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On a  problem of H.-H. Kairies concerning 
Euler's Gamma function

Abstract. The Bohr-Mollerup theorem on the Euler T function states: If 
/  : R+ —>• R+ satisfies the functional equation f (x  +  1) =  x f (x )  on R+, 
log o f  is convex on (7 , + 0 0 ) for some 7 ^ 0  and /(1 )  =  1 then f  =  T .  

We give some partial answers to the question posed by H.-H. Kairies: By 
what other function can the logarithm be replaced in this statement.

Introduction

Let us introduce the family of functions

F  :=  { /  : M+  —> M+  | Vx €  M+  : f ( x  +  1) =  x f(x )  and / ( 1 )  =  1 } .

Then for every /  €  F  and n €  N we have f(n )  =  T(n) =  (n — 1)! where T is 
the Euler function defined by the formula

r ( * )  =  lim r „ ( z ) ,  (T)
n —y 00

where <r} ̂  Ti I
^  y  (T „)x(x +  1) . . . (a; +  n)

Moreover, /  €  F  iff f(x )  =  p (x )r(a ;), where p : M+  —> M+  is a periodic function 
of period 1  with p (l)  =  1 .

We begin our considerations with reminding the Bohr-Mollerup Theorem, 
cf. [1] p. 14.

T h e o r e m  (Bohr-Mollerup)
I f  f  & F  and logo/  is convex on (7 , + 0 0 ) for  some 7 ^ 0 , then f  =  T.

H.-H. Kairies proposed (private communication) to investigate the proper
ties of the following set:

M  :=  {g : M+  —> M | ( /  €  F  and g o /  is convex on (7 , + 0 0 ) for some 7 ^ 0 )

= * /  =  r } .



In this paper we find some elements of the set M  and study its properties.

1. Properties of the set M

We start with the two lemmas which follow directly from the definitions of 
monotonicity and concavity of the functions involved.

L emma 1
I f  g is increasing and concave then g~' : R  —> R  is increasing and

convex.

L emma 2
Let X , Y , Z be some intervals o f R. I f  f  : X  Y is a convex function 

and g :Y  —> Z is increasing and convex then g o /  : X  Z is convex.

T heorem  1
Let g £ M  and let h be increasing and concave. Then h o g :

M+ —> R  belongs to the set M .

Proof. Let g and h satisfy the assumptions and let /  € F . By Lemma 1 
the function /i-1 is increasing and convex. If h o g o f  is convex then (by Lemma 
2) /i-1 o h o g o f  is convex, too. Thus, since g £ M , we have h o  g g M .

The above theorem implies

R em ark  1
Let a  >  0. If g : R +  —> (a, +oo) is increasing and logarithmically convex 

then 5 _1 £ M .

Proof. By our assumption log og is a convex function. By Lemma 1 and 
Lemma 2 the function g ~ x o exp =  (log og)-1 is increasing and concave for x £ 
(loga, +oo). By the Bohr-Mollerup Theorem, log £ M . Thus, by Theorem 1, 
g 1 =  (log°5)_1 0 log € M .

In particular, we have

R em ark  2
The function G =  ( r  |(2,+oo)) is in M .

T heorem  2
I f  g £ M , a >  0, b £ M, then a - g +  b £ M .

Proof. Let g £ M , a >  0 and b £ ! .  Take a function f  £ F . If the function 
(a • g +  b) o f  is convex then so is the function ^ • [(a • g +  b) o /]  — k =  g o  f .  
Since we have assumed that g £ M , f  =  T and a ■ g +  b £ M .



Besides /  =  T there are other convex functions belonging to F , e.g., the 
functions f c : M+ —> M+ ,

They are convex for sufficiently small c >  0 on (0 ,+oo) (see [2]). Thus we 
obtain the following remarks:

R em ark  3
The function idR+ does not belong to M .

R em ark  4
If h : M+ —> M+ is an increasing and convex function then h ^ M .

Proof. Let h be a function satisfying the assumptions and let /  € F . By 
Lemma 2 if /  is convex then so is h o  f .  Because T is not the only convex 
element of F , we have h ^ M .

2. Special elements of the set M
T heorem  3

Let us assume that h : M+ —> M and

Then lo g +/i is an element o f the set M .

Proof. We put g =  log + h ,  and take a function /  C F. Moreover we fix 
an n € N and x e  (0,1]. If g o /  is convex then the following inequalities hold

f c(x) =  T(a;) exp [csin(27ra;)].

£—>•+00lim h(x) =  m £ M. (1 )

(2)
^ g o f ( n  +  l ) - g o f ( n ).

