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Abstract. In this paper the authors provide an account of some of their 
recent results concerning the J. D’Alembert equation especially in a suit­
able category of noncommutative manifolds.

Introduction

Questions of representation of functions in several variables by means of 
functions of a smaller number of variables have captured the interest of math­
ematicians for centuries (see [14]). One of these questions is closely connected 
with the thirteenth problem of D. Hilbert (1862-1943) and concerns the solv­
ability of algebraic equations (see [5]). Let us mention the surprising result of 
A.N. Kolmogorov here (see [6]):

Each continuous function h on the unit n-dimensional cube can be 
represented in the form

h(xx,x 2, . . .  ,x n) =  ^ 2  ^ 2  a n (x J))
l< i<2n+l 1 <j<n

with some continuous functions (j>i and Moreover, the inner 
functions aij can be chosen in advance, i.e., independently of the 
function h.

Functions of certain special forms have been investigated by several authors, 
including J . d’Alembert (1717-1783), who as early as 1747 proved that each 
sufficiently smooth scalar function h of the form h(x,y) =  f(x ).g (y ) has to 
satisfy the following partial differential equation

d2 log h 
dxdy (A)
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(see [2]). 
form” :

This equation can be also expressed in the following “Wronskian

det W2+i (h) h hy 
hx foxy

=  0.

A generalization to a finite sum of products of functions in single variables of 
the form

h{x,y) =  ^ 2  fi(x )-9i(y) (p )
l<i<n

has been considered since the beginning of the twentieth century. This forms 
the fundamental problem  in the subject. The functions of the above tensor 
product play a significant role in many areas of both pure and applied math­
ematics. In the year 1904 in the section Arithmetics and Algebra at the Third 
International Congress of Mathematicians in Heidelberg, Cyparissos Stephanos 
announced the following result ([16]):

Functions of the type (P) form the space of all solutions of the 
partial differential equation with the “Wronskian” of order (n + 1 ) :  
det Wn+i (h ) =  0.

However, no proof of the above result was given and no smoothness condition 
on the given function h was mentioned. In fact, Th.M. Rassias gave in [13] a 
counterexample to Stephanos statement. It was F. Neuman ([7]) who proved 
the basic theorem involving the equation det Wn+1 (h) =  0 for functions of class 
Cn.

The problem of representing a function /  in several (more than two) vari­
ables by:

h(x1,x 2, . . . , x k) =  ^ 2  fn ix 1) ' f a { x 2) ..........fik {x k), (Q)
l<i<n

was proposed by Th.M. Rassias in [13]. H. Gauchman and L.A. Rubel [4] 
obtained some new results and extensions on finite sums expansions of the 
form (P), especially for real analytic functions. The first existence theorem on 
the decomposition (Q) was proved by F. Neuman [7]. Later M. Cadek and
J . Simsa [1] found an effective criterion for the existence of the decomposition 
(Q) by making use of a system of functional equations, which does not require 
any assumption on the function h. Furthermore, they outlined a way to find 
systems of partial differential equations whose solutions space form the family 
of all sufficiently smooth functions h of type (Q). J .  Simsa [15], among other 
things, has introduced some new functional equations for functions of the form 
(P) using the so called Casorati determinant.

By using a geometric framework for partial differential equations A. Prasta- 
ro and Th.M. Rassias [11] proved that the set of solutions of the J .  d’Alembert 
equation (A) is larger than the set of smooth functions h of two variables x, y of 
the form (P). This agrees with the above mentioned counterexample by Th.M.



