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Spectra of certain operators and iterative 
functional equations

Abstract. We discuss spectral properties of the operator F  : T> —*• F[D], 
defined by

oo
FVfi\{x) ■ = Fk V(.2k x)-

k= 0 Z

T> is the vector space of real functions cp such that the sum above con­
verges for all x £ R. The point spectrum and the eigenspaces of F  and of 
its restriction to the vector space U of ultimately bounded functions are 
given. Moreover we compute the point spectrum and eigenspaces, the 
continuous spectrum and the residual spectrum of F , restricted to the 
Banach spaces B of bounded functions and C of bounded and continuous 
functions.

1. Background

We first consider the operator F  : T> —> given by

oo ..
F Yp](x) : =  F ( ? k x ) ,  (1 )

k=0
where

T> =  {(p : M —s- M; F[cp\ : M —► M}.

So ip G T> iff the right hand side of (1) converges for every x  G M.
There are several reasons to study this operator:

1. F  generates continuous nowhere differentiable functions from very simple 
ones, like the Takagi function F[d\ from d(x) =  dist(x,Z) or the Weier- 
strass function T[c] from c(x ) =  cos27tx. See [4].

2. F  plays a role in the stability theory of functional equations. See [1] and
[2] .

3. The study of operator theoretical properties of F  exhibits interesting 
connections with the theory of iterative functional equations. See [3],
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[4] and [5]. For general facts concerning iterative functional equations 
see the monograph [7]. For the convenience of the reader, the solutions 
of some iterative functional equations connected to the operator F  are 
constructed explicitely, although they could as well be deduced from [7].

The structure of T> is investigated in [6]. In this paper we consider F  and 
its restrictions to certain subspaces of T>, namely

IA :=  { p  : M —► R; there are positive numbers M (p ), uj(p) such that 
\x\ >  Lu(cp) implies|<p(x)| <  M (p )} ,

B  :=  { p  : M —s- M; there is a positive number M (p )  such that |cy?(rc) | <  M (p)  
for every x  G R },

C :=  { p  : R  —► R; p  is bounded and continuous}.

The following statements are in part proved in [3]- [6].

F i :=  F  : T> —> F[T>\ is a vector space isomorphism, 

i*2 :=  F\u : U —y U is a vector space automorphism,
Fs :=  F \b . B  —> B is  a Banach space automorphism, 

i*4 :=  F\c : C —> C is a Banach space automorphism.

An important tool for the proofs is the following fact which connects F  
with a first iterative functional equation.

P ropo sitio n  1
a) Assume that ip G T>. Then F[<p\ satisfies the de Rham  -  type functional 

equation

f ( x )  — - / ( 2x) =  <p(x) fo r  every i g E.  (2)

b) Assume that p  G T> is given. Then equation  (2) has at most one solution 
f  ElA, namely f  =  F[ip\.

Proposition 1 is contained in [6]. Part b) reveals the importance of the 
subspace IA of ultimately bounded functions. The statement is no longer true, 
if we allow unbounded solutions. So far, F 2 : IA —> IA has not been examined in 
the literature.

For F 3 and F4 the concepts of classical spectral theory for linear continuous 
operators T  G L (X ,X )  on a Banach space X  over M apply. We have the 
resolvent

p(T) :=  {A G R; (A/ -  T ) -1  G L (X , X ) }

( /  :=  idx) and the spectrum

a (T ) := R \ p ( T ) .



The spectrum can be partitioned into the point spectrum 

crp(T) :=  {A G M; XI — T  not injective}, 

the continuous spectrum

crc(T) :=  { A g K; XI — T  injective, not surjective, (A/ — T )(X )  dense} 

and the residual spectrum

<7r (T ) :=  {A G M; XI — T  injective, not surjective, (A/ — T )(X )  not dense}.

Thus crp(T) is the set of eigenvalues of T . We denote by E  (T, A) :=  {x  G 
X ; T x  =  Xx} the eigenspace corresponding to A G crp (T).

For F i and F 2 (where no topology is involved) the defining properties 
given above for the set <j p {Fv) of eigenvalues and the corresponding eigenspaces 
E {F V, A) still make sense, whereas the continuous spectrum and the residual 
spectrum are not defined.

The aim of this paper is a complete description of <j p (F v) and E (F V, A) for 
1 ^  v ^  4, which is given in Section 2 and a complete description of <j c{Fv) and 
o ’ri.Fu') for 3 ^  v ^  4, which is given in Section 3. Our systematic treatment 
extends some auxiliary results from [4] and [6]. In addition to (2) some other 
iterative functional equations will enter the scene.

