Folia 4 Studia Mathematica I (2001)

Laszlo Szekelyhidi A W iener Tauberian Theorem on discrete abelian torsion groups

Dedicated to Professor Zenon Moszner on his 70th birthday

Abstract. One version of the classical Wiener Tauberian Theorem states that if *G* **is a locally compact abelian group then any nonzero closed translation invariant subspace of** $L^{\infty}(G)$ **contains a character. In other** words, spectral analysis holds for $L^{\infty}(G)$. In this paper we prove a similar **theorem: if** *G* **is a discrete abelian torsion group then spectral analysis holds for** *C(G),* **the space of all complex valued functions on** *G.*

1. Introduction

A possible formulation of one version of the classical Wiener Tauberian Theorem on locally compact abelian groups is the following: if *G* is a locally compact abelian group then any nonzero closed translation invariant subspace of $L^{\infty}(G)$ contains a character. Similar problem can be formulated concerning $C(G)$ instead of $L^{\infty}(G)$ but in that case "characters" should be replaced by "generalized characters": does any nonzero closed translation invariant subspace of $C(G)$ contain a generalized character? The answer is positive in some special cases but the general problem is far from being solved. The problem is still open even in the case where *G* is discrete. In this paper we give a positive answer to the above question if *G* is a discrete abelian torsion group.

2. Spectral: analysis and synthesis on discrete abelian groups

In this paper C denotes the set of complex numbers. If *G* is an abelian group then $C(G)$ denotes the locally convex topological vector space of all complex valued functions defined on *G,* equipped with the pointwise operations and the topology of pointwise convergence. The dual of $C(G)$ can be identified with $\mathcal{M}_c(G)$, the space of all finitely supported complex measures on *G*.

AMS (2000) subject classification: Primary 43A45, Secondary 20K10.

Research supported by FKFP 0310/1997 and OTKA Grant T-031995.

148 László Székelyhidi

Homomorphisms of *G* into the additive group of complex numbers, resp. into the multiplicative group of nonzero complex numbers are called *additive,* resp. *exponential functions.* Bounded exponential functions are exactly the characters of *G,* hence exponential functions are sometimes called generalized characters. Products of additive functions are called *monomials,* products of monomials and exponential functions are called *exponential monomials.*

The basic question of spectral analysis on $C(G)$ can be formulated as follows: does any nonzero closed translation invariant subspace of *C(G)* contain an exponential function? If so, then we say that *spectral analysis holds for* $C(G)$. For instance, if G is finite then by the Wiener Tauberian Theorem the answer is "yes". Another basic problem concerns spectral synthesis on $C(G)$: given a nonzero closed translation invariant subspace of $C(G)$, do the linear combinations of exponential monomials in this subspace form a dense subset? If so, then we say that *spectral synthesis holds for* $C(G)$. This is the case, for instance, if *G* is finitely generated, due to the following theorem.

THEOREM 1 (M. Lefranc $[2]$)

If G is a finitely generated discrete abelian group then spectral synthesis holds for C(G).

3. Exponential monomials on abelian torsion groups

Let *G* be an abelian group. We say that *G* is a *torsion group* if every element of *G* has finite order. In other words, for every x in G there exists a positive integer *n* with $nx = 0$. Hence *G* is not a torsion group if and only if there exists an element of G which generates a subgroup isomorphic to \mathbb{Z} , the additive group of integers.

In what follows we need the following lemma (see [1]).

Lemma 2

Let G be an abelian group, $H \subseteq G$ a subgroup and let D be a divisible abelian *group.* If $\varphi : H \to D$ is a homomorphism, then there exists a homomorphism $\Phi: G \to D$ which extends φ , that is, $\Phi(x) = \varphi(x)$ for all x in H.

THEOREM 3

Let G be an abelian group. Then G is a torsion group if and only if every nonzero exponential monomial on G is a character.

Proof. Suppose that *G* is a torsion group and let $a: G \to C$ be an additive function, and $m: G \to \mathbb{C}$ an exponential function. For every x in G there exists a positive integer *n* with $nx = 0$ and hence $0 = a(nx) = na(x)$, which implies $a(x) = 0$. This means that every additive function on *G* is zero. Further 1 = $m(nx) = m(x)^n$, which implies $|m(x)| = 1$. This means that every exponential function on G is a character. Now we conclude that if G is a torsion group then every nonzero exponential monomial on *G* is a character.