Using f ( x  +  1) =  x f(x ) ,  we have

x (gn- i -  9n-2) ^  g [x{x +  1 ) . . . ( x  +  n -  1 )f(x )] -  g„ - 1 

^  x (gn 9n—1)

where we have put, for short,

gn ■ ■ = g(n\), 
hn :=  h(n\).

Since g =  log + h ,  we get



x [log(n -  1) +  hn-1 -  hn- 2\ ^  log [x{x +  1 ) . . . ( x  +  n -  l)/(a?)]
+  h [x(x +  1) . . .  (x +  n -  l)/(a?)]

-  log(n -  1)! -  hn-1 
^  x [log n +  hn -  hn- 1] .

Since the exponential function is increasing, we obtain

exp hn- 11x 
exp h„ - 2

x(x +  1) . . .  (a; +  n — 1 ) f(x )  exp oh [x(x +  1) . . .  (x +  n — l)/(a ;)]

(n -  i y  

£
(n -  1)! exp hn-1

<  nx

Hence

(n — l ) x (n — 1)!

exp hn 
exp h„-1

(exp hn- i )x+1
(exp hn- 2)x

^  x(x +  1) . . .  (a; +  n — 1 ) f(x )  ■ exp oh [x(x +  1) . . .  (x +  n — l) / (x )]  
(exp hn)x

nx{ n -  1)!
(exp hn- 1)X  —  1  '

In turn, 

nxn\
(exp hn)x+1 
(exp hn- i ) x
^  x(x  +  1) . . .  (a; +  n )f(x ) ■ exp oh [x(x +  1) . . .  (x +  n)f(x)\

x +  n (exp hn)x exp oh [x(x +  1) . . .  (x +  n)f(x)\
<  nxn\

n (exphn- i ) x 1 expoh[x(x +  1 ) . . .  (x +  n — l)f(x )]

and

r „ (æ )•
(exp hn) X +  l

(exp hn-x )x 
^  f(x )  exp oh [x(x +  1) . . .  (x +  n)f(x)\

exp oh [x(x +  1) . . .  (x +  n)f(x)\x +  n (exp hn)
^ --------- r„ (x )

n ' (exp /i„_i)x 1 expoh[x(x +  1 ) . . .  (x +  n — l)f(x )] '

Notice that by the relations resulting from (1) (lim ^oo  hn =  m) 

lim exp oh [x(x +  1) . . .  (x +  n )f(x)] =  em
n—yoo

lim (exP hn)x+1 =  m11111 x C
n-¥oo (exp hn- 1)



j. (exp hn)x exp oh [x(x  +  1) . . .  (x +  n)f(x)\ _  m
n -̂oo (exp h n - x f -1 exp oh [x{x  +  1 ) . . . ( x  +  n -  1 )f(x)]

and by (r )  we obtain

T(x)em ^  f (x ) e m ^  T(x)em.

Thus f(x )  =  T(a;) for x £ (0,1]. We shall show that f(x )  =  T(a;) for each real 
positive x.

Let x £ M+ . We proceed by induction. There exists a k £ N such that 
x £ (k — l,k ] .  If k =  1 then we have already proved that f(x )  =  T(a;). 
Let us assume that f(x )  =  T(a;) for x £ (k — l,fc]. Take x £ (k ,k  +  1] 
and y =  x — 1. Since y £ (k — 1, k], by the inductive assumption we have 
f(y )  =  T(y). By the functional equation for /  we have f (y  + 1) =  y f(y ). Thus 
f (y  +  1) =  yT(y) =  r (y  +  1) hence f(x )  =  T(a;) for x £ (k ,k  +  1]. Therefore 
f(x )  =  T(a;) for x £ M+ .

R em ark  5
The function g =  log +  arctan belongs to M .

R em ark  6
Let a, b >  0. Then logo (aidR+ +  b) £ M .

Proof. Take h =  log o (a  +  ^ , so that log o (a idR+ +  6) =  log + h  and

lim ^+o o  h(x) =  a. Thus, by Theorem 3, log o (a idR+ +  b) £ M .

T heorem  4
Let m ,a  >  0 and let h : M+ —> M+ be an increasing function such that 

h(x) =  m — ^ +  R(x), where R(x) =  o ( ^ ) , x —> +oo. Then h ■ log £ M .

Proof. We put g =  h - log, and we take a function f  £ F . Moreover we fix 
an n £ N and x £ (0, 1).

If go f  is convex then inequalities (2) and (3) (as in the proof of Theorem 3) 
hold true. Since g =  h ■ log, we get

x log [(n -  1)!] -  hn- 2 log [(n -  2)!]}

^  h o f (n  +  x) log [x(x +  1) . . . (x +  n — 1)]

-  K - !  log[(n -  1)!]

