a con­
tinuous structure modification of the system (definition of a function space), by 
identification of the bifurcation sets, loci of points boundary between two dif­
ferent qualitative changes. In the dynamics framework an iteration (equivalent 
denominations: recurrence relationship, map) is considered as a mathematical 
model of a discrete dynamical system. Since 1960, the important development 
of the computer means has given a large extension to the numerical approach 
of the problems of dynamic systems. Such an approach constitutes a power­
ful tool, when it is associated with the qualitative, or analytical, methods. In 
particular such a “mixed” approach has permitted to understand the complex 
structure of basins, and their bifurcations, that is the change of their qualitative 
properties in presence of parameter variations, cf. [7].

The paper is limited to two-dimensional Schroder’s equations with real vari­
ables considered in the framework of the qualitative approach. This implies to 
define different classes of problems associated with basin boundaries (singular 
sets) of different nature. So problems involving invertible iterations, noninvert- 
ible ones, iterations defined by functions with a vanishing denominator must 
be differentiated.

The first part is a reminder of the Julia-Fatou’s results. It is followed by 
the presentation of the matter related to two-dimensional maps not satisfying 
the Cauchy-Riemann conditions. The considered maps are firstly invertible, 
then noninvertible, without vanishing denominators in these two cases. The 
case of a vanishing denominator is dealt with in the last part.

2. Reminder of the Julia-Fafou's results

Let
z ' = R ( z )  (1)

be a one-dimensional iteration (or map, or recurrence relationship, or substitu­
tion), R(z) being a rational function of the complex variable z, supposed not 
being of “fundamental circle” type. For simplicity sake it is assumed that the 
map has a unique attracting stable fixed point O, S =  R '(0) is its multiplier, 
|S| <  1, 5 ^ 0 .

Let E  be the set of all the unstable cycles generated by the iteration. 
Julia and Fatou [l]-[3] proved that the derived set E 1 of E  contains E  and 
is perfect. They showed that la structure de E' est la meme dans toutes ses 
parties, which means that the E 1 structure is self-similar, called fractal from



1976. The set E 1 can be either continuous, or discontinuous, it constitutes 
the set of essential singularities for any function limit of functions, extracted 
from an iterated sequence. It is also the set, the iterates of which do not form 
a normal sequence in the Montel sense. E 1 is the basin boundary of O, i.e., 
the boundary of the open domain of convergence toward O. It contains the 
whole set of the increasing rank preimages of the points of E. When it is a 
continuous set, the basin is generally disconnected, and made up of infinitely 
many disjoint parts. Then the part D0 containing O is called the immediate 
basin, it includes a critical point (image of the point at which j ß  =  0) of R(z), 
and may be multiply connected with infinitely many holes.

The Fatou’s contribution to the Schröder equation,

7  [R(z)] =  S-y(z), (2)

constitutes a particular case of more general functional equations considered in 
Chap. 7 of [3]. The main result states:

The fundamental solution of the functional Schröder equation is a holo- 
morphic function inside the immediate basin Do of O. Inside this domain 
it has infinitely many zeros having as limit points all the points of the 
immediate basin boundary dDo- In the neighborhood of each of these 
boundary points, the function is completely indeterminated and takes 
all the values except infinity. Then the points of the immediate basin 
boundary are essential singular points of 7 (2 ).

The domain of existence of the function j (z )  coincides with the connected 
domain of convergence (containing O) of the infinite product which permits 
to define 'y(z). The total basin of O may be disconnected. Then it is made 
up of the immediate basin D0 and infinitely many domains which are the 
“arborescent” infinite sequences of its increasing rank preimages. Let D\ be a 
rank-one preimage of D0, different from D0. So inside D\ a function (z) is 
defined. The variable z being in D \, R(z) is in D0 and one has:

S 7i(^ ) ='j[R (z)].

