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On a problem of H.-H. Kairies concerning

Euler's Gamma function

Abstract. The Bohr-Mollerup theorem on the Euler I' function states: If
f: Ry — Ry satisfies the functional equation f(x + 1) = z f(z) on Ry,
logof is convex on (v, +00) for some v > 0 and f(1) =1 then f=T.
We give some partial answers to the question posed by H.-H. Kairies: By
what other function can the logarithm be replaced in this statement.

Introduction

Let us introduce the family of functions
F={f:Ry >Ry |VzeR;: f(z+1)==2f(z)and f(1)=1}.

Then for every f € F and n € N we have f(n) =T'(n) = (n — 1)! where I' is
the Euler function defined by the formula

I'(z) = lim Ty (z), )

where -
n*n!
T,(z) = : T
Moreover, f € Fiff f(z) = p(z)I'(z), where p: R, — R is a periodic function
of period 1 with p(1) = 1.
We begin our considerations with reminding the Bohr-Mollerup Theorem,
cf. [1] p. 14.

THEOREM (Bohr-Mollerup)
If f € F andlogof is convex on (v, +00) for some v > 0, then f =T.

H.-H. Kairies proposed (private communication) to investigate the proper-
ties of the following set:

M:={g:Ry - R | (f € F and go f is convex on (v, +00) for some v > 0)
= f=T}
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In this paper we find some elements of the set M and study its properties.

1. Properties of the set M

We start with the two lemmas which follow directly from the definitions of
monotonicity and concavity of the functions involved.

LEMMA 1
If g : R = R is increasing and concave then g~
convez.

L: R — R is increasing and

LEMMA 2
Let X,Y, Z be some intervals of R. If f : X = Y is a convezx function
and g : Y — Z is increasing and convex then go f : X — Z is convez.

THEOREM 1
Let g € M and let h : R — R be increasing and concave. Then ho g :
Ry — R belongs to the set M.

Proof. Let g and h satisfy the assumptions and let f € F. By Lemma 1
the function h~! is increasing and convex. If hogo f is convex then (by Lemma
2) h"Yohogo f is convex, too. Thus, since g € M, we have ho g € M.

The above theorem implies

REMARK 1
Let a > 0. If g: Ry — (a, +00) is increasing and logarithmically convex
then g~ € M.

Proof. By our assumption logog is a convex function. By Lemma 1 and
Lemma, 2 the function g~ oexp = (log og)_1 is increasing and concave for x €
(log a, +00). By the Bohr-Mollerup Theorem, log € M. Thus, by Theorem 1,
g~ = (logog) ™" olog € M.

In particular, we have

REMARK 2 )
The function G = (T'[(, 100)) i in M.

THEOREM 2
IfgeM,a>0,beR, thena-g+be M.

Proof. Let g€ M, a > 0andb € R. Take afunction f € F. If the function
(a-g+b)ofis convex then so is the function L - [(a-g+b)o f]— L =go 1.
Since we have assumed that g€ M, f =T and a-g+ b € M.
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Besides f = I' there are other convex functions belonging to F, e.g., the
functions f.: Ry — Ry,

fe(z) =T'(z) exp [esin(2nz)] .

They are convex for sufficiently small ¢ > 0 on (0,+00) (see [2]). Thus we
obtain the following remarks:

REMARK 3
The function idg + does not belong to M.

REMARK 4
If h: Ry — Ry is an increasing and convex function then h ¢ M.

Proof. Let h be a function satisfying the assumptions and let f € F. By
Lemma 2 if f is convex then so is h o f. Because I' is not the only convex
element of F, we have h ¢ M.

2. Special elements of the set M

THEOREM 3
Let us assume that h: Ry — R and

lim h(z)=m €R. (1)

ZT—>+00
Then log +h is an element of the set M.
Proof. We put g = log +h, and take a function f € F. Moreover we fix

ann € Nand z € (0,1]. If go f is convex then the following inequalities hold
true:

gof(n)_gof(n_l)ggof(n-i-xz).—gof(n) .

<gof(n+1)—gof(n)
Using f(z + 1) = zf(z), we have

T (gn-1 — gn—2)

i[$($+1)---(x+n—1)f(x)] — gn—1 3)

<
< z(gn — gn-1)

where we have put, for short,

Since g = log +h, we get
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zllog(n — 1)+ hp1 —hp_2] <log[z(z+1)...(z +n — 1) f(z)]
+hlz(z+1)...(z+n-1)f(z)]
—log(n —1)! = hp—
L zlogn + hy — hp_1].

