Hans-Heinrich Kairies Spectra of certain operators and iterative functional equations

Abstract. We discuss spectral properties of the operator $F : \mathcal{D} \to F[\mathcal{D}]$, defined by

$$F[\varphi](x) := \sum_{k=0}^{\infty} \frac{1}{2^k} \ \varphi(2^k x).$$

 \mathcal{D} is the vector space of real functions φ such that the sum above converges for all $x \in \mathbb{R}$. The point spectrum and the eigenspaces of F and of its restriction to the vector space \mathcal{U} of ultimately bounded functions are given. Moreover we compute the point spectrum and eigenspaces, the continuous spectrum and the residual spectrum of F, restricted to the Banach spaces \mathcal{B} of bounded functions and \mathcal{C} of bounded and continuous functions.

1. Background

We first consider the operator $F : \mathcal{D} \to F[\mathcal{D}]$, given by

$$F[\varphi](x) := \sum_{k=0}^{\infty} \frac{1}{2^k} \varphi(2^k x), \tag{1}$$

where

 $\mathcal{D} = \{ \varphi: \ \mathbb{R} \to \mathbb{R}; \ F[\varphi]: \mathbb{R} \to \mathbb{R} \}.$

So $\varphi \in \mathcal{D}$ iff the right hand side of (1) converges for every $x \in \mathbb{R}$. There are several reasons to study this operator:

- 1. F generates continuous nowhere differentiable functions from very simple ones, like the Takagi function F[d] from $d(x) = \text{dist}(x,\mathbb{Z})$ or the Weierstrass function F[c] from $c(x) = \cos 2\pi x$. See [4].
- F plays a role in the stability theory of functional equations. See [1] and [2].
- 3. The study of operator theoretical properties of F exhibits interesting connections with the theory of iterative functional equations. See [3],

AMS (2000) Subject Classification: Primary 47B38, Secondary 47A10, 39B22.

[4] and [5]. For general facts concerning iterative functional equations see the monograph [7]. For the convenience of the reader, the solutions of some iterative functional equations connected to the operator F are constructed explicitly, although they could as well be deduced from [7].

The structure of \mathcal{D} is investigated in [6]. In this paper we consider F and its restrictions to certain subspaces of \mathcal{D} , namely

- $\begin{aligned} \mathcal{U} &:= \{ \varphi : \mathbb{R} \to \mathbb{R}; \text{ there are positive numbers } M(\varphi), \ \omega(\varphi) \text{ such that} \\ |x| \geq \omega(\varphi) \text{ implies} |\varphi(x)| \leq M(\varphi) \}, \end{aligned}$
- $\mathcal{B} := \{ \varphi : \mathbb{R} \to \mathbb{R}; \text{ there is a positive number } M(\varphi) \text{ such that } |\varphi(x)| \le M(\varphi) \text{ for every } x \in \mathbb{R} \},$
- $\mathcal{C} := \{ \varphi : \mathbb{R} \to \mathbb{R}; \ \varphi \text{ is bounded and continuous} \}.$

The following statements are in part proved in [3]-[6].

 $F_1 := F : \mathcal{D} \to F[\mathcal{D}]$ is a vector space isomorphism, $F_2 := F|_{\mathcal{U}} : \mathcal{U} \to \mathcal{U}$ is a vector space automorphism, $F_3 := F|_{\mathcal{B}} : \mathcal{B} \to \mathcal{B}$ is a Banach space automorphism, $F_4 := F|_{\mathcal{C}} : \mathcal{C} \to \mathcal{C}$ is a Banach space automorphism.

An important tool for the proofs is the following fact which connects F with a first iterative functional equation.

Proposition 1

a) Assume that $\varphi \in \mathcal{D}$. Then $F[\varphi]$ satisfies the de Rham – type functional equation

$$f(x) - \frac{1}{2}f(2x) = \varphi(x) \quad \text{for every } x \in \mathbb{R}.$$
 (2)

b) Assume that $\varphi \in \mathcal{D}$ is given. Then equation (2) has at most one solution $f \in \mathcal{U}$, namely $f = F[\varphi]$.

Proposition 1 is contained in [6]. Part b) reveals the importance of the subspace \mathcal{U} of ultimately bounded functions. The statement is no longer true, if we allow unbounded solutions. So far, $F_2: \mathcal{U} \to \mathcal{U}$ has not been examined in the literature.

