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Spectra of certain operators and iterafive

functional equations

Abstract. We discuss spectral properties of the operator F' : D — F[D],
defined by

o0
Flel(z) == 3 o #(2*e).

k=0
D is the vector space of real functions ¢ such that the sum above con-
verges for all x € R. The point spectrum and the eigenspaces of F' and of
its restriction to the vector space U of ultimately bounded functions are
given. Moreover we compute the point spectrum and eigenspaces, the
continuous spectrum and the residual spectrum of F, restricted to the
Banach spaces B of bounded functions and C of bounded and continuous
functions.

1. Background

We first consider the operator F' : D — F[D], given by

where
D={p: R—=R; Flp] :R — R}.
So ¢ € D iff the right hand side of (1) converges for every z € R.
There are several reasons to study this operator:

1. F generates continuous nowhere differentiable functions from very simple
ones, like the Takagi function F[d] from d(z) = dist(z,Z) or the Weier-
strass function F[c] from ¢(x) = cos2mz. See [4].

2. F plays a role in the stability theory of functional equations. See [1] and
[2].

3. The study of operator theoretical properties of F' exhibits interesting
connections with the theory of iterative functional equations. See [3],
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[4] and [5]. For general facts concerning iterative functional equations
see the monograph [7]. For the convenience of the reader, the solutions
of some iterative functional equations connected to the operator F' are
constructed explicitely, although they could as well be deduced from [7].

The structure of D is investigated in [6]. In this paper we consider F' and
its restrictions to certain subspaces of D, namely

U = {¢: R — R, there are positive numbers M (¢), w(p) such that
|z > w(p) implies|p(z)] < M(p)},

B :={p:R — R; there is a positive number M () such that |¢(z)] < M(p)
for every z € R},

C:={p:R—R; ¢is bounded and continuous}.
The following statements are in part proved in [3]-[6].

F, := F : D — FI[D] is a vector space isomorphism,
Fy .= Fly : U — U is a vector space automorphism,
Fs5 .= F|3 : B — B is a Banach space automorphism,

F, := F|¢ : C — C is a Banach space automorphism.

An important tool for the proofs is the following fact which connects F'
with a first iterative functional equation.

PROPOSITION 1

a) Assume that ¢ € D. Then F|y| satisfies the de Rham — type functional
equation

flx) — %f(lr) =(z) for every xz € R. (2)

b) Assume that ¢ € D is given. Then equation (2) has at most one solution

fel, namely f = Flp].

Proposition 1 is contained in [6]. Part b) reveals the importance of the
subspace U of ultimately bounded functions. The statement is no longer true,
if we allow unbounded solutions. So far, F5 : i/ — U has not been examined in
the literature.

For F5 and Fj the concepts of classical spectral theory for linear continuous
operators T € L(X, X) on a Banach space X over R apply. We have the
resolvent

p(T):={NeR; \[-T)eL(X, X)}

(I :=idx) and the spectrum

o(T) =R\ p(T).



Spectra of certain operators and iterative functional equations 15

The spectrum can be partitioned into the point spectrum
op(T) .= {X € R; A =T not injective},
the continuous spectrum
0.(T) == {X € R; A\ — T injective, not surjective, (A\] —T)(X) dense}
and the residual spectrum
o.(T) :={X € R; AI —T injective, not surjective, (A\I —T")(X) not dense}.

Thus 0,(T') is the set of eigenvalues of T'. We denote by E (T, \) :={z €
X; Tz = Az} the eigenspace corresponding to A € 0,(T).

For F; and F» (where no topology is involved) the defining properties
given above for the set 0, (F),) of eigenvalues and the corresponding eigenspaces
E(F,,\) still make sense, whereas the continuous spectrum and the residual
spectrum are not defined.

The aim of this paper is a complete description of 0,(F),) and E(F,, \) for
1 € v <4, which is given in Section 2 and a complete description of o.(F),) and
o.(F,) for 3 < v < 4, which is given in Section 3. Our systematic treatment
extends some auxiliary results from [4] and [6]. In addition to (2) some other
iterative functional equations will enter the scene.

2. Point spectra and eigenspaces of F},

Let F,,, 1 < v < 4, be defined as in Section 1 and, to unify notation, write
D, for the domain of F,,,i.e. Dy =D, Dy =U, D3 =8B, Dy =C.

Before dealing with the individual spectra and eigenspaces we collect some
facts which are true for all F),.

PROPOSITION 2
a) We have 0 € 0p(F,) and 1 & 0,(F),) for 1 <v <4

b) Fizv € {1,2,3,4}, and assume that @ belongs to the eigenspace E(F,, \).
Then ¢ satisfies the Schroder functional equation

f(@) =N (22) for every z € R, (3)
where \

y(A) = o1 (3a)
4.

1
2
¢) A< 3 implies X & op(F,) for 1 <v <

Proof. a)andb). Assume that ¢ € E(F,,\) and ¢ # o (the zero function
defined on R) for some fixed v € {1,2,3,4}, i.e., Fy[¢] = Ap. Then ¢ € D,
and by Proposition 1 a)
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Flel@) - 3 Fulel(20) = ola)

for every z € R. Hence

(3~ Delz) = 3 p(20)

for every z € R. Since A =1 or A = 0 would imply ¢ = o, assertions a) and b)
are proved.

c) Assume that ¢ € E(F,,\) \ {o} for some fixed v € {1,2,3,4}. Then
¢ € D, and therefore F,[¢|(z) = > 10,2 *p(2*z) converges for every z € R.
By b) we have
p(@) = vp(22) = 7"p(2"x) (4)
for every z € R and m € N, where v = ~v(\). We obtain F,[p](z) =
> he o(27) *p(x) and because of ¢ # 0, 3o ;(2y) ~® must converge. Therefore
necessarily |%| < 1, so that |%| <l,ie, A> %

REMARK

The general solution g : R — R of the Schréder equation (3), which will be
from now on referred to by (S)), is constructed as follows.