2. Point spectra and eigenspaces of Fv

Let F v, 1 ^  v ^  4, be defined as in Section 1 and, to unify notation, write 
for the domain of F v , i.e. T> 1 =  T>, T>2 =  U , T>3 =  £>, T>4 =  C.
Before dealing with the individual spectra and eigenspaces we collect some 

facts which are true for all F v.

P ropo sitio n  2
a) We have 0 ^  <Jp(F v) and 1 ^  crp (Fu) fo r  1 ^  v ^  4.

b) Fix v G {1, 2, 3, 4 }, and assum e that ip belongs to the eigenspace E {F V, A). 
Then ip satisfies the Schroder functional equation

where

f ( x )  =  y (A )/(2x) fo r  every i g E,

7 (A) :
1 A
2 A -  1'

(3)

(3a)

c) A ^  )  implies X ^  crp{Fv) fo r  1 ^  v ^  4.

P roo f  a) and b). Assume that ip G E {F V, A) and p  =f= o  (the zero function 
defined on M) for some fixed v G {1,2,  3 ,4} ,  i.e., =  Xp. Then p  G T>u
and by Proposition 1 a)



F u[cp\(x) -  ^F„[ip\(2x) =  ip(x)

for every i g E.  Hence

(A -  1 )ip(x) =  ^Xp(2x)

for every i g E.  Since A =  1 or A =  0 would imply ip =  o, assertions a) and b) 
are proved.

c) Assume that ip G E (F V, A) \ {o }  for some fixed v G {1,2,  3 ,4 } . Then 
<p G T>v and therefore F v \p]{x) =  2 ~ fe<p(2fex) converges for every i G l .
By b) we have

p {x ) =  rjp (2x) =  rjmp (2 rnx) (4)

for every x  G M and m  G N, where 7  =  7(A). We obtain F u[p\(x) =  
'Y k̂= 0{2,~{)~k<p(x) and because of p  yf o, ^ / // /0(27 )~ fe must converge. Therefore 
necessarily | ^  | <  1, so that <  1, i.e., A >  ^.

R em a rk

The general solution g : ]R —► ]R of the Schroder equation (3), which will be 
from now on referred to by (S\), is constructed as follows.

Choose any go : (—2, —1] U [1, 2) —► ]R and extend it uniquely by (S\) to a 
function <71 : M \ {0 }  —► M.

Then extend gi to a function g : ]R —> ]R by <?(0) :=  0 in case of A =/= 2 and 
by <7(0) : = a G l  arbitrarily in case of A =  2.

Proposition 2 says that the eigenvalues of F u( l  ^  v ^  4) are contained in 
the set

It turns out that in fact <jp {F i)  is the full set J . The point spectra <j p {F v) then 
shrink in a remarkable way according to the shrinking of the domain T>u of F u, 
namely:

<7P(F2) =  [ § , 2 ] \{ 1 } ,  a p(F 3) =  q , 2 } ,  a p (F4) =  {  2}.

Moreover it turns out that all the eigenspaces E {F V, A) for A G erp {F u) can be 
characterized as solution sets of equation (S\) under certain constraints. They 
are all of infinite dimension with exactly one exception: E (F 4,2). These facts 
are proved in the following

P ropo sitio n  3 
We have

a) a pi.F i)  =  (l/2 ,o o ) \ {1 } ,

b) <7P(F2) =  [2 /3 ,2 ]\ {1 },



C) a p(F3) =  {2 /3 ,2 } ,

d) a p(F4) =  {2 } .

The eigenspaces

E (F V, A) =  {p> G F v\ p> s a t i s f i e s  (S\)} 

are explicitely described (characterized) in the proof.

Proof, a) By Proposition 2, for any A 6 crp(£ i)  we have A G J .
Now let A G J . Take any nonzero solution g : ]R —► ]R of the Schroder 

equation (S\) as described in Remark. Then g satisfies (4) with 7  given by 
(3a), whence

OO OO

Fi[g](x) =  Y , ^ k  9 ^ kx ) =  Y  T^Xk 9(x) =  ff fT T }  9(x )
k= 0 k= 0 V IJ 1

=  Aff(x),

which means that A is an eigenvalue of F±. Moreover, for A G J

E (F i,  A) =  {ip G V; ip satisfies (S\)} =  { p  : M —y M; ip satisfies (S'a)}-

The construction in Remark characterizes the elements of E (F i,  A) and clearly 
dimE (F i,  A) =  00 for every A G o'p (F i).

b) By a), for any A G <Jp(F f), we have A G J .
Now let A G J  and take, as in Remark, any bounded nonzero initial function 

go : (—2, — 1] U [1, 2) —► ]R. Then its extension by g(2x) =  pg(x) is ultimately 
bounded iff I — I =  |2^pi| ^  1, i.e., iff | ^  A ^  2.