Assume now that *G* is not a torsion group, that is, there exists an *xq* in *G* such that the cyclic group generated by x_0 is isomorphic to Z. Let $\alpha \neq 0$ be a complex number and we define $\varphi(nx_0) = n\alpha$ for any integer *n*. Then φ is a homomorphism of the subgroup generated by $x₀$ into the additive group of complex numbers. As this latter group is divisible, by Lemma 2. this homomorphism can be extended to a homomorphism $a: G \to \mathbb{C}$ of *G* into the additive group of complex numbers. By $a(x_0) = \varphi(x_0) = \alpha \neq 0$ we have that *a* is a nonzero additive function, that is, a nonzero exponential monomial on *G,* which is obviously not a character. The theorem is proved.

4. A Wiener Tauberian Theorem on abelian torsion groups

In this paragraph we show that if *G* is a discrete abelian torsion group, then any nonzero closed translation invariant subspace of $C(G)$ contains a character. The proof heavily depends on Theorem 1.

THEOREM 4

Let G be an abelian torsion group. Then any nonzero closed translation invariant subspace of C(G) contains a character.

Proof. Let $V \subseteq C(G)$ be any nonzero closed translation invariant subspace. Then by the Hahn-Banach theorem V is equal to the annihilator of its annihilator, that is, there exists a set $\Lambda \subseteq \mathcal{M}_c(G)$ of finitely supported complex measures on *G* such that *V* is exactly the set of all functions in $C(G)$ which are annihilated by all members of Λ :

$$
V = V(\Lambda) = \{ f | f \in C(G), \lambda(f) = 0 \quad \text{ for all } \lambda \in \Lambda \}.
$$

We show that for any finite $\Gamma \subset \Lambda$, its annihilator, $V(\Gamma)$, contains a character. Indeed, let *Fr* denote the subgroup generated by the supports of the measures belonging to Γ . Then F_{Γ} is a finitely generated torsion group. The measures belonging to Γ can be considered as measures on F_{Γ} and the annihilator of Γ in $C(F_{\Gamma})$ will be denoted by $V(\Gamma)_{F_{\Gamma}}$. This is a closed translation invariant subspace of $C(F_{\Gamma})$. It is also nonzero. Indeed, if f belongs to V then its restriction to F_{Γ} belongs to $V(\Gamma)_{F_{\Gamma}}$. If, in addition, we have $f(x_0) \neq 0$ and y_0 is in F_{Γ} , then the translate of f by $x_0 - y_0$ belongs to *V*, its restriction to F_{Γ} belongs to $V(\Gamma)_{F_{\Gamma}}$ and at y_0 it takes the value $f(x_0) \neq 0$. Hence $V(\Gamma)_{F_{\Gamma}}$ is a nonzero closed translation invariant subspace of $C(F_{\Gamma})$. As F_{Γ} is finitely generated, by Theorem 1. spectral synthesis holds for $C(F_{\Gamma})$, and, in particular $V(\Gamma)_{F_{\Gamma}}$ contains nonzero exponential monomials. As F_{Γ} is a torsion group, any nonzero exponential monomial on F_{Γ} is a character. That means, $V(\Gamma)_{F_{\Gamma}}$

contains a character of F_{Γ} . By Lemma 2. any character of F_{Γ} can be extended to a character of *G*, and obviously any such extension belongs to $V(\Gamma)$.

We have proved that for any finite $\Gamma \subseteq \Lambda$ the annihilator $V(\Gamma)$ contains a character. Let $char(V)$ denote the set of all characters contained in V . Obviously *char*(V) is a compact subset of \hat{G} , the dual of G , because *char(V)* is closed and \hat{G} is compact. On the other hand, the system of sets *char(V(F))*, where $\Gamma \subseteq \Lambda$ is finite, is a centered system of nonempty compact sets:

 $char(V(\Gamma_1 \cup \Gamma_2)) \subseteq char(V(\Gamma_1)) \cap char(V(\Gamma_2)).$

We infer that the intersection of this system is nonempty, and obviously

$$
\emptyset \neq \bigcap_{\Gamma \subseteq \Lambda \text{ finite}} char(V(\Gamma)) \subseteq char(V).
$$

That means, $char(V)$ is nonempty, and the theorem is proved.

References

- **[1] E. Hewitt, K. Ross,** *Abstract Harmonic Analysis I., II.,* **Springer Verlag, Berlin, 1963.**
- [2] M. Lefranc, *L'analyse harmonique dans* \mathbb{Z}^n , C. R. Acad. Sci. Paris **246** (1958), **1951-1953.**

Institute of Mathematics and Informatics Kossuth Lajos University H-4010 Debrecen Pf. 12. Hungary E-mail: **szekely@math.klte.hu**

Manuscript received: November 23, 1999