Since the exponential function is increasing, we obtain

o= [
< zz+1)...(z+n-1)f(z) expohfz(z+1)...(z+n—1)f(z)]
= (n —1)! exp hp_1
o[ exphy, 17
s [exp hn_l] )
Hence
z (exp hn—l)w+1
o et
Lz(z+1)...(x+n-1)f(z) -expoh[z(z+1)...(z +n —1)f(z)]
< nf(n—1)! (ean):_l‘
(exp hyp—1)
In turn,
s (exp By )Tt
n*n! 7(exp T 1)
Lz(z+1)...(z+n)f(z) expoh[z(z +1)...(z +n)f(z)]
< il & +n  (exp hin)® ~_expohfz(z+1)...(z +n)f(z)]
ST n (exphpo1)® Tt expohfz(z+1)...(x+n—1)f(2)]
and
(exp hn)w—H
Fn(x) ’ (exp hn—l)w
< f(x)expoh[z(z +1)...(z +n)f(z)]
<N L (@) (exp hy)* __expohfz(z +1)...(z +n)f(z)]
= " (exphp_1)® ' expohfz(z+1)...(x+n—-1)f(z)]

Notice that by the relations resulting from (1) (lim, e by, = m)

nh_)n;o expoh[z(z+1)...(x+n)f(z)] =™

(exp hy)* 1

n=oo (exp hp—1)"

:em
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lim (exphn)®  expohz(z+1)...(z+n)f(z)] _ o
n—o0 (exp hp_1)° "' expohfz(z +1)...(z +n—1)f(z)]

and by (') we obtain

L(z)e™ < f(x)e™ < T(x)e™.

Thus f(z) =TI'(z) for z € (0,1]. We shall show that f(z) = I'(z) for each real
positive z.

Let z € R, . We proceed by induction. There exists a ¥ € N such that
z € (k—1,k]. If K = 1 then we have already proved that f(z) = I'(z).
Let us assume that f(z) = I'(z) for z € (k — 1,k]. Take z € (k,k + 1]
and y = z — 1. Since y € (k — 1,k], by the inductive assumption we have
f(y) = I'(y). By the functional equation for f we have f(y+1) = yf(y). Thus
fly+1) =y (y) =T(y + 1) hence f(z) = I'(z) for =z € (k,k + 1]. Therefore
f()=T(z) for z € R,

REMARK 5
The function g = log+ arctan belongs to M.

REMARK 6
Let a,b > 0. Then logo (aidR+ + b) € M.

Proof. Take h =logo (a + ﬁ), so that logo (aidr, + b) = log+h and
+
lim,_, 4 o0 h(z) = a. Thus, by Theorem 3, logo (aidr, +b) € M.
THEOREM 4

Let m,a > 0 and let h : Ry — Ry be an increasing function such that
h(z) =m — & + R(z), where R(z) =0 (%), # & +0o. Then h-log € M.

Proof. We put g = h-log, and we take a function f € F. Moreover we fix
ann € Nand z € (0, 1).
If go f is convex then inequalities (2) and (3) (as in the proof of Theorem 3)
hold true. Since g = h - log, we get
% {hn1 log [(n = 1)1] = hn_s log [(n — 2)1]}
Lhof(n+z)loglz(x+1)...(x+n—1)]
- hn—l 10g [(n - 1)']
< {hy log(n!) — hp_1 log[(n — 1)1]}.

By properties of the logarithmic function we have

(n = 1)th17” [#(z +1) ... (z +n— 1)f(z)]"
log [m] < log (= D)
nlftn ’
< log [m]
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Thus
1 z+1
[({En‘fl’ihnl]w <l@+1). (@ +n=1)f@)"
"]
DRTCES T
and next
R R I IC.

1
nlzha D)
(n — 1)IE=Dkn '

It follows easily that

IRTCTRS I By =)
[( ] <z(@+1)...(z+n)f(z)

n — 1)1zhn—1

< (.’L' + n) [(n — 1)!(w—1)hn_1

So we have

pn(x)[ @Dk, ] T
(

nln® n — ]_)!il«'hn_1
1
Ln(z)(@ +n nlzhn Rof(atn)
< f@) < 2z 2 n) -
nln® (n — 1)1E—Dka
Let us put
1 @Dk, ] FTGATD
bn = nln® [(n _ 1)!whn_1:|
and 1
(z +n) plehn Rof(win)
T = -
nln® [(n — 1)!(w—1)hn_1]

We notice that .
ln = [a,n bn cn]m

and
zT+n

n

T'n = [a'n bn—l dn]m :

where
logay, = z(hy — hp—1)log[(n — 1)1,

logb, = [hn — ko f(n+1+z)]log(nl),

1
n!whn :| hof(z+n)
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logen, = z[hn — ho f(n+ 1+ z)]logn (12)

and
logd,, = z[h, — ho f(n + z)]logn. (13)

We shall prove that

lim l,=1 and lim r,=1.
n—roo n—ro0

By (10) it is obvious that

l0g an 11 log(n!)
=A, — 14
log an, log [(n — 1)]] (14)
where B B
An — n+1 — n-
hn - hn—l

By the assumptions of the theorem we have
m— (n+1), +R[(n+ D] -m+ 5 - R(n!)

Ap = .
m— &+ R(n!) —m+ (n_l)! —R[(n-1)]

Thus

(n—1)! [(n + 1)!] — nlR(n!)