As in a), this shows that any A G [|, 2] \ {1 }  is an eigenvalue of All
elements of E (F 2,X) for A G [|,2] \ {1 }  are generated from bounded go : 
( - 2 , - 1 ]  U [1,2) —y M, because the extension <71 of an unbounded go would 
remain unbounded in the vicinity of + 0 0  or —00, hence it does not belong to 
U. Note that a function g G EifF^, A) is not necessarily bounded around zero. 
Clearly dim EifF^, A) =  00 for every A G (JpifFf).

c) By b), for any A G crp(Fo), we have A G [|, 2] \ {1 } .
Now let A G [|,2] \ {1 }  and take, as in Remark, any bounded nonzero 

initial function go '■ (—2, —1] U [1,2) —y M. Then its extension cq : M \ {0 }  —y M
by g(x ) =  7£/(2x ) stays bounded iff I7I =  1, i.e. iff A =  | (7 =  —1) or A =  2
( 7 =  !)•

This shows as in a), that any A G { § , 2 }  is an eigenvalue of F 3 . As all 
elements of E(Fo,  A) for A G { § , 2 }  are bounded, the generating initial function 
has to be bounded as well.

Clearly dim £7(7*3, A) =  00 for A =  | and for A =  2.

d) By c), for any A G crp {F/f), we have A G {§ , 2}.



The elements of E {F 4, A) are the continuous and bounded solutions of (S\). 
The only continuous solution of (Sz) : f ( x )  =  —/ ( 2x) is the function o. 
Therefore A =  | is not an eigenvalue of F4. The only continuous solutions 
of (S'2) : f ( x )  =  f (2 x )  are the constant functions. So crp(F 4) =  {2 }  and 
E (F 2, 2) =  span { ! } ,  where l(x )  =  1 for every x  G ]R.

3. The spectra of F3 and F4 in the Banach space setting

We start with Fz G We have seen in Proposition 3 that <Jp(Fz) =
{ | , 2}. Therefore |/  — Fz and 21 — Fz are not injective. The remaining details 
on the spectrum of Fz are given in

T h eorem  1
The point spectrum crp(Fz) is {| , 2}. For every A G M\ {| , 2 }, the operator 

XI — Fz is bijective. Consequently, the continuous spectrum erc (Fz) and the 
residual spectrum <jr (Fz) are both empty.

Proof. For A yf I  and A yf 2 the operator X I—Fz is injective by Proposition 
3 c). It remains to show that for any given /  G B  and A G R \ {§, 2}, the operator 
equation

(A I - F z M = f  (5)

has a solution ip G B. To do so, first assume that (5) has a solution ip G B. 
Then

f ( x )  =  Xtp(x) -  j<p(x) +  ^ p(2x) +  ^  p (2 2x) +

\ /  (2x) = \xP(2x) ~ j \t(2x) + +  '

hence
(A -  l)p {x )  -  ^ Xp{2x) =  f ( x )  -  ^ f(2 x ) . (6)

For A =  1, we define, according to (6),

$ (x ) :=  f { x )  -  2 /  . (6a)

A simple calculation shows that this function <F is in fact a bounded solution 
of (5). Excluding from now on the case A =  1, we write equation (6) in the 
equivalent form

<P(X) ~  2 p ~ [ ) ^ ( 2 x ) =  ~

or



ip(x) -  7<p(2x) =  g(x) (7)

with 7  given by (3a) and

g(x ) =  j / ( x ) _  \ / ( 2x) }  •

Clearly g G B  and I7I ^  1 (as A ^  |, A ^  2). Iteration of (7) gives

m—1
ip{x) =  79?(2x ) +  g (x )  =  ■ ■ ■  =  j m ip(2m x ) +  ^  T V 2 * * )

k=0

for every i g E,  m  G N. Consequently, for |y| <  1 there is at most one bounded 
solution <h of (7), given by

OO

H x )  =  ' £ i kg(zkx )- (8)
k=0

A direct substitution shows that (7) is satisfied with ip =  <f>. Going back further 
to (6), we see that

f { x )  -  ^ f (2 x )  =  (A -  l)$ (x )  -  ^ A<h(2x) = :  h{x).