^  X {h n log(n!) -  hn- 1 log [(n -  1)!]}.

By properties of the logarithmic function we have

log
(n — l )!**"-1 
(n -  2)\hn~2 _ ^  log 

^  log

[x(x +  1) . . .  (x +  n — l) f {x ) ]h° ^ x+n^
(n — l )!'1’* -1

n:\hn

(n -  l ) ! fe»-i



Thus

[ ( n - 1)!*» -1] ^ 1 
[(n _ 2) ! ^ - 2]a ^  [x(x +  1) . . .  (x +  n -  1 ) f(x )]h° ^ x+n'>

£
[ n ! fc» ] :

[(n -  I)!ft— 1]X  —  1

and next

(n -
(n -  2)\xh™-->

h o f ( x + n )

^  x(x +  1 ) . . .  (x +  n — 1 ) f(x )  

n\xhn
(n -  1)!(*-I)fe»-1_

h o f ( x + n )

It follows easily that

n j(x+l)h„

_(n -  l)!xh™-i

h o f ( x + n + l )

^  x(x  +  1) . . .  (x +  n )f(x )

So we have

r „ (a ;)
! nxn\n

n \(x+l)hn

(:n -  1) ! * ^ - !

^  (x +  n)

h o f ( x + n + l )

n\| xhn

(n -

h o f ( x + n )

^  f(x )  ^
Tn(x)(x +  n) n\| xhn h o f ( x + n )

n\nx (n — l) ! !3 3 - i

Let us put

and

We notice that 

and

where

l‘n -- ! nxn\n

r n =

n \(x+l)hn

(n -  1 )!æfe»-i 

n\xhn

h o f ( x + n  +  l )

(x +  n) 
n\nx (n — l ) ! ! * - i

In =  [On bn Cn\ hof(n+i + *)

h o f ( x + n )

Tn — [ûn bn — 1 dn\ +
X +  n 

n

log an =  x(hn -  hn- 1) log [(n -  1)!], 

log bn =  [hn - h  o f (n  +  1 +  x)] log ( n ! ) ,

(5 )

(6)

(7 )

(8)

(9 )

(10)

( H )



and

log c„ =  x[h„ -  h o f (n  +  1 +  a;)] log n

log dn =  x[hn -  h o f (n  +  x)\ log n. 

We shall prove that

lim ln =  1 and lim rn =  1.
n—yoo n—yoo

(12)

(13)

By (10) it is obvious that

log an+1 
log an

=  A,
log(n!)

where

An =

l o g [ ( n -  1)!]’ 

hn+ i hn

(14)

h n  h n — i

By the assumptions of the theorem we have

m -  + R [ (n  +  1)!] -  m +  % -  R(n\)
An =

Thus

An =

m ~  % +  R(n\) - m +  — R [(n  — 1)!] ‘

(n — 1)! a — ^ -j- +  n\R [{n +  1)!] — n\R(n\)
n\ a — ^ +  (n — l)!i?(n !) — (n — l)!i?  [{n — 1)!] ’

Because R(x) =  o (^), x —> +oo, we have

lim xR(x) =  0. (15)
x—H-oo

Consequently lim ^o o  An =  0 and by (14) lim ^o o  log an =  0, which gives

Similarly, by (11),

where

lim an =  1.n—> oo

logftn+i =  o _ log[(n +  1)!] 
logfe„ "  log(n!)

hn.|_i -  h o  f (n  +  2 +  x)

(16)

(17)

Bn = hn -  h o  f (n  +  1 +  x)
and by (1) we have 

(»-
™ -  % +  R (n ') ~ m +  f(n+l+x) -  R  [ / ( n +  1 +  * )]

m  -  ( ^ y r  + R [ {n  +  1)!] -  m  +  /(„+a2+x) -  R [f(n  +  2 +  x)}
Dn ~  ----------------------------------------------------------------------------------------

and further



B„ =
n\

(n +  1)!

x / ( i+ 2+x) -  a  +  { n  +  1)!-R [ { n  +  1)!] -  ( n  +  1)!-R [/(n +  2 +  a;)] 

f(n+i+x) ~ a +  n 'R (n'-) ~  n\R [f(n  +  1 +  a?)]

Because f (n  +  1 +  a;) =  x(x +  1 ) . . .  (a; +  n) f(x ) ,  we have (by (r„ ))

n\ „  , s 1

and

f (n  +  l  +  x)

lim

=  r„(a;)

n!
n-Hx> f(n  +  1 +  a;)

f(x )  nx

=  0 .