For F_3 and F_4 the concepts of classical spectral theory for linear continuous operators $T \in L(X, X)$ on a Banach space X over \mathbb{R} apply. We have the resolvent

$$\rho(T) := \{ \lambda \in \mathbb{R}; \ (\lambda I - T)^{-1} \in L(X, X) \}$$

 $(I := id_X)$ and the spectrum

$$\sigma(T) := \mathbb{R} \setminus \rho(T).$$

The spectrum can be partitioned into the point spectrum

 $\sigma_p(T) := \{ \lambda \in \mathbb{R}; \ \lambda I - T \text{ not injective} \},\$

the continuous spectrum

 $\sigma_c(T) := \{\lambda \in \mathbb{R}; \ \lambda I - T \text{ injective, not surjective, } (\lambda I - T)(X) \text{ dense} \}$

and the residual spectrum

 $\sigma_r(T) := \{ \lambda \in \mathbb{R}; \ \lambda I - T \text{ injective, not surjective, } (\lambda I - T)(X) \text{ not dense} \}.$

Thus $\sigma_p(T)$ is the set of eigenvalues of T. We denote by $E(T, \lambda) := \{x \in X; Tx = \lambda x\}$ the eigenspace corresponding to $\lambda \in \sigma_p(T)$.

For F_1 and F_2 (where no topology is involved) the defining properties given above for the set $\sigma_p(F_{\nu})$ of eigenvalues and the corresponding eigenspaces $E(F_{\nu}, \lambda)$ still make sense, whereas the continuous spectrum and the residual spectrum are not defined.

The aim of this paper is a complete description of $\sigma_p(F_{\nu})$ and $E(F_{\nu}, \lambda)$ for $1 \leq \nu \leq 4$, which is given in Section 2 and a complete description of $\sigma_c(F_{\nu})$ and $\sigma_r(F_{\nu})$ for $3 \leq \nu \leq 4$, which is given in Section 3. Our systematic treatment extends some auxiliary results from [4] and [6]. In addition to (2) some other iterative functional equations will enter the scene.

2. Point spectra and eigenspaces of F_{ν}

Let F_{ν} , $1 \leq \nu \leq 4$, be defined as in Section 1 and, to unify notation, write \mathcal{D}_{ν} for the domain of F_{ν} , i.e. $\mathcal{D}_1 = \mathcal{D}$, $\mathcal{D}_2 = \mathcal{U}$, $\mathcal{D}_3 = \mathcal{B}$, $\mathcal{D}_4 = \mathcal{C}$.

Before dealing with the individual spectra and eigenspaces we collect some facts which are true for all F_{ν} .

Proposition 2

- a) We have $0 \notin \sigma_p(F_\nu)$ and $1 \notin \sigma_p(F_\nu)$ for $1 \leq \nu \leq 4$.
- b) Fix $\nu \in \{1, 2, 3, 4\}$, and assume that φ belongs to the eigenspace $E(F_{\nu}, \lambda)$. Then φ satisfies the Schröder functional equation

$$f(x) = \gamma(\lambda)f(2x) \quad \text{for every } x \in \mathbb{R},$$
 (3)

where

$$\gamma(\lambda) := \frac{1}{2} \frac{\lambda}{\lambda - 1}.$$
 (3a)

c) $\lambda \leq \frac{1}{2}$ implies $\lambda \notin \sigma_p(F_\nu)$ for $1 \leq \nu \leq 4$.

Proof. a) and b). Assume that $\varphi \in E(F_{\nu}, \lambda)$ and $\varphi \neq \mathbf{o}$ (the zero function defined on \mathbb{R}) for some fixed $\nu \in \{1, 2, 3, 4\}$, i.e., $F_{\nu}[\varphi] = \lambda \varphi$. Then $\varphi \in \mathcal{D}_{\nu}$ and by Proposition 1 a)

$$F_{\nu}[\varphi](x) - \frac{1}{2}F_{\nu}[\varphi](2x) = \varphi(x)$$

for every $x \in \mathbb{R}$. Hence

$$(\lambda - 1)\varphi(x) = \frac{1}{2}\lambda\varphi(2x)$$

for every $x \in \mathbb{R}$. Since $\lambda = 1$ or $\lambda = 0$ would imply $\varphi = \mathbf{0}$, assertions a) and b) are proved.