Rassias. The book by Th.M. Rassias and J . Simsa [14] discusses the work 
of both past and mainly current research in the subject. Then, A. Prastaro 
and Th.M. Rassias [10] extended their results on the d’Alembert equation to 
functions of more than two variables by considering the generalized d’Alembert 
equation

dn log h _  
d x id x 2 ■■ ■ dxn ’

in which h =  h(x1,x 2, . . .  ,x n) is a scalar unknown function, smoothly de­
pending on the variables a;1, . . . , a ; " .  Recently A. Prastaro has given a gen­
eral method to calculate integral and quantum (co)bordism groups in PDEs
[8]. This method has proved to be very useful in order to show existence of 
global solutions, their topological structure and tunneling effects in PD E ’s, 
i.e., existence of solutions that change their sectional topology. Furthermore, 
A. Prastaro and Th.M. Rassias in [12] have extended such results also to gener­
alized d’Alembert equations built in the category of quantum manifolds. These 
objects are noncommutative manifolds introduced by A. Prastaro who has also 
formulated a general geometric theory of quantum PDEs [8,9]. By utilizing such 
a theory we proved the existence of quantum tunneling effects for solutions of 
noncommutative d’Alembert equations.

In this paper we provide an account of some recent results in the subject. 
(For more details see the original papers [8-12].)

1. The commutative generalized d'Alembert equation

The n-cPAlembert equation:

dnlog f  
dx\■■ ■ dxn

(d'A)n

is an n-th order partial differential relation on the fiber bundle n : R " x R —> R " , 
i.e., it defines a subset Zn C J2 ? "(R " , R). Let {x a , u ,u a , uap , . . . ,  ua i...an }  be a 
coordinate system on the je t space J2 ? " (R " ,R )  adapted to the fiber structures 
7r„ : J2 ? " (R " ,R )  —> Mn,7f„|0 : —> M. Then Zn can be defined as
the following subset:

Zn =  {D nf ( x 1, . . . ,  xn) € JZ>"(K ",K )|
f i x 1, . . . , x n) =  f i ( x 2,. . . , x n)---  fn ix 1, . . . ,  a;"- 1 )}.

Furthermore, Zn can be locally characterized as

Zn =  F ~ 1{0), F  : JT>n(M.n,M) -)• M,

where the value of F  is a sum of terms of the type

F[s;rja:,/Ji/J2 , - - - , 7 i •••7 g\ =  •••uTl...T„,



with a  zfi /3i 7̂  • • • 7̂  7 i ~f~ • • • ~f~ Tq <  n, s € Z, r € N U {0 } . Furthermore,
the term in F  containing u\...n is just u\...nun~ ' . For example,

F  =  uxyu — uxuy for n =  2;

F  — UxyzU UxyUzU UxzUyU F  '̂ x'Uy'̂ Z for ÏI — 3.

Note that F  has not locally constant rank on all Zn, so Zn is not a subman­
ifold of Furthermore, on the open subset Cn =  u_1(M \ 0) C
J V n(E.n, M), one recognizes that F  has locally constant rank 1. Hence Zn n Cn 
is a subbundle of J V n(E.n, R) —> R " , of dimension n +  — 1. In the follow­
ing, for abuse of notation, we shall denote by (d!A)n either Zn or Zn n Cn. The 
fundamental geometric structure of (d! A)n is given by the following:

T heorem  1.1
1) The n -d ’Alembert equation (d'A)n c  is an n-th order PDE,

formally integrable on the trivial fiber bundle n : M" +1 —> M".
2) The characteristic distribution o f  (d'A)n is zero.

R em ark  1.1
Note that, even if the characteristic distribution of (d'A)n is zero, we can 

built regular solutions by means of characteristic method if one considers the 
infinitesimal symmetry of (d'A)n (for n =  2 it is generated by the following 
vector fields C on 7T : 1F(=)M 3 —> M2:

C =  f(u )d x  +  g(y, u)dy +  [s(y) +  r(x)] udu, (•)

where / ,  s and r are arbitrary functions of a single variable and g is an arbitrary 
function of two variables).