When ^ is inside D0, the function y(z) satisfies (2). A generalization of a 
process of analytic continuation would give 71 {z) as the continuation of j(z )  
inside D\. But in general D\ and D0 have no common points. So it would 
be necessary to find some lines out of the total basin, having contacts with 
the boundary, and leading along such lines to a uniform convergence of the 
expressions defining 'y(z). Until now it seems that this process has not been 
realized. So the functional equation defines infinitely many analytical functions 
having different bounded domains of existence. In the framework of the qualit­
ative theory of dynamical systems, the solution y(z) of the Schröder equation is 
defined by the singular set made up of the zeros of 'y(z), which are the success­
ive preimages of O in infinite number inside D0, and the points of the boundary 
dD 0 C E 1 of the immediate basin of O.



It is worth noting that the one-dimensional map (1) of the complex variable 
z =  x +  jy , j 2 =  —1, is equivalent to the two-dimensional map with real 
variables:

x' =  f (x ,y ) ,  y '= g (x ,y ) ,  (3)
the functions f (x ,y ) , g(x,y) satisfying the conditions of Cauchy-Riemann:

9f_ =  d l  df_ =  _dg_ 
dx dy ’ dy dx'

An example illustrating the properties of the complex set dD 0 is given by 
the map:

f (x,y)
3x
T

3 z - z 3
z =  ■ 

x3 — 3xy2 . . 3w y3 — 3x2y
9(x,y) =  {  +  V— r ^

(5)

The origin is an unstable fixed point. This map has two stable fixed points 
(x =  ± 1 , y =  0). The set E' made up of double points is everywhere dense. 
It is formed by the union of infinitely many closed simple Jordan curves, every 
points of one of these curves being the limit points of similar curves out of the 
one considered, their sizes tending toward zero, cf. [1]. The whole fractal set 
E 1 is symmetric with respect to the two axes. Figure 1 (see p. 74) represents 
the basin of each of the two stable fixed points from two different grey shades, 
and an enlargement of a basins part. The domain of existence of the solution of 
the Schroder equation related to one of the stable fixed point is its immediate 
basin.

3. Two-dimensional maps not satisfying the Cauchy-Riemann conditions

3.1. Difficulties generated by the problem

Consider the two-dimensional map (3) with real variables, the functions 
f (x ,y ) ,  g(x,y) being analytic, and not satisfying conditions (4). Denote this 
map by T, and put X  =  [x,y]. The map (3) can be written in the form 
X' =  T X . Let 0 (0 ; 0) be a stable fixed point of T, i.e., with multipliers 
0 <| Si |< 1, i =  1,2.  Consider the corresponding Schroder’s equation:

^ { x ' , y ' )  =  s a i {x,y)\, or r ( T X )  =  ST(X),  (6)

with T =  [71,72], S  =  [S i ,  S2]. In the case of a stable cycle of period (or order) 
k, i.e., made up of k consequent points verifying: T k(X) =  X , T m(X )^ X , 
0 < m < k ( k  =  l  gives a fixed point), the conclusions will be the same by 
considering T k in (6).

An outline of extension of the Fatou’s results would be given remarking 
that, if X  varies in the whole immediate basin D0 of the fixed point 0 (0 ; 0), it 
would seem reasonable to conjecture that the infinite products which define



Fig. 1. Map (5). Basins of the fixed points (x =  + 1 ; y =  0; clear grey) 
and (x =  — 1; y =  0; dark gray)



T (X ) are uniformly convergent inside all close domains fully interior to D0. 
Then T (X ) would be analytic inside D0 and would satisfy (6) for each of its 
points. In this case the boundary dD 0 of the immediate basin would belong 
to the singular set related to T (X ). Therefore, in the framework of a qual­
itative approach, the problem boils down to study the structure of dD0 and 
its qualitative modifications in presence of parameters variations. I think that 
such a conjecture is not true for all the iteration (or map) forms. It depends 
on the nature of the map, which in particular implies the consideration of the 
following classes of problems:

(a) T  is a diffeomorphism  defined by functions without canceling denomin­
ator,

(b) T  is a noninvertible map defined by functions without vanishing denom­
inator,

(c) For each of the two last cases T  is defined by functions with vanishing 
denominator.