c) Assume that $\varphi \in E(F_{\nu}, \lambda) \setminus \{\mathbf{o}\}$ for some fixed $\nu \in \{1, 2, 3, 4\}$. Then $\varphi \in \mathcal{D}_{\nu}$ and therefore $F_{\nu}[\varphi](x) = \sum_{k=0}^{\infty} 2^{-k} \varphi(2^{k}x)$ converges for every $x \in \mathbb{R}$. By b) we have

$$\varphi(x) = \gamma \varphi(2x) = \gamma^m \varphi(2^m x) \tag{4}$$

for every $x \in \mathbb{R}$ and $m \in \mathbb{N}$, where $\gamma = \gamma(\lambda)$. We obtain $F_{\nu}[\varphi](x) = \sum_{k=0}^{\infty} (2\gamma)^{-k} \varphi(x)$ and because of $\varphi \neq \mathbf{o}$, $\sum_{k=0}^{\infty} (2\gamma)^{-k}$ must converge. Therefore necessarily $\left|\frac{1}{2\gamma}\right| < 1$, so that $\left|\frac{\lambda-1}{\lambda}\right| < 1$, i.e., $\lambda > \frac{1}{2}$.

Remark

The general solution $g : \mathbb{R} \to \mathbb{R}$ of the Schröder equation (3), which will be from now on referred to by (S_{λ}) , is constructed as follows.

Choose any $g_0: (-2, -1] \cup [1, 2) \to \mathbb{R}$ and extend it uniquely by (S_λ) to a function $g_1: \mathbb{R} \setminus \{0\} \to \mathbb{R}$.

Then extend g_1 to a function $g : \mathbb{R} \to \mathbb{R}$ by g(0) := 0 in case of $\lambda \neq 2$ and by $g(0) := \alpha \in \mathbb{R}$ arbitrarily in case of $\lambda = 2$.

Proposition 2 says that the eigenvalues of $F_{\nu}(1 \leq \nu \leq 4)$ are contained in the set

$$J = (\frac{1}{2}, \infty) \setminus \{1\}.$$

It turns out that in fact $\sigma_p(F_1)$ is the full set J. The point spectra $\sigma_p(F_\nu)$ then shrink in a remarkable way according to the shrinking of the domain \mathcal{D}_{ν} of F_{ν} , namely:

$$\sigma_p(F_2) = [\frac{2}{3}, 2] \setminus \{1\}, \quad \sigma_p(F_3) = \{\frac{2}{3}, 2\}, \quad \sigma_p(F_4) = \{2\}.$$

Moreover it turns out that all the eigenspaces $E(F_{\nu}, \lambda)$ for $\lambda \in \sigma_p(F_{\nu})$ can be characterized as solution sets of equation (S_{λ}) under certain constraints. They are all of infinite dimension with exactly one exception: $E(F_4, 2)$. These facts are proved in the following

PROPOSITION 3 We have

a)
$$\sigma_p(F_1) = (1/2, \infty) \setminus \{1\},\$$

b) $\sigma_p(F_2) = [2/3, 2] \setminus \{1\},\$

- c) $\sigma_p(F_3) = \{2/3, 2\},\$
- d) $\sigma_p(F_4) = \{2\}.$

 $The \ eigenspaces$

$$E(F_{\nu}, \lambda) = \{ \varphi \in F_{\nu}; \ \varphi \ satisfies \ (S_{\lambda}) \}$$

are explicitly described (characterized) in the proof.

Proof. a) By Proposition 2, for any $\lambda \in \sigma_p(F_1)$ we have $\lambda \in J$.

Now let $\lambda \in J$. Take any nonzero solution $g : \mathbb{R} \to \mathbb{R}$ of the Schröder equation (S_{λ}) as described in Remark. Then g satisfies (4) with γ given by (3a), whence

$$F_1[g](x) = \sum_{k=0}^{\infty} \frac{1}{2^k} g(2^k x) = \sum_{k=0}^{\infty} \frac{1}{(2\gamma)^k} g(x) = \frac{2\gamma}{2\gamma - 1} g(x)$$
$$= \lambda g(x),$$

which means that λ is an eigenvalue of F_1 . Moreover, for $\lambda \in J$

 $E(F_1,\lambda) = \{\varphi \in \mathcal{D}; \ \varphi \text{ satisfies } (S_\lambda)\} = \{\varphi : \mathbb{R} \to \mathbb{R}; \ \varphi \text{ satisfies } (S_\lambda)\}.$

The construction in Remark characterizes the elements of $E(F_1, \lambda)$ and clearly $\dim E(F_1, \lambda) = \infty$ for every $\lambda \in \sigma_p(F_1)$.

b) By a), for any $\lambda \in \sigma_p(F_2)$, we have $\lambda \in J$.