In fact we have the following:

T heorem  1.2
Let tp : P  (d'A) be the mapping that characterizes a 1-dimensional reg­

ular integral manifold N  c  (d'A) such that the second holonomie prolongation 
o f a vector field  Ç, as given in (•), for  suitable functions f ,  g, r and s, 

satisfies the following conditions:

(i) transversality condition: ip*(C ^ \r}) jz 0 ;

(ii) initial conditions: ip*I =  0 , ip*(C,^\I =  0 ,

where I  is the Pfaffian ideal defining the contact structure o f (d'A) (see equation 
(1.3) below), and r] is a differential 2-form defining the horizontalization for  
N. Then, if <p is the flow associated to : d(p =  , one has that V =
U e u  (ps(N ) is a regular 2-dimensional integral manifold o f (d'A), where J  is 
a suitable neighborhood o f  0 € M.



Proof. The conditions for ( (‘2̂  to be a symmetry for T. and transversal to N  
imply that (j>s (N ) =  Ns are 1-dimensional regular integral manifolds of (d'A), 
for s in a suitable neighborhood J  of 0 €  1 .  Furthermore, the conditions (i) 
and (ii) assure that the 2-dimensional manifold V =  Use J  inteSral also 
for (d'A).

R em ark  1.2
Another way to built solutions by means of the characteristic method is 

just to recognize characteristic strips in (d'A)n, cf. [8]. In the following lemma 
we explicitly give the characteristic strips for the case n =  2.

L emma 1.1
The equation

uuxy — uxuy =  0 (d'A)

admits the following two 1-dimensional characteristic strips:

v\ =  X x (dx +  uxdu +  uxxdux +  uxyduy +  uxxxduxx +  uxxyduxy +  uxyyduyy) 
i>2 =  X y (dy +  uydu +  uyxdux +  uyyduy +  uyxxduxx +  uxyyduxy +  uyyyduyv)

( 1.1)
where X x and X y are arbitrary numerical functions on J'D 2(M2,M).

Now, we are ready to prove the first main theorem.

T heorem  1.3
The set Sol(d'A)n of all solutions of the n-dAlem bert equation: (d'A)n, 

considered in domains contained in M", is larger than the set o f all functions 
f  that can be represented in the form

f ( x 1, . . . , x n)

=  / l ( z 2, l ) f 2(x1,: Y>n—1 > ( 1.2)

Proof. The Cartan distribution E„ c  T(d'A)n of (d'A)n that characterizes 
the solutions of (d'A)n is the annihilator of the Pfaffian ideal I n generated by 
the following differential 1-forms on J'D"(M ",M ):

U>0 =  dF  =  (dxa .F )dxa +  (du.F)du +  (dua .F)dua 
-\------- 1- (dua i F)dua i ...an

0)1 =  du — uadxa
0)2ct =  dua — Uafidx13

_i =  dua i ...0,n_1 ua i ...an_1̂ dx^



with the function F  that defines (d'A)n. One has a canonical embedding 
((d'A)„_i)_|_i —> (d'A)n. Let us consider, now, a vector field £ : —►
T J V n(Rn,M) of the following type:

C =  dxn +  undu +  unad a H------- 1- unai...andua i- a" (1.4)

such that unai...an are functions on J'D "+ 1(M",M) satisfying the equations 
which define the first prolongations of (d'A)n , { F  =  0}:

' F a =  (dxa .F ) +  (du .F )ua
H------- H (dua i F ) u aa i ...a,

=  0 , 1 <  a  <  n
. F  =  0

((d'A)n)+ 1

Then £ is necessarily transversal to

( ( d ' A ) ^ ) ^  =  JV ((d'A )n_i)  P| JX>"(M "_1, M)

and it generates a characteristic strip for (d'A)n. Therefore, if N  is an (n — 
l)-dimensional integral manifold contained in ((d'A)n_ i ) + i , a vector field £, 
as defined in (1.4), generates from N  an n-dimensional integral manifold V 
contained in (d'A)n. As N  is not, in general, a regular solution of the equation 
(d'A)n_ i ,  then the so generated integral manifold V, solution of (d'A)n, cannot 
be represented as the graph of some n-derivative of function /  : M" —> M. 
Hence, in particular, V  cannot be represented as the image of the n-derivative 
of a function /(a;1, . . . ,  xn), of the type (1.2).