For the two-dimensional maps considered now it is important to note that 
dD 0 loses the properties of the perfect set E' mentioned in Sec. 2. Generally 
the new situations also present difficulties explained as follows. In the dynam­
ics approach the knowledge of cells, giving the same qualitative behavior of 
solutions in the parameter space, is of prime importance for the analysis and 
the synthesis of continuous, or discrete mathematical models. On the bound­
ary (bifurcation set) of a cell, a dynamic system is structurally unstable. In 
order to identify the difficulties, it is necessary to remind that the study of 
ordinary differential equations can be made via a Poincaré section leading to a 
map, the effective dimension of which is smaller. So a three-dimensional flow 
(vector field, or autonomous ordinary differential equation) leads to the for­
mulation of a two-dimensional invertible map. In 1966 Smale showed that for  
n-dimensional vector fields, n >  2, structurally stable systems are generally not 
dense in the function space, which does not occur for n =  2. This means that 
p-dimensional maps, p ^ 2, have the same properties. So it appears that, with 
an increase of the problem dimension, one has an increase of complexity of the 
parameter (or function) space. This complexity appears for flows from the case 
n =  3, or for maps from the dimension p =  2. It results that the boundaries 
of the cells defined in the phase space (basins), as well as in the parameter 
space, have in general a complex structure which may be fractal (self-similarity 
properties) for n-dimensional vector fields, n >  2, and for p-dimensional maps 
with p~^2 .

In 1979 Newhouse stated that in any neighborhood of a Cr-smooth (r ^  2) 
dynamical system, in the space of dynamical systems, there exist regions for 
which systems with homoclinic tangencies (then with structurally unstable, 
or nonrough, homoclinic orbits) are dense. Domains having this property are 
called Newhouse regions. This result, as completed in [4], asserts that systems
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Fig. 2. Map (7). Basin of the fixed point <72 (grey), and basin of the period 
3 cycle (black), (a) a  =  0.4, b =  0.6. (b) a =  0.92, b =  0.7.



with infinitely many homoclinic orbits of any order of tangency, and with in­
finitely many arbitrarily degenerate periodic orbits, are dense in the Newhouse 
regions of the space of dynamical systems. This has the important consequence 
concerning the dynamical properties:

Systems belonging to a Newhouse region are such that a complete study of 
their dynamics and bifurcations is impossible.

More particularly, many of the attractors obtained numerically contain a 
“large” hyperbolic subset in presence of a finite, or an infinite number of stable 
periodic solutions. Generally such stable solutions have large periods, and nar­
row “oscillating” tangled basins, which are very difficult to display numerically. 
So it is only possible to consider some of the characteristic properties of the sys­
tem, their interest depending on the nature of the problem nature, cf. [5]. The 
general problem of defining globally, and not locally, the solution of the func­
tional equation (6) suffers from such limitations, due to the complex structure 
of a basin boundary. In the case of two-dimensional non-invertible maps this 
complexity increases, due to the introduction of another type of singularity: 
the critical curve, locus of points having two coincident rank-one preimages.

3.2. Diffeomorphisms without canceling denominator

Such maps, being invertible, have the important property: the basin D of 
an attractor is always simply connected, that is the immediate basin coincides 
with the total basin and contains no hole. In the simplest case, i.e., in absence 
of homoclinic and heteroclinic points, in general the boundary dD  of D belongs 
to the stable manifold of some saddle cycles of period k (k =  1 corresponding 
to a fixed point). Locally this stable manifold can be defined by the series 
expansion given by S. Lattes. Its global determination is obtained by using 
the terms of the series until a given rank as a “germ” in a numerical method, 
for constructing dD, which belongs to the singular set of the solution of (6). 
Another numerical method consists in a scanning of the phase plane (x,y), 
which checks the convergence of the iterated sequence generated by each pixel 
of this plane as an initial condition. For each of these two methods it is possible 
to control the precision of the result.