As /  and h  are bounded, we have f  =  F[h] by Proposition 1 b), hence 

/ ( * )  =  ( A - l ) A [ c b ] ( x ) - i  AA[ch](2x)

=  (A -  1) j $ ( x )  +  ^ ( 2 x )  +  ^ $ ( 2 2x) +  • • • J

-  ^  j$ ( 2 x )  +  ^ $ ( 2 2x) +  ^ $ ( 2 3x) +  • • - j  

=  A <h(x) — A[<h](x).

So in case I7I <  1, i.e., A G (—00, |)U (2,oo), equation (5) has a solution 
given by (8).

Now let I7I >  1. We write equation (7) in the equivalent form

V'M =  W ( f ) - ; A ( f ) .  (9)

Iteration of (9) gives

for every x  G M, n G N. Because of |y| >  1, there is at most one bounded 
solution <h of (9), given by



• w  =  - g T O >  (10)
On the other hand, this function <f> satisfies equation (9):

Hence <f> satisfies equation (6) and, as in the case I7I <  1, aiso equation (5).
The case I7I >  1 corresponds to the remaining vaiues A G (|, 1) U (1, 2). 

Recaii that A =  1 has aiready been treated.

Finaiiy, we discuss the spectrum of F 4 G L(C,C).
By Proposition 3 d), the point spectrum of F4 is just the singieton {2 } . 

The eigenvaiue | of F 3 is no ionger an eigenvaiue of F4. It turns out that | 
belongs to the residual spectrum of F4 and that the resolvent of F 4 coincides 
with the resolvent of F 3.

T h eo rem  2
The point spectrum and the residual spectrum o f  F 4 are singletons: 07(^4) =  

{2 } , crr (F4) =  { | } .  For every A G M\{ 2 / 3 , 2 }  the operator XI — F4 is bijective. 
Consequently 07(^4) is empty.

Proof. For A yf 2, the operator XI — F4 is injective by Proposition 3 d). 
Next we show, that for any A G M \{|, 2} and for any given /  G C, the operator 
equation

(A I - F 4M = f  (11)

has a solution ip G C. To see this we argue exactly as in the proof of Theorem 1.
Let the value <3>(x) of the function $  : E  ->  R  be defined by (6a) when 

A =  1, by (8) when A G (—00, |) U (2, 00) and by (10) when A G (|, 1) U (1, 2). 
Then <F is a bounded solution of equation (11), as we have seen in the proof of 
Theorem 1. Moreover, <F is continuous, a s i e t  / (x )  —2 /  (| )  is continuous and 
because the series (8) and (10) are uniformly convergent on M with continuous 
terms. So M \ {| , 2 } belongs to the resolvent /3(^4).

The only remaining case to be checked is A =  | (not covered by the ar­
gument in the proof of Theorem 1). If equation (11) has a solution ip G C for 
A =  I , then necessarily



This corresponds to equation (7), recall that A =  | iff 7  =  —1. Note further, 
that g =  or equivalently /  =  — ̂ F ^g], Iteration of (12) gives

n— 1
cp(x) =  (—l ) np (2 nx) +  ] T ( - l ) V 2 fe* )  (13)

k=0

for every i g M and n  G N.
Now take any such that g{2k) =  (— l ) k and || g || =  sup {|gr(i)|; i £ M }  =
1. Then for the corresponding p  we would obtain by (13)

n— 1

(p(l) =  ( - l ) > ( 2 " )  +  ^ ( - l ) fe( - l ) fe
k= 0

=  { - l ) n(p (T ) +  n

for every n  G N, which is impossible for a bounded p.  Hence (12) has no 
solution p  =  p  G C for g =  g.

Consequently, equation (11) with A =  |, i.e.

{ \ l ~ F A) [ p ] = f  (14)

has no solution <p =  p  G C for f  =  f  =  —\F4\g\.
Now let f *  G C such that || /  — f *  ||̂
If (14) has a solution p  =  p*  G C for /  =  / * ,  then (12) and (13) are satisfied 

with g =  g* and we have, using || F ^ 1 ||= | (which is proved in [4])

\\g-g*\\ =  II - 3 F ^ l f }  +  3 F ^ l f }  ||

=  3 || F ^ U - f * ]  II

«S 3 II Fa 1 II II f - f *  II 
_  1 
“  2 '

This implies \g(2k) — g*(2k)\ =  |(— l ) fe — g*{2k )\ ^  7), hence g*(2k) =  (—l ) fe • £7 
with £k G §]. Now by (13)

n — 1

<p*(l) =  ( - l ) V ( 2 n) +  $ >
k=0

for every n  G N which is again impossible for p*  G C. This contradiction shows 
that no element of the closed ball with center /  and radius ^ belongs to the 
image (| /  — F 4)[C\, so that this set is not dense in C, hence | G ^(N 4).
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