Note that

n\R [f(n  +  1 +  a;)] =  f (n  +  1 +  x)R  [f(n  +  1 +  a;)] 

so that by (15) we have

n!
f (n  +  l  +  x)

(18)

lim n! R [f(n  +  1 +  a;)] = 0 .

Thus (18) yields lim, 
finally

n—> oo

B n =  0 whence limn^.00 logfe„ =  0 (by (17)), and

lim bn =  1.n—yoo
Similarly (using (12)) we can prove that

lim cn =  1.n—yoo

Finally, by (13) it follows that 

log dn+1
=  D,

log(n +  1)

where

We can observe that

Dn =

Dn =

log dn log n

hn+  i -  h o  f (n  +  1 +  x)
hn — h o  f  (n +  x) 

f (n  +  x) Sn+1
f (n  +  l  +  x)

with

But

Sn :=  a — f(n  +  x) — -  R [f(n  +  x)] +  R(n!)

f (n  +  x) nxf ( x ) f(x )
nl r„(a;) x +  n r„(a;) (^  + 1) n1“

(19)

(20)



and because of a; € (0 , 1) we have

lim
n—yoo

f (n  +  x) 
n\

=  0 .

The identity

f (n  +  x) R(n\) =  n\ R(n\) ■ ^ n "I" X̂
n\

together with (15) imply

lim f (n  +  x) R(n\) =  0.
n—yoo

So linijj^oo Dn =  0 because of (15) and (21), whence lim ^o o  logd„ =  0 and 
finally

lim dn =  1. (22)
n—yoo

Thus by relations (8), (9), (16), (19), (20) and (22) we obtain

lim ln =  lim rn =  1. (23)
n—yoo n—yoo

This implies that f(x )  =  T(x) for x £ (0, 1] (as /(1 )  =  1 =  T (l)).
Applying the same inductive argument as in the proof of Theorem 3 we 

find that f(x )  =  T(x) for x £ M+ , and the proof is completed.

The starting point of the proofs of Theorem 3 and of Theorem 4 is analogous 
to that in Artin’s proof [1] of the Bohr-Mollerup Theorem.

We notice that in a vicinity of +oo the function arctan is represented by
7T 1 1 1

“ c«anx =  5 - -  +  ^ - ^  +

Thus we have the following

R em ark  7
The function arctan • log is in M .

3. Special convex compositions with r

It is known that g o T is convex on M+ for g =  log. We want to present 
other functions g with this property.

T heorem  5
Let the functions g i,g 2 ■ —> M be defined by g\ :=  log +  arctan and

52 :=  logo (idR+ +  a ), where a >  0. Then there is a 7  >  0, such that 51 ° T 
and 5 2  0 r  are convex on (7 , + 0 0 ).

Proof. 1°. Let ip : M+ —)• M be given by ip =  (log oT)7, and let 51 =  log + h  
(where h =  arctan). We notice by (T) that the function ip =  ^  is represented 
by the formula



i>{x) =  logo; -  ^ 2
n=0

1 -  log ( 1  +  1
X +  Tl X +  Tl

so (by the inequality log(l +  a;) ^  a;) we have

tp(x) ^  log a;.

Moreover, the derivative of ip is given by

r"(a;)r(a;) — [ry (a?)]2 1 1 /-+0°
tp'(x) =

1 1  r
x +  2x2 +  J 0

4 tx
(t2 +  x2) (e2^ - l )

(24) 

dt (25)

(see [4] p. 250-251). Thus ip' =  (logor)” ^  0 on (0 ,+oo). By the definition of 
gi we see that

(< ? i° r )"  =
F T  -  (T' )2

F 2
+  ( / i " o f )  (T ' f  +  (h' oT)T".

By properties of h we can see that

Va; € M+ : ti oT (x )-T " (x ) ^  0,

and
h " o T  =

- 2  T

So we obtain:

h" oT (x)-[T '(x)]2 ^

( i  +  r 2r

-2r '( * )

[T(*)]‘

=  - 2
T'(x)

T(x)
—2 [ip(x)Y 

T(x)№ )

Thus by conditions (24) and (25) we have:

for sufficiently large x, say for x Js 7 . Hence g\ o T is convex on (7 , + 00).

2°. Now let a  >  0 and let g2 =  logo (idR+ +  a). The function (g2 o T)" is 
given by the formula

(02 o r ) "  (a;) =
T"(a;)r(a;) — [T'(a;)]2 +  aT"(a;)

[r(®) +  a]

Because log o r and T are convex and twice differentiable, we have 

Va; € M+ : r " ( a ; ) r ( a ; )  -  [ r ' ( a ;)]2 ^  0 and r " ( a ; )  ^  0 

Hence g2 o log is convex on R + .
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