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Abstract. Functional equations play an important role in the theory of 
differential equations. Euler functional equation for homogeneous func
tions, Abel and Schroder functional equations and their systems, itera
tion groups of functions are essential tools for studying transformations 
and asymptotic properties of their solutions. And conversely, differen
tial equations give answer to some problems in the theory of functional 
equations, e.g., decomposition of functions.

I. Introduction

Let us start with a historical remark. Floquet theory deals with linear 
differential systems

Y 1 =  P(x)Y, (1)

where P  : M —> M"x"  is a continuos periodic matrix,

P e C ° ( R ) ,  P (x  +  1) =  P (x),

and Y : M ->  M"x"  is a matrix solution of the system (1).
It is known, e.g., R. Bellman [2], that the solution Y  is of the form

Y(x) =  Q(x) ■ eBx,

where Q : M —)• M"x" , Q € C 1(M), is a periodic matrix, Q(x +  1) =  Q{x), and 
B  is a constant n x n matrix with generally complex elements.

The proof of this result is essentially based on the fact that together with 
a solution x i—̂ Y(x) of the system (1) the function x i-»- Y (x  +  1) is also a 
solution. Since Y (x )-C ,C  being a regular constant matrix, is a general solution 
of equation (1), there exists a constant regular matrix Co such that

Y (x +  1) =  Y(x) ■ Cq, detCoy^O, i f l  (2)
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However, this is a matrix functional equation. If we suppose its solution Y  of 
the form

Y(x) =  Q (x )-eBx, (3)

where Q(x +  1) =  Q(x) is a periodic matrix, then

Y (x +  1) =  Q(x +  1) • eBx ■ eB =  Q(x) ■ eBx ■ eB = Y (x )  ■ eB .

If now eB =  Cq (B  =  In Co, det Co ^  0) then we see that any solution Y  
of the functional equation (2) must have the form (3). And this is the essence 
of the Floquet theory.

After this historical remembrance of an application of functional equations, 
let us continue with more recent results when functional equations play an im
portant role in the study of differential equations. In general we may observe 
that functional equations occur when solutions of differential equations are con
sidered in different points, e.g., in consecutive zeros, with delayed or advanced 
arguments, or when transformations of differential equations are considered.

II. Abel functional equation and linear differential equations

Consider the second order equation in the Jacobi form

y" =  P{x)y, P € Cq(I), I  =  (a, b) C K, (p)

—oo ^  a <  b ^  oo. Suppose that this equation (p ) is oscillatory for x —> b, i.e. 
each solution y of (p) has infinitely many zeros when x approaches the right 
end of the interval of definition.

In accordance with O. Boruvka [3], introduce the following notions. 

D efinition  1
A phase a  of equation (p) having two linearly independent solutions y\, y-2 

is defined as a continuous function on I  satisfying the relation

, , ■, yi(x)tan ala;) =  — —
2/2(2:)

for all x where 2/2(2:) ^  0 .

P r o per ty  1
Phase a  being continuous on the whole interval I ,  is also in C3(I) and 

a'(x) 0 on I .

P r o per ty  2
I f  a  is a phase o f equation (p) then its general solution is 

y(x) =  y(x; c i , c2) =  ci \a'{x)\~^ sin(a(a;) + c 2).



D efin ition  2
Let xq € I  be arbitrary, and y be a nontrivial solution of equation (p) 

vanishing at xq, y(xo) =  0. Denote by x\ the first zero to the right of xq of 
this solution y. Define the dispersion of the equation (p ) as the function

<p : I  —> I , <p(xo) =  Xi for each Xq € I.

The dispersion <p is well-defined since all solutions of equation (p) having 
a zero in xq have x\ as its first zero to the right of Xq. Moreover, all such x\ 
exist because equation (p) oscillates when x —> b.

O. Boruvka has proved

P ropo sitio n  1
The dispersion <p and the phase a  o f an equation (p) satisfy the Abel equa

tion
a(ip(x)) =  a(x)  + 7rsign a'. (4)

Hence

<p : I  I , <p(x) >  x, <p € C 3(I) and <p'(x) >  0.

Using these properties we proved [9] for differential equations (p) the following 
result denoting the f-th iterate of ip).

P r o per ty  3
I f  the dispersion <p satisfies one of the conditions

a) <p — id/ is a nondecreasing function, or

b) <p — id/ is a nonincreasing function, or

c) <p — id/ =  S =  const. >  0 ,

then one o f the three cases hold, respectively:

a') the maxima o f absolute values o f each solution o f (p) on consecutive inter
vals [y?W(a;o), <p[*+ 1l(a;o)], i =  0 , 1, 2, . . form  a nondecreasing sequence,

b') those maxima form  a nonincreasing sequence,

c') each solution o f (p) is periodic or half-periodic with the period 5.