Now let $\lambda \in J$ and take, as in Remark, any bounded nonzero initial function $g_0: (-2, -1] \cup [1, 2) \to \mathbb{R}$. Then its extension g_1 by $g(2x) = \frac{1}{\gamma}g(x)$ is ultimately bounded iff $\left|\frac{1}{\gamma}\right| = \left|2\frac{\lambda-1}{\lambda}\right| \leq 1$, i.e., iff $\frac{2}{3} \leq \lambda \leq 2$.

As in a), this shows that any $\lambda \in [\frac{2}{3}, 2] \setminus \{1\}$ is an eigenvalue of F_2 . All elements of $E(F_2, \lambda)$ for $\lambda \in [\frac{2}{3}, 2] \setminus \{1\}$ are generated from bounded g_0 : $(-2, -1] \cup [1, 2) \rightarrow \mathbb{R}$, because the extension g_1 of an unbounded g_0 would remain unbounded in the vicinity of $+\infty$ or $-\infty$, hence it does not belong to \mathcal{U} . Note that a function $g \in E(F_2, \lambda)$ is not necessarily bounded around zero. Clearly dim $E(F_2, \lambda) = \infty$ for every $\lambda \in \sigma_p(F_2)$.

c) By b), for any $\lambda \in \sigma_p(F_3)$, we have $\lambda \in [\frac{2}{3}, 2] \setminus \{1\}$.

Now let $\lambda \in [\frac{2}{3}, 2] \setminus \{1\}$ and take, as in Remark, any bounded nonzero initial function $g_0 : (-2, -1] \cup [1, 2) \to \mathbb{R}$. Then its extension $g_1 : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ by $g(x) = \gamma g(2x)$ stays bounded iff $|\gamma| = 1$, i.e. iff $\lambda = \frac{2}{3}$ $(\gamma = -1)$ or $\lambda = 2$ $(\gamma = 1)$.

This shows as in a), that any $\lambda \in \{\frac{2}{3}, 2\}$ is an eigenvalue of F_3 . As all elements of $E(F_3, \lambda)$ for $\lambda \in \{\frac{2}{3}, 2\}$ are bounded, the generating initial function has to be bounded as well.

Clearly dim $E(F_3, \lambda) = \infty$ for $\lambda = \frac{2}{3}$ and for $\lambda = 2$.

d) By c), for any $\lambda \in \sigma_p(F_4)$, we have $\lambda \in \{\frac{2}{3}, 2\}$.

18 Hans-Heinrich Kairies

The elements of $E(F_4, \lambda)$ are the continuous and bounded solutions of (S_{λ}) . The only continuous solution of $(S_{\frac{2}{3}})$: f(x) = -f(2x) is the function **o**. Therefore $\lambda = \frac{2}{3}$ is not an eigenvalue of F_4 . The only continuous solutions of (S_2) : f(x) = f(2x) are the constant functions. So $\sigma_p(F_4) = \{2\}$ and $E(F_2, 2) = \text{span } \{1\}$, where $\mathbf{1}(x) = 1$ for every $x \in \mathbb{R}$.

3. The spectra of F_3 and F_4 in the Banach space setting

We start with $F_3 \in L(\mathcal{B}, \mathcal{B})$. We have seen in Proposition 3 that $\sigma_p(F_3) = \{\frac{2}{3}, 2\}$. Therefore $\frac{2}{3}I - F_3$ and $2I - F_3$ are not injective. The remaining details on the spectrum of F_3 are given in

Theorem 1

The point spectrum $\sigma_p(F_3)$ is $\{\frac{2}{3}, 2\}$. For every $\lambda \in \mathbb{R} \setminus \{\frac{2}{3}, 2\}$, the operator $\lambda I - F_3$ is bijective. Consequently, the continuous spectrum $\sigma_c(F_3)$ and the residual spectrum $\sigma_r(F_3)$ are both empty.