Figure 2 (see p. 76) shows a type of basin (with fractal properties) obtained 
from the map:

x' =  1 — ax2 + y ,  y' =  bx (7)

which has two fixed points, q\ (x i, bx\), and <72(2:2, 62:2), where

X 2 := i ( b ~ 1 +  ^ ) ; A : = ( 1 - fe)2 +  4«-

For a =  0.4, b =  —0.6, q\ is a saddle point, and q-2 is asymptotically stable. 
The basin D of q-2 is given by the grey marked region of Fig. 2a, the white one 
being the domain of divergence. It is bounded by the stable manifold of the



saddle </i, W s {q\) =  dD, a branch going to infinity. Such a parameter value of 
the plane (a, b) belongs to a region of the parameter plane, called Morse-Smale 
region, for which a unique attractor exists, with absence of homoclinic points, 
cf. [6]. It results a simple structure of the basin boundary, and then a “simple” 
singular set related to the solution of the Schröder equation (6).

Fig. 2b corresponds to a  =  0.92, b =  —0.7, a parameter point out of the 
Morse-Smale region, leading to the presence of homoclinic and heteroclinic 
points. The grey part is the basin of the stable fixed point q-2, the dark one 
is the basin of a stable period three cycle, the white region gives rise to diver­
gence. The basins of q-2 and that of the stable period three cycle are separated 
by the stable manifold of its “satellite” period three saddle (i.e., the two period 
three cycles come from the same fold bifurcation). The two basins present in­
finitely many more and more narrow oscillating parts, tangled with the domain 
of divergence. A section of such regions by a line gives a Cantor set. The stable 
manifold of the saddle q\ is a line of accumulations of the above oscillations. 
For this situation it is worth noting that the parameter point is in a Newhouse 
region. Therefore a numerically obtained image as Fig. 2b cannot make appear 
other eventual stable states having large periods, and very narrow “oscillating” 
tangled basins. This situation increases the complexity of the true “mathemat­
ical” structure of the basin of q2, with its consequences on the structure of the 
singular set of the solution of the Schröder equation (6). Nevertheless the total 
basin being simply connected, an extension of results of Sec. 2 might present 
no difficulty in principle. In such a case the only “practical” difficulty lies in 
the fact that the domain of existence of the solution of (6) has a very complex 
structure. We shall say that this domain permits to define the “global” solution 
of Schroder’s equation (6).

3.3. Non-invertible maps without canceling denominator

3.3.1. Difficulties generated by 'global* solution of Schroder's equation in the simplest case

This section essentially concerns a family of two-dimensional smooth non- 
invertible maps, X  —> T (X ), X  =  [x,y\, such that the critical curve L C  is 
made up of only one branch separating the plane M2 in two open regions Z0 
and Z2, the points of which have respectively 0 and 2 preimages (or ante­
cedents or backward iterates) of rank one. The two real preimages of a point 
X  belonging to Z-2 are given by the two inverses T1_ 1(X ), T2_ 1(X ) of T. Such 
noninvertible maps (which are the simplest ones) are called of (Z$-Z2) type 
(cf. [7]). Their study is indispensable before considering more complex types, 
which locally may have the (Z0-Z2) properties, plus others induced by more 
than two first rank preimages in certain regions of M2. The curve LC  is the 
locus of points having two coincident rank-one preimages, located on a curve 
L C - 1, with LC  =  T[LC-\]. If the map T  is smooth, L C - 1 is contained in the 
set on which the Jacobian J  of T  vanishes.



Denote by R i , R ‘2 the two open regions such that L C - i =  R\ r]R2, and for 
every X  £ Z2, let T^~1(X) £ R \, T2- 1(X ) £ R2 be the two first rank preimages 
of X . l i X  £ LC  then T ^ ( X )  =  T2- 1(X ) € L C - 1.