We shall prove, now, that in Sol(d'A) there are solutions that change their 
sectional topologies. We shall use some recent results obtained by A. Prasta­
ro about tunneling effects and quantum and integral (co)bordism in PD E ’s 
[8]. In the following we shall consider the n-d’Alembert equation given as 
a submanifold (d' A)n of the je t space J."(M n +l) by means of the embedding 
(d'A)n ■ /£ > " ( !" ,M) ^  J £ ( I T +1), where J£(M "+1) =  {[2V]” } with [N]% the 
set of n-dimensional submanifolds of M" +1 that have with the n-dimensional 
submanifold N  c  M" +1 a contact of order n at an a £ N. In the following table 
we report the explicitly calculated expressions of the integral bordism groups 

" ° f  (d'A)n, for n € { 2 , 3 , 4 , 5 } .

n [ d'A h  =  0
n (d'A )3 =  Z 2 n (d'A U =  0 n (d'A )5 =  z 2  0  z 2

Tab. 1.1 Integral bordism groups of (d’A )n for 2 <  n <  5

Now, by means of these integral bordism groups, we see that there are solutions 
of (d'A)n that change their sectional topology. In fact, for example, if n =  2 or 
n =  4 one has: A 2̂ =  fig* =  0. Thus, in the case n =  2, any compact



closed admissible integral 1-dimensional manifold N  of (d'A)  is a disjoint union 
of copies of S 1: N  =  S 1 U .. .p . . .  U S 1. Hence, we can always find a connected 
2-dimensional integral manifold V ,  contained into (d'A),  such that d V  =  N. 
In other words, if N0 =  S^U .. ,r . . .  U S1 and N\ =  S^U .. .s . . .  U S 1 are two 
compact closed admissible integral 1-dimensional manifolds of (d'A),  we can 
always find a 2-dimensional integral manifold V  C  (d'A)  such that d V  =  
IVoUlVi. Of course, if r A s one has a tunnel effect, i.e., a change in the 
sectional topology of V ,  passing from N0 to N±. Similar considerations hold 
for n =  4. Furthermore, if n =  3 one has: A'l:i =  Z2. In this case we have
two types of compact closed admissible integral 2-dimensional manifolds. But 
the above considerations can be extended to each of these types of integral 
manifolds.

We now state our second main theorem.

T h e o r e m  1.4
In the set o f solutions Sol(d!A)n o f the n -d ’Alembert equation, (d'A)n c  

c  J."(M n + l), there are also some manifolds enjoying a change of 
sectional topology (tunneling effect).

2. The quantum generalized d'Alembert equation

In order to give a geometrical model for quantum physics, A. Prastaro 
has introduced in [8,9] a new category of noncommutative manifolds (quantum 
manifolds) built by means of a suitable structured noncommutative Frechet 
algebra, (quantum algebra). An example for such an algebra can be the C*- 
algebra A  C  C((H) of continuous linear operators on a Hilbert space A  corres­
ponding to the canonically quantized observables of a classical system.

The aim of this section is to consider the extension of the generalized 
D’Alembert equation (d'A)m to this new noncommutative framework given 
by A. Prastaro and Th.M. Rassias in [11]. Let us recall some fundamental 
definitions and results on quantum manifolds as given by A. Prastaro.

A quantum algebra is a triplet (A,e,c),  where:

(i) A is a metrizable, complete, Hausdorff, locally convex topological K - 
vector space, that is also an associative K-algebra with unit;

(ii) e : K  —̂ Aq C .1 is .I K-algebra homomorphism, where Aq is the centre 
of A;

(iii) c : A —> K  is a K-linear morphism, with c(e) =  1, e = u n it of A.

A quantum vector space of dimension (m\,. . .  ,m s) £ N s, built on the 
quantum algebra A =  A\ x . . .  x As, is a locally convex topological K-vector 
space E  isomorphic to A™1 x . . .  A™s.