Roughly speaking, if the distances between consecutive zeros of solutions 
are increasing, or decreasing or are equal, then their maxima are increasing, or 
decreasing, or equal (solutions are half-periodic).

By using this Abel equation (4) and results of B. Choczewski [5], M. Kucz- 
ma [7] and E. Barvfnek [1], the second order equations with prescribed prop
erties were constructed [12].

Recently the notion of dispersion was extended to some linear differential 
equations of an arbitrary order. The same effect concerning relations between 
distances of consecutive zeros of solutions and their asymptotic behaviour was



proved in [14]. Also a construction of all n-th order linear differential equations 
with prescribed asymptotic properties was presented there.

III. Systems of Abel and Schröder functional equations, iteration groups of functions

Consider a generali nonlinear functional differential equation,

F (x , y ( x ) , y M  (x), j/(£l (x)), yW  (£1 (x)),

■ ■ ■ , y(£k(x)), ■ ■ ■ , y {n) (& (x))) =  o,

and the substitution x =  h(t), z(t) =  y(h(t)) converting the above equation 
into

G (t ,z ( t ) , .. . ,z ^ n\t),z(ri i ( t ) ) , . . . ,  2 (n) (r? i (t)), 
. . . ,z ( r ]k( t ) ) , . . . ,z ^ n\r]k ( t ) ) ) = 0 .

Then y o £i(x) =  y o & o h(t) =  (y o h )  o (/i-1 o f  o h(t)) =  z(m(t)), i.e., 
=  r)i(t), or

horji(t) =  £ i°h (t) , i =  l , . . . , k ,

expressing the fact that deviating arguments & and r/; are conjugate functions.
If we consider a possibility of a special choice of canonical deviations & (x) =  

x +  Ci, Ci =  const., see [10], then we come to a problem of a common solution 
h of a system, o f Abel functional equations for prescribed r/;:

h(rji(t)) =  h(t) +  Ci, i =  l , . . . , k .

If k =  1, i.e. when we have a single Abel equation, there were lot of results 
in the literature, see e.g., [7]. For k >  1 there has recently been investigated 
these problems in Brno, Katowice and Kraków. We discovered several sufficient 
conditions for the existence of a solution of a system of Abel equations [10]. 
Then a systematic research was done by M.C. Zdun [16].

For linear functional differential equations we may take even more general 
transformations of Kummer’s type z(t) =  f(t)y(h(t))  which enable us to impose 
one more condition on coefficients because of a rather arbitrary function /  in 
the transformation.

In the simplest case of linear functional differential equations of the first 
order with one delay

y'(x) +  a(x)y(x) +  b(x)y(£(x)) =  0 

we may consider their canonical form  as

z'(t) +  c(t)z(t — 1) =  0 .

For another choice of special deviations, e.g., of the form £i(x) =  CiX we 
get a system of Schröder functional equations,



h(r)i(t)) =  Cih(t), i =  l , . . . , k .
In general, zeros of solutions are preserved and they may be studied on 

canonical forms only. Since the factor /  in the transformation can be explicitly 
evaluated from coefficients, asymptotic properties of solutions of equations, 
their boundedness, classes L p, convergency to zero, or the rate of growth, can 
be obtained from these properties of canonical equations.

For some cases we have also a criterion o f equivalence, see [13].
Iteration groups o f continuous functions were studied by many authors 

in connection with flows, dynamical systems, fractional iterates, etc. At the 
beginning of the eighties the study of solutions of a system of Abel equations, or 
equivalently, embedding of a finite number of functions into an iteration group 
as its elements, was initiated by investigating functional differential equations.

IV. Euler functional equation for homogeneous functions

Consider a linear differential equation of the form

y{n) +  P n -i(x )y (-n~ 1'> H-------\-po(x)y =  0 on I ,  (P)

I  being an open interval of the reals, pi are real-valued continuous functions 
defined on I  for * =  0 , 1 , . . . ,  n — 1, i.e. Pi G C °(I), Pi : I  

Take functions f  : J  —>№ and h : J  —> I  such that

/  G C n(J ) , f{ t )  ^  0 for each t G J,
and

h G Cn(J ) , h'(t) ^  0 for each t G J, and h (J )  =  I.
For each solution y of equation (P) the function z defined as

Z- j  - t  z(t) :=  f( t )  y(h(t)), t G J ,  ( / , h)

satisfies again a differential equation of the same form

z ^  +  qn-i(t)z^n~^  -\-------1- qo(t)z =  0 on J .  (Q)

Since h is a C"-diffeomorphism of J  onto I ,  solutions y are transformed into 
solutions z on their whole intervals of definition. This is why we also speak 
about a global transformation of equation (P) into equation (Q).