Proof. For $\lambda \neq \frac{2}{3}$ and $\lambda \neq 2$ the operator $\lambda I - F_3$ is injective by Proposition 3 c). It remains to show that for any given $f \in \mathcal{B}$ and $\lambda \in \mathbb{R} \setminus \{\frac{2}{3}, 2\}$, the operator equation

$$(\lambda I - F_3)[\varphi] = f \tag{5}$$

has a solution $\varphi \in \mathcal{B}$. To do so, first assume that (5) has a solution $\varphi \in \mathcal{B}$. Then

$$f(x) = \lambda \varphi(x) - \left\{ \varphi(x) + \frac{1}{2} \varphi(2x) + \frac{1}{2^2} \varphi(2^2x) + \cdots \right\},$$

$$\frac{1}{2} f(2x) = \frac{1}{2} \lambda \varphi(2x) - \left\{ \frac{1}{2} \varphi(2x) + \frac{1}{2^2} \varphi(2^2x) + \cdots \right\},$$

hence

$$(\lambda - 1)\varphi(x) - \frac{1}{2}\lambda\varphi(2x) = f(x) - \frac{1}{2}f(2x).$$
(6)

For $\lambda = 1$, we define, according to (6),

$$\Phi(x) := f(x) - 2f\left(\frac{x}{2}\right). \tag{6a}$$

A simple calculation shows that this function Φ is in fact a bounded solution of (5). Excluding from now on the case $\lambda = 1$, we write equation (6) in the equivalent form

$$arphi(x)-rac{\lambda}{2(\lambda-1)}arphi(2x)=rac{1}{\lambda-1}\{f(x)-rac{1}{2}f(2x)\}$$

or

$$\varphi(x) - \gamma \varphi(2x) = g(x) \tag{7}$$

with γ given by (3a) and

$$g(x) = rac{1}{\lambda - 1} \left\{ f(x) - rac{1}{2} f(2x)
ight\}.$$

Clearly $g \in \mathcal{B}$ and $|\gamma| \neq 1$ (as $\lambda \neq \frac{2}{3}, \lambda \neq 2$). Iteration of (7) gives

$$\varphi(x) = \gamma \varphi(2x) + g(x) = \dots = \gamma^m \varphi(2^m x) + \sum_{k=0}^{m-1} \gamma^k g(2^k x)$$

for every $x \in \mathbb{R}$, $m \in \mathbb{N}$. Consequently, for $|\gamma| < 1$ there is at most one bounded solution Φ of (7), given by

$$\Phi(x) = \sum_{k=0}^{\infty} \gamma^k g(2^k x).$$
(8)

A direct substitution shows that (7) is satisfied with $\varphi = \Phi$. Going back further to (6), we see that

$$f(x) - \frac{1}{2} f(2x) = (\lambda - 1)\Phi(x) - \frac{1}{2} \lambda \Phi(2x) =: h(x).$$

As f and h are bounded, we have f = F[h] by Proposition 1 b), hence

$$\begin{split} f(x) &= (\lambda - 1)F[\Phi](x) - \frac{1}{2} \ \lambda F[\Phi](2x) \\ &= (\lambda - 1) \left\{ \Phi(x) + \frac{1}{2} \Phi(2x) + \frac{1}{2^2} \Phi(2^2x) + \cdots \right\} \\ &- \frac{1}{2} \lambda \left\{ \Phi(2x) + \frac{1}{2} \Phi(2^2x) + \frac{1}{2^2} \Phi(2^3x) + \cdots \right\} \\ &= \lambda \ \Phi(x) - F[\Phi](x). \end{split}$$

So in case $|\gamma| < 1$, i.e., $\lambda \in (-\infty, \frac{2}{3}) \cup (2, \infty)$, equation (5) has a solution $\Phi \in \mathcal{B}$, given by (8).

Now let $|\gamma| > 1$. We write equation (7) in the equivalent form

$$\varphi(x) = \frac{1}{\gamma} \varphi\left(\frac{x}{2}\right) - \frac{1}{\gamma} g\left(\frac{x}{2}\right).$$
(9)

Iteration of (9) gives

$$arphi(x) = \left(rac{1}{\gamma}
ight)^n arphi\left(rac{x}{2^n}
ight) - \sum_{k=1}^n \, \left(rac{1}{\gamma}
ight)^k g\!\left(rac{x}{2^k}
ight)$$

for every $x \in \mathbb{R}$, $n \in \mathbb{N}$. Because of $|\gamma| > 1$, there is at most one bounded solution Φ of (9), given by

$$\Phi(x) = -\sum_{k=1}^{\infty} \left(\frac{1}{\gamma}\right)^k g\left(\frac{x}{2^k}\right).$$
(10)