A quantum manifold of dimension over a quantum algebra
A =  A\ x . . .  x As of class Q* ,  0 <  k <  oo ,u , is a locally convex manifold M  
modelled on E  and with a Q *-atlas of local coordinate mappings, where Qk. 
means class C k (weak differentiability, e.g., H.H. Keller [3]), and derivatives
A0-linear. So for each open coordinate set U C  M  we have a set of mi -I------ Kms
coordinate functions xA : U —> A, (quantum coordinates). The tangent space 
TPM  at p £ M, is the vector space built in the usual way (cf. [9]). Then, 
derived tangent spaces associated to a quantum manifold M  can be naturale 
defined.

A quantum PDE  (QPDE) of order k on the fibre bundle 7r : W —> M, 
defined in the category of quantum manifolds, is a subfibrebundle E k c  J V k (IT) 
of the jet-quantum derivative space J V k(W) over M. J V k(W) is, in the cat­
egory of quantum manifolds, the counterpart of the jet-derivative space for 
usual manifolds.

For more details see [9, 10], where there is also formulated a geometric the­
ory for quantum PDEs that generalizes the theory of PDEs for usual manifolds.

In order to state existence of local solutions of QPDEs the following two 
theorems are very useful. (For the terminology used see [9, 10].)

T h e o r e m  2.1 (A. P r a s t a r o  [9])
1) ( 5 - P o i n c a r e  l e m m a  f o r  q u a n t u m  P D E s ). Let E k c  J V k(W) be a 

quantum regular QPDE. I f  A0 is a Noetherian K-algebra, then Ef. is a 8-regular 
QPDE.

2 )  ( C R I T E R I O N  O F  F O R M A L  Q U A N T U M  I N T E G R A B I L I T Y ) .  L etE k  C  J V k(W) 
be a quantum regular, 8-regular QPDE. Then if gk+r+1 a bundle of A0- 
modules over E k, and E k+ r+ i —> E k+ r is surjective for  0 <  r <  n, then Ek is 
formally quantumintegrable.

A solution of Ek that satisfies the initial condition q € Ek is an Tri­
dimensional quantum manifold N  c  Ek such that q £ N  and N  can be repres­
ented in a neighborhood of any of its points q' £ N , except for a nowhere dense 
subset E(AT) C  Ar of dimension <  m — 1, as image of the fc-derivative D ks of 
some -section s of ir : W —> M. We call E(AT) the set of singular points (of 
Thom-Bordman type) of N. If T,(N) ^  0 we say that Ar is a regular solution 
o i E k c J V k (W).

Let us denote by Jfy f W) the fc-jet of m-dimensional quantum manifolds 
(over A) contained into W. One has the natural embeddings E k C  J V k (W)  C  
J km{W). Then, with respect to the embedding E k C  ./.*,(IT) we can consider 
solutions of Ef. as m-dimensional (over A) quantum manifolds V  C  E k such 
that V  can be representable in the neighborhood of any of its points q' £ V: 
except for a nowhere dense subset E (V ) C  V, of dimension <  m — 1; as N (k'̂ — 
the fc-quantum prolongation of an m-dimensional (over A) quantum manifold 
N c W .



In the case that Е (У ) =  0, we say that У  is a regular solution of Êf. c  
J^ (W ).  Of course, solutions У  of E k C J ^ ( W) ,  even regular ones in general 
are not diffeomorphic to their projections ии (У) C M, hence they are not 
representable by means of sections of 7r : W —»• M. Therefore, the above two 
theorems allow us to obtain existence theorems of local solutions.

Now, in order to study the structure of global solutions it is necessary to 
consider the integral bordism groups of QPDEs. In [9] A. Prâstaro has extended 
to QPDEs his previous results on the determination of integral bordism groups 
of PDEs [8]. Let us denote by f l p k , 0 <  p  <  m  — 1, the integral bordism 
groups of a QPDE Ef. c  J fn(W) for closed integral quantum submanifolds of 
dimension p  and class Q™, over a quantum algebra A of Ef.. The structure 
of smooth global solutions of Ef. are described by the integral bordism group 
fi^ “ i corresponding to the quantum prolongation E x  of Ef..