Let y(x) =  (y i(x ) , . . .  ,yn(x))T denote an n-tuple of linearly independent 
solutions of the equation (P ) considered as a column vector function or as a 
curve in n-dimensional Euclidean space E„ with the independent variable x 
as the parameter and y i(x ) , . . . , yn(x) as its coordinate functions; M T denotes 
the transpose of the matrix M.

If z ( t )  =  (z i(t) , . . .  ,z n(t)T denotes an n-tuple of linearly independent solu
tions of the equation (Q), then the global transformation (/ , h) can be equival
ently written as



z0 ) =  / 0 )  • y (M *))
or, for an arbitrary regular constant n x n matrix A,

z(t) =  A f(t) ■ y(h(x)),

expressing only the fact that another n-tuple of linearly independent solutions 
of the sam e  equation (Q) is taken.

To emphasize this situation, let us denote by (Py) and (Qz) the equations 
(P ) and (Q), respectively. Capital P  refers to the coefficients Pi of the equa
tion (Py), subscript y expresses a particular choice of an n-tuple of linearly 
independent solutions. Similarly for (Qz).

Denote by W\y](x) the Wronski determinant of y, i.e.

d et(y(*), y ' ( * ) , . . . ,  y ^ " 1) ^ ) ) .

The coefficient pn- i  in (Py) is given by

Pn-i(x) =  —(In |wr[y](a;)|)/.

We have pn- i  =  0 exactly when W[y](x) =  const. f  0. Since 

W\f • y(/i)](i) =  ( /№ )"  (/»'(*))^  W[y](h(t)), 

for the coefficient qn-\ in (Qz) we have

, . f i t )  n(n — l)h " (t)
Qn-i(t) =  ~ n J ( ^ ----------2------17(f) + P ^ ( h (t)) h (t). (5 )

Namely, if pn- i  =  0 then qn-\ = 0  occurs exactly when

f(t)=c\ h'(t)\ ~z~ , c =  const, f  0 . (6)

Since the factor /  belongs to C n(J) ,  we have h € Cn+1(J).
For the criterion of equivalence of linear differential equations it was essen

tial to find covariant functors from the second order equations (p) to the n-th 
order equations with the vanishing coefficient of y f"-1 ) . The condition on the 
commutativity of the diagram of transformations leads to the relation

F  {\h(t)\~^u1(h(t)),\h(t)\~iu2(h(t))^j =  F (u 1(h(t)),u 2(h(t))) (7)

for linearly independent solutions u i,u 2 of equation (p). Set a =  h (t )~ i,  
r =  ui(h(t)) and s =  u2(h(t)), then from (7) we get

F (ar, as) =  a" -1 F (s , r),

the Euler functional equation. Under the additional condition that each second 
order equation with analytic coefficients should be mapped on its whole interval 
of definition into an n-th order equation again with analytic coefficients, the 
only possible solutions are linear combinations with constant coefficients of



r n - l ^ n - 2 s ^  ^ s n - l _

It means that the n-th order linear differential equation to which the equation 
(p) with a couple Mi, «2 is covariantly mapped is uniquely determined by its 
n-tuple of linearly independent solutions

,.n—1 , , n - 2 W2,. ,n —1

These special n-th order linear differential equations are called iterative equa
tions and serve for effective criterion of equivalence of linear differential equa
tions of an arbitrary order in general case, see [12].

V. Decomposition of functions

Here is a brief comment to results connected with decompositions of func
tions h into finite sums of the form

n

h(x,y) =  ^ 2 fk(x)  •9k(y)•
k= 1

(8)

For sufficiently smooth h, determinants of the form

det

( h h y  . . .  h y n   ̂
h x y  ••• h x y n

\ hx • • hxnyn J

are involved in expressing a sufficient and necessary condition for such a de
composition. The correct formulation of the condition was first given in [11]. 
Functions fk , gk in the decomposition (8) and the number n as the minimal 
number possible for such a decomposition was determined there by using solu
tions of certain linear ordinary differential equations.

A sufficient and necessary condition for not sufficiently smooth functions h 
defined on arbitrary (even discrete) sets without any regularity conditions was 
also formulated in [11] by introducing there a new, special matrices

/ h(x\,y\) h(x1,y2) . . .  / i(x i ,2/„)\ 
h(x2,y i)  h(x2,y2) . . .  h(x2,yn)

\h(xn,y  i)  h(xn,y2) . . .  h(xn,yn) /

Several authors, M. Cadek, H. Gauchman, Z. Moszner, Th.M. Rassias, L.A. 
Rubel, J .  Simsa, in [4], [6], [8], [15] and others dealt with problems concerning 
decompositions of functions of several variables and similar questions.
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