An = nl  a—2+(n-DRM) - (- 1)R[n-1)]

Because R(z) = o(L), 2 = 400, we have

lim zR(z)=0. (15)

z—+00

Consequently lim,,_,., A, =0 and by (14) lim,,_,, log a,, = 0, which gives

nll)n;o an = 1. (16)
Similarly, by (11),
logbny1 _ B.. log[(n + 1)!] (17
log by, " log(n!) ’

where
hnt1 —hof(n+2+1z)

Bn = hn—ho f(n+1+2)

and by (1) we have
m— i t BRI+ DY) —m+ 75 - R[f(n+ 2+ 2)]

m—n—+R(n')—m+m—R[f(n+1+x)]

B, =

and further
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n!
BT
s —a+ (n+ DIR[(n+ 1)l - (n+ DIR[f(n + 2+ z)]
) Foirsy — o+ nlR(n!) —nlR[f(n + 1+ a)] '
Because f(n+1+2z) =z(x +1)...(z +n) f(z), we have (by (I'y))

(18)

n! 1
forizs 0 oy
and !
lim S
Note that
nR[f(n+1+2)] = f(n+1+2)R[f(n+1+2)] f(n++x)

so that by (15) we have
lim n!R[f(n+1+2)] =0.

n—o0
Thus (18) yields lim,,_, B, = 0 whence lim,,_,, logb, = 0 (by (17)), and
finally
lim by, = 1. (19)

n—oo
Similarly (using (12)) we can prove that
lim ¢, = 1. (20)

n—oo

Finally, by (13) it follows that
logdns1 _ o log(n + 1)

log d,, " logn

where
hnt1—hof(n+1+2z)

Dn = hn—ho f(n+z)
We can observe that
D — fln+z)  Sop
" fn+l+z) S,
with a
Spi=a— f(n+a) [E — R[f(n +2)] +R(n!)]. (21)
But

fntz) 1 n*f@@) _ f@)
W @) mtn Tu@) Erme
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and because of z € (0, 1) we have

lim 7f(n +2)

n—o00 n!

=0.

The identity
fln+z)

f(n+2) R(nl) =n! B(n) - ——

together with (15) imply
lim f(n+z)R(n!) =0.
n—oo

So limy, 00 Dy, = 0 because of (15) and (21), whence lim,, logd,, = 0 and
finally

lim dy, = 1. (22)
n—oo
Thus by relations (8), (9), (16), (19), (20) and (22) we obtain
lim I, = lim r, =1. (23)
n—oo n—oo

This implies that f(z) =I'(z) for z € (0, 1] (as f(1) =1 =T(1)).
Applying the same inductive argument as in the proof of Theorem 3 we
find that f(z) =T'(z) for z € Ry, and the proof is completed.

The starting point of the proofs of Theorem 3 and of Theorem 4 is analogous
to that in Artin’s proof [1] of the Bohr-Mollerup Theorem.
We notice that in a vicinity of 400 the function arctan is represented by

" T 1 + 1 1
arctanx = — — — + — — —

2 z 32® 525
Thus we have the following

REMARK 7
The function arctan-log is in M.

3. Special convex compositions with T'

It is known that g oI is convex on Ry for g = log. We want to present
other functions g with this property.

THEOREM 5

Let the functions gi1,92 : Ry — R be defined by g1 := log+ arctan and
g2 = logo (idRJr +a), where a > 0. Then there is a v > 0, such that gy o T
and g2 o' are convez on (v, +00).

Proof. 1°. Let 3 : Ry — R be given by 3 = (logoI')’, and let g; = log+h
(where h = arctan). We notice by (I') that the function ¢ = 1% is represented
by the formula
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so (by the inequality log(l + z) < z) we have
$(@) < loga. (24)

Moreover, the derivative of 9 is given by
M)z - @) 1 1 oo 4tz

B [L(z)]” AR +/0 (82 + 22)? (e27t — 1)

(see [4] p. 250-251). Thus ¢’ = (logoI')” > 0 on (0,+00). By the definition of
g1 we see that

P (z) dt (25)

np _ (mn2
oy = LT L oy () 4 v oI

By properties of h we can see that

Ve eRy : Wol(z) -T'(z) >0,

and _or
h'ol = —_—.
(1+17?)
So we obtain:
"e L 2 > _21-”("1")
R’ oD(z) - [I'(z)]" 2 T@F
., [r'(wr, 1 —2p@]
I'(z)] T(=) I'(z)

Thus by conditions (24) and (25) we have:

1 1 log” z
N (@ >=+-—-2 >0
(gl o ) (1’.) T + 21:2 1-\(1:) 2

\

for sufficiently large z, say for z > ~. Hence g, oI is convex on (v, +00).

2°. Now let a > 0 and let go = logo (idRJr + a). The function (g o 1")” is
given by the formula

_ I"@)l(z) - [['(2)]” + al" ()
[L(z) +a* '
Because log oI" and I' are convex and twice differentiable, we have

Vz € Ry : I (@)I(z) — [['(@)]° >0 and IV (z) >0

(g20T)" (2)

Hence go o log is convex on R,.
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