Let us, pass to the study of a noncommutative case. For, now, set K =  Ж 
and let A be a quantum algebra such that A0 is Noetherian. Let us consider 
the following trivial fiber bundle: тг : W =  Am+1 —> Am, with quantum 
coordinates (x A l , . . . ,  x Am , u) i-»- ( x A l , . . . ,  x Am). Then the noncommutative 
generalized ra-d’Alembert equation, m € N, 2 <  m  <  oo, is the QPDE 
(.dt A)m  c  J 'b m{W) c  - t ( W )  defined by means of the following -function:

m

F  : J V m(Am-A) -»• A
=  H om Ao (A® A 0 . . . m . . .  ®Ao A; A) =  (T™ A)OA =  (T0mA)+,

where E  is the sum of formally the same terms with the commutative case. 
Of course more care must be taken on their meaning. For details see [9] and 
[11]. The quantum jet-derivative space J V m(W) C  T™(W) is a quantum 
manifold of dimension (m +  1, m, m2, . . . ,  m m) over the quantum algebra C =

1 m  1 m

A x A x  . . .  x A, i.e., J V m(W) is modelled on Am+1 x (A)m x . . .  x (A)”1”*. 
Moreover J V m(W) is an open quantum submanifold of ./.™(ІУ), and (d'A)m 
is a quantum regular QPDE as the mappings {(d!A)m)+r —> ((cPA jm ).).^ !), 
r >  1, are surjective. Hence, taking into account that (d'A)m is also ^-regular, 
it follows that (d'A)m is formally quantum integrable. Then, since in the open 
subset Zm =  u_ 1(0) C  J V m{W) the QPDE (d'A)m is quantum analytic, in 
a suitable neighborhood U of any point q Є Zm П (d'A)m one is able to build 
a quantum analytic solution that is diffeomorphic to irm{U) C  M =  Am. 
Therefore we have the following:

T heorem  2 .2  ___
The noncommutative generalized m -dAlem bert equation (d'A)m is a form ­

ally quantum integrable QPDE. For any point q Є Zm П (d'A)m passes a quan­
tum analytic solution V that is diffeomorphic to 7гто(У) C  M =  Am.



In order to state existence theorems of global solutions for (d'A)m it is

necessary to calculate the integral bordism groups n ^ A'>m, 0 <  p <  m — 1. 
From the above theorem, and since W  is p-connected, p € { 0 , . . . ,  m  — 1}, one

has the following isomorphism: Qpl Ad)m =  A 0 k  Hp(W: K ), 0 <  p <  m  — 1.
For a proof see [9]. On the other hand H0(W ;K ) =  K , and HP(W; K ) =  0,

for 1 <  p <  m  — 1. Therefore, one obtains: Qq1 A m̂ =  A, Qpd A'>m =  0, for 
1 <  p <  m  — 1. Hence, in particular, the following result holds:

T heorem  2.3 ___
Any admissible integral closed quantum manifold N  c  (d'A)m, o f dimen­

sion m — 1 over A, bounds an integral quantum manifold of dimension m over 
A that is a solution o f  (d'A)m. Moreover, fo r  two admissible integral closed 
quantum manifolds Ar0, Ari c  (d'A)m, o f dimension m — 1 over A, there exists 
a solution V o f (d'A)m such that dV  =  Na(jN i.

In particular if N0 and Ari are homotopically different and V  is connected, 
then V  is a solution with change of sectional topology. Thus, we get the 
following:

C orollary  2.1 ___
In the set Sol((d'A)m) o f solutions o f the quantum generalized m -dA lem ­

bert equation, there are solutions with change of sectional topology (quantum 
tunnel effect,). Such solutions, in general, cannot be represented as mappings 
f  : Am ->• A.

Conclusions

The geometric theory of PDEs introduced by A. Prastaro in [8 , 9] is a 
handable framework where problems in the theory of partial differential equa­
tions find their natural solutions. In fact, the J .  d’Alembert equation is one 
such application.
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