On the other hand, this function Φ satisfies equation (9):

$$\Phi(x) - \frac{1}{\gamma} \Phi\left(\frac{x}{2}\right) = -\left\{\frac{1}{\gamma}g\left(\frac{x}{2}\right) + \frac{1}{\gamma^2}g\left(\frac{x}{2^2}\right) + \cdots\right\} \\ + \frac{1}{\gamma}\left\{\frac{1}{\gamma}g\left(\frac{x}{2^2}\right) + \frac{1}{\gamma^2}g\left(\frac{x}{2^3}\right) + \cdots\right\} \\ = -\frac{1}{\gamma}g\left(\frac{x}{2}\right).$$

Hence Φ satisfies equation (6) and, as in the case $|\gamma| < 1$, also equation (5).

The case $|\gamma| > 1$ corresponds to the remaining values $\lambda \in (\frac{2}{3}, 1) \cup (1, 2)$. Recall that $\lambda = 1$ has already been treated.

Finally, we discuss the spectrum of $F_4 \in L(\mathcal{C}, \mathcal{C})$.

By Proposition 3 d), the point spectrum of F_4 is just the singleton $\{2\}$. The eigenvalue $\frac{2}{3}$ of F_3 is no longer an eigenvalue of F_4 . It turns out that $\frac{2}{3}$ belongs to the residual spectrum of F_4 and that the resolvent of F_4 coincides with the resolvent of F_3 .

Theorem 2

The point spectrum and the residual spectrum of F_4 are singletons: $\sigma_p(F_4) = \{2\}, \sigma_r(F_4) = \{\frac{2}{3}\}$. For every $\lambda \in \mathbb{R} \setminus \{2/3, 2\}$ the operator $\lambda I - F_4$ is bijective. Consequently $\sigma_c(F_4)$ is empty.

Proof. For $\lambda \neq 2$, the operator $\lambda I - F_4$ is injective by Proposition 3 d). Next we show, that for any $\lambda \in \mathbb{R} \setminus \{\frac{2}{3}, 2\}$ and for any given $f \in \mathcal{C}$, the operator equation

$$(\lambda I - F_4)[\varphi] = f \tag{11}$$

has a solution $\varphi \in \mathcal{C}$. To see this we argue exactly as in the proof of Theorem 1.

Let the value $\Phi(x)$ of the function $\Phi : \mathbb{R} \to \mathbb{R}$ be defined by (6a) when $\lambda = 1$, by (8) when $\lambda \in (-\infty, \frac{2}{3}) \cup (2, \infty)$ and by (10) when $\lambda \in (\frac{2}{3}, 1) \cup (1, 2)$. Then Φ is a bounded solution of equation (11), as we have seen in the proof of Theorem 1. Moreover, Φ is continuous, as $x \mapsto f(x) - 2f(\frac{x}{2})$ is continuous and because the series (8) and (10) are uniformly convergent on \mathbb{R} with continuous terms. So $\mathbb{R} \setminus \{\frac{2}{3}, 2\}$ belongs to the resolvent $\rho(F_4)$.

The only remaining case to be checked is $\lambda = \frac{2}{3}$ (not covered by the argument in the proof of Theorem 1). If equation (11) has a solution $\varphi \in C$ for $\lambda = \frac{2}{3}$, then necessarily

$$\varphi(x) + \varphi(2x) = 3\left\{\frac{1}{2}f(2x) - f(x)\right\} = g(x).$$
 (12)

This corresponds to equation (7), recall that $\lambda = \frac{2}{3}$ iff $\gamma = -1$. Note further, that $g = -3F_4^{-1}[f]$ or equivalently $f = -\frac{1}{3}F_4[g]$. Iteration of (12) gives

$$\varphi(x) = (-1)^n \varphi(2^n x) + \sum_{k=0}^{n-1} (-1)^k g(2^k x)$$
(13)

for every $x \in \mathbb{R}$ and $n \in \mathbb{N}$.