It is recalled that a closed and invariant set A is called an attracting set 
if some neighborhood U of A exists such that T(U) c  U, and T n(X) —> A as 
n —> oo, MX £ U. An attracting set A may contain one or several attractors 
coexisting with sets of repulsive points (strange repulsors) giving rise to either 
chaotic transients towards these attractors, or fuzzy boundaries of their basin, 
cf. [6], [7]. The set D =  Un^o T - n(U) is the total basin (or simply: basin 
of attraction, or influence domain) of A. That is D is the open set of points 
X  whose forward trajectories (set of images of X  with increasing rank) con­
verge towards A. D is invariant under backward iteration T -1 of T, but not 
necessarily invariant by T :

T ~ 1{ D ) = D , T(D) C D. (8)

In (8), the strict inclusion holds iff D contains points of Z0, i.e., points 
without preimages. The relations in (8) hold also for the closure of D. The 
boundary (or frontier) of D is denoted by dD. The boundary dD  is defined by 
the geometrical equality dD  =  D n C'(D) where C'(D) denotes the comple­
mentary set of D. This boundary satisfies:

T ~ 1(dD) =  dD, T (d D )C d D  (9)

We remark that T ~ 1(D) =  D implies that D must contain the set of 
preimages of any of its cycles, that is dD  must contain the stable set W s  of 
any cycle of T  belonging to dD, while T(dD ) C dD  means that the images of 
any of its points belongs to dD  n Z2. It is worth noting that, for unstable node 
and focus cycles, the stable set W s  is made up of the set of increasing rank 
preimages of cycle points (such a set does not exist in the case of an invertible 
map). For a saddle cycle W s  is made up of the local stable set W;s , associated 
with the determination of the inverse map which let invariant this cycle, and 
its increasing rank preimages.

Properties (8) and (9) with the strict inclusion are illustrated by the fol­
lowing example, cf. [7]:

x' =  y, y ' =  O.&x +  0 .02y +  x2 +  y2, (10)

leading to a simply connected basin of the stable fixed point 0 (0 ; 0). The curve 
of coincident first rank preimages L C -1 is x =  —0.4, and the critical curve LC  
is the parabola y =  x2 + 0 .02a; — 0.16. The region i?i is defined by x >  —0.4, and 
R 2 by x <  —0.4. The fixed point 0 (0 ; 0), O £ R \, is a stable node. A second 
fixed point P(0.09; 0.09), P  £ R\, is a saddle with multipliers of opposite signs. 
Figure 3 (see p. 80) represents the boundary dD  of the simply connected basin 
D of O. This boundary consists of the stable invariant set W s  of P. The



determination of T -1 which let O and P  invariant leads to T f 1. The set W f  
is the open segment ]B ,B _ i[, where B _ i belongs to L C - i, B  =  T (B _ i) , and 
W s =  W f  U T ~ 1(Wls ) U T ~ 2(Wls ). P  has only one first rank preimage P _i 
different from P. The two first rank preimages of P _ i  are noted B '_2 and B'P2 
in Fig. 3. Finally, T _ 1(C) =  C _i € LC-\. The basin of O is simply connected, 
and satisfies: T(D) =  D n Z2 C D.

More generally a basin D may be connected, or disconnected. A connected 
basin may be simply connected, or multiply connected (which means connec­
ted with holes). A disconnected basin consists of a finite or infinite number 
of connected components (which may be simply or multiply connected). The 
properties and bifurcations related to these different situations will be con­
sidered in the next section. If A is a connected attractor (particular example: 
A is a fixed point), the immediate basin D0 of A, is defined as the widest 
connected component of D containing A.

Let us return to the example of the map (10), where the two fixed points 
O and P  are located in the region R\. Consider the Schroder equation related 
to the stable fixed point O and note that the following properties:

T(D  n Z0) =  D n Z2, T(D r\R 2) =  D r\R1 r\Z2

are satisfied. Using the Fatou’s arguments, the extension of Sec. 2 results might 
present no essential difficulty in the region D fl R i n Z2, where the inverse of 
T  which let O invariant is T ^ 1. Then one can conjecture that this region is at



least a sufficient domain of existence of the solution of (6). It is not the case 
in the complementary region inside the basin D. Indeed a process of analytic 
continuation is not evident in this last region.