Now take any $\tilde{g} \in \mathcal{C}$ such that $\tilde{g}(2^k) = (-1)^k$ and $\|\tilde{g}\| = \sup \{ |\tilde{g}(t)|; t \in \mathbb{R} \} =$ 1. Then for the corresponding $\tilde{\varphi}$ we would obtain by (13)

$$\tilde{\varphi}(1) = (-1)^n \tilde{\varphi}(2^n) + \sum_{k=0}^{n-1} (-1)^k (-1)^k$$
$$= (-1)^n \tilde{\varphi}(2^n) + n$$

for every $n \in \mathbb{N}$, which is impossible for a bounded $\tilde{\varphi}$. Hence (12) has no solution $\varphi = \tilde{\varphi} \in \mathcal{C}$ for $g = \tilde{g}$.

Consequently, equation (11) with $\lambda = \frac{2}{3}$, i.e.

$$\left(\frac{2}{3}I - F_4\right)[\varphi] = f \tag{14}$$

has no solution $\varphi = \tilde{\varphi} \in \mathcal{C}$ for $f = \tilde{f} = -\frac{1}{3}F_4[\tilde{g}]$.

Now let $f^* \in \mathcal{C}$ such that $\|\tilde{f} - f^*\| \leq \frac{1}{9}$. If (14) has a solution $\varphi = \varphi^* \in \mathcal{C}$ for $f = f^*$, then (12) and (13) are satisfied with $g = g^*$ and we have, using $\|F_4^{-1}\| = \frac{3}{2}$ (which is proved in [4])

$$\begin{split} \parallel \tilde{g} - g^* \parallel &= \parallel -3F_4^{-1}[\tilde{f}] + 3F_4^{-1}[f^*] \parallel \\ &= 3 \parallel F_4^{-1}[\tilde{f} - f^*] \parallel \\ &\leqslant 3 \parallel F_4^{-1} \parallel \parallel \tilde{f} - f^* \parallel \\ &= \frac{1}{2}. \end{split}$$

This implies $|\tilde{g}(2^k) - g^*(2^k)| = |(-1)^k - g^*(2^k)| \leq \frac{1}{2}$, hence $g^*(2^k) = (-1)^k \cdot \varepsilon_k$ with $\varepsilon_k \in [\frac{1}{2}, \frac{3}{2}]$. Now by (13)

$$\varphi^*(1) = (-1)^n \varphi^*(2^n) + \sum_{k=0}^{n-1} \varepsilon_k$$

for every $n \in \mathbb{N}$ which is again impossible for $\varphi^* \in \mathcal{C}$. This contradiction shows that no element of the closed ball with center \tilde{f} and radius $\frac{1}{9}$ belongs to the image $(\frac{2}{3}I - F_4)[\mathcal{C}]$, so that this set is not dense in \mathcal{C} , hence $\frac{2}{3} \in \sigma_r(F_4)$.

References

- Z. Gajda, On stability of additive mappings, Internat. J. Math. & Math. Sci. 14 (1991), 431-434.
- [2] S. Czerwik, The stability of the quadratic functional equation, in: Stability of Mappings of Hyers–Ulam type, ed. T.M. Rassias and J. Tabor, Hadronic Press, Palm Harbor, 1994, 81-92.
- [3] H.-H. Kairies, On a Banach space automorphism and its connections to functional equations and continuous nowhere differentiable functions, Ann. Acad. Paed. Cracoviensis. Studia Math. 1 (2001), 39-48.
- [4] H.-H. Kairies, Properties of an operator acting on the space of bounded real functions and certain subspaces, in: Functional Equations – Results and Advances, ed. Z. Daróczy and Z. Palés, Kluwer Acad. Publishers, Boston – Dordrecht – London, 2001, 175-186.
- [5] H.-H. Kairies, On an operator preserving lacunarity of Fourier series, Aequationes Math. 62 (2001), 1-8.
- H.-H. Kairies, P. Volkmann, Ein Vektorraumisomorphismus vom Summentyp, Sem. LV, http://www.mathematik.uni-karlsruhe.de/~semlv, No. 13 (2002), 7 pp.
- [7] M. Kuczma, B. Choczewski, R. Ger, *Iterative Functional Equations*, Encyclopedia of Mathematics and its Applications **32**, Cambridge University Press, Cambridge – New York, 1990.

Institut für Mathematik Technische Universität Clausthal Erzstraße 1 D-38678 Clausthal-Zellerfeld Germany E-mail: kairies@math.tu-clausthal.de

Manuscript received: October 17, 2001