3.3.2. Problems generated by "global* solution of Schroder’s  equation in more general ca se s

The basin boundaries, belonging to the singular set of the solution of 
Schroder’s equation, can have very complex structure with fractal properties de­
scribed in [7]. From parameter variations they can undergo qualitative changes, 
related to bifurcations resulting from the contact of the basin boundary with a 
critical curve, or one of its image of a certain rank. The general case induces 
more complex situations with respect to the (10) one. This is due in particular 
to a large variety of qualitative modifications, with different types of fractaliz- 
ation, undergone by an immediate basin, and so by the domain of existence of 
the solution of the corresponding Schroder’s equation.

The following example dealing with the map T :

x' = y ,  y' =  ( |  -  ( z 2 +  y1 -  6 |  -  Xy +  ^  +  x, (11)

illustrates such modifications, when A varies in the interval 1.05 <  A <  4.8. For 
the case A =  4.1 see Fig. 4 below.

4 1 0 0 0 0

With the map T  the fixed point 0 (0 ; 0) is always a stable node whatever 
be the parameter A. The ’’global” solution of Schroder’s equation, that is the



domain of existence of the solution of (6), is considered for this fixed point O. 
It can be deduced from the detailed study of the basin modifications related to 
O described in [7] (cf. pages 439-446). Figure 4 gives an idea of the complexity 
of the O basin (grey marked) for A =  4.1. This basin is multiply connected 
with a fractal structure.

3.4. Maps defined by functions with canceling denominator

Such maps T, invertible or non-invertible, introduce new types of singular 
sets, which has consequences on the determination of the domain of existence 
of the solution of the Schroder’s equation (6). The first singularity concerns 
the set of nondefinition Ss, locus of points in which at least one denominator 
vanishes, and the set of its successive preimages. The map is well defined 
provided that the initial condition belongs to the set E  given by:

OO

E  =  M2 \ ( J  T ~ n{5s).
n=0

Indeed the points of the singular set Ss, as well as all their preimages of 
any rank, which constitute a set of zero Lebesgue measure, must be excluded 
from the set of initial conditions in order to generate well defined sequences by 
iteration of T, so that T  : E  —»• E.

Many other types of basin bifurcations, generated by two-dimensional non- 
invertible maps, and so many other qualitative changes of the existence domain 
of the solution of (6) are possible. Some of them are described in [7].

The presence of Ss is followed by two other singular sets: focal points and 
prefocal curve. Roughly speaking a prefocal curve is a set of points for which at 
least one inverse exists, which maps (or “focalizes”) the whole set into a single 
point, called focal point, which belongs to 8S . More details on the consequences 
of such singularities on the structure of a basin, and on its bifurcations are given 
in [8]. It is evident that the domain of existence of the solutions of Schröder 
equation (6) must not contain a prefocal curve. Then when a prefocal curve 
cuts the immediate basin of a stable fixed point, separating this basin into two 
regions, the one which does not contain the fixed point must be excluded from 
the domain of existence of the solution of the Schröder equation (6). Indeed a 
process of analytic continuation might fail on the prefocal curve.

4. Conclusion

This text has the limited purpose to identify the difficulties generated by 
the determination of the domain of existence of the solution of a Schroder’s 
equation, related to a two-dimensional real iteration (map) process, defined by 
functions which do not satisfy the Cauchy-Riemann conditions. The qualitat­



ive theory of dynamical systems permits to outline an answer from the notion 
of immediate basin of the stable fixed point of the considered iteration, and the 
singular sets generated by this iteration. It is worth noting that the dynamical 
approach permits to deal with another application of Schroder’s equation. It 
concerns a method of construction of a class of iterations (recurrences, maps) 
giving rise to chaotic behaviors, which can be described from elementary func­
tions. This process, taken on the pages 33-45 of [7] from results published in 
1982, also leads to the definition of multi-dimensional function having proper­
ties similar to those of the Chebyshev ’s polynomials.
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