Choose any go : (=2, —1]U[1,2) — R and extend it uniquely by (S)) to a
function g7 : R\ {0} — R.

Then extend g1 to a function g : R — R by ¢(0) := 0 in case of A # 2 and
by ¢(0) := « € R arbitrarily in case of A = 2.

Proposition 2 says that the eigenvalues of F,(1 < v < 4) are contained in
the set

J = (3,09 \ {1}

It turns out that in fact 0,(F1) is the full set J. The point spectra o,(F,) then
shrink in a remarkable way according to the shrinking of the domain D,, of F,,
namely:

op(F2) =[5, 2\ {1}, op(F3) ={3,2}, op(Fa) ={2}.

Moreover it turns out that all the eigenspaces E(F),,\) for X € o,(F,) can be
characterized as solution sets of equation (Sy) under certain constraints. They
are all of infinite dimension with exactly one exception: E(Fy,2). These facts
are proved in the following

PRrROPOSITION 3
We have

a) op(F1) = (1/2,00) \ {1},
b) op(Fy) = [2/3,2]\ {1},
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c) op(Fs) ={2/3,2},
d) op(Fy) = {2}.
The eigenspaces
E(F,,\) ={¢ € F,; ¢ satisfies (Sx)}

are explicitely described (characterized) in the proof.

Proof. a) By Proposition 2, for any A € 0,(Fy) we have A € J.

Now let A € J. Take any nonzero solution g : R — R of the Schroder
equation (Sy) as described in Remark. Then g satisfies (4) with + given by
(3a), whence

Rildl) = 3 3¢ 0(2a) = 3 o o) = 5705 4@
k=0

= Ag(z),
which means that A is an eigenvalue of F;. Moreover, for A € J
E(F1,\) = {p € D; ¢ satisfies (Sx)} = {¢ : R — R; ¢ satisfies (Si)}.

The construction in Remark characterizes the elements of F(Fy,\) and clearly
dim E(Fy,\) = oo for every \ € op,(FY).

b) By a), for any A € o,(F3), we have A € J.

Now let A € J and take, as in Remark, any bounded nonzero initial function
go : (—2,—1]UJ[1,2) — R. Then its extension g1 by g(2z) = %g(x) is ultimately
bounded iff ]%y =225 <1, ie, T 2 <A <2

As in a), this shows that any A € [£,2]\ {1} is an eigenvalue of F,. All
elements of E(F,,\) for A € [2,2]\ {1} are generated from bounded g, :
(=2,—-1]U[1,2) — R, because the extension g; of an unbounded gy would
remain unbounded in the vicinity of +co or —oo, hence it does not belong to
U. Note that a function g € E(Fy, \) is not necessarily bounded around zero.
Clearly dim E(F5, \) = oo for every A € op,(F5).

¢) By b), for any X € 0,(F3), we have A € [2,2]\ {1}.

Now let A € [3,2]\ {1} and take, as in Remark, any bounded nonzero
initial function gg : (=2, —=1]U[1,2) — R. Then its extension g; : R\ {0} — R
by g(x) = vg(2x) stays bounded iff |[y| =1, ie. iff A =2 (y = —1)or A = 2
(v=1).

This shows as in a), that any \ € {%,2} is an eigenvalue of F3. As all
elements of F(F3, \) for A € {%, 2} are bounded, the generating initial function
has to be bounded as well.

Clearly dim E(F3, \) = oo for A = 2 and for A = 2.
d) By c), for any A € 0,(Fy), we have X € {%,2}.
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The elements of E(Fy, \) are the continuous and bounded solutions of (S).
The only continuous solution of (Sz) : f(z) = —f(2z) is the function o.
Therefore A = % is not an eigenvalue of Fy. The only continuous solutions
of (S2) : f(z) = f(2z) are the constant functions. So o,(F4) = {2} and
E(F,,2) = span {1}, where 1(z) = 1 for every z € R.

3. The specira of F5 and F4 in the Banach space sefting

We start with F3 € L(B,B). We have seen in Proposition 3 that o,(F3) =
{%,2}. Therefore %I — F3 and 21 — F5 are not injective. The remaining details
on the spectrum of F3 are given in

THEOREM 1

The point spectrum op(Fs) is {%, 2}. For every X € R\ {%, 2}, the operator
M — F3 is bijective. Consequently, the continuous spectrum o.(F3) and the
residual spectrum o,.(F3) are both emply.

Proof. For A\ #£ % and A #£ 2 the operator A\I — F3 is injective by Proposition

3 ¢). It remains to show that for any given f € Band A € R\{%, 2}, the operator
equation

(A = F3)[p] = f (5)

has a solution ¢ € B. To do so, first assume that (5) has a solution ¢ € B.
Then

1) = Mola) = { @) +  9l20) + g5 @)+

% f(2z) = %Np@w) - {%@(2:5) +% 0(2%z) + - - }
hence ) .
(A = Deple) = 5 Ap(22) = f(2) = 5 [(22). (6)
For A = 1, we define, according to (6),
®(x) = f(z) — 2f (g) . (6a)

A simple calculation shows that this function ® is in fact a bounded solution
of (5). Excluding from now on the case A = 1, we write equation (6) in the
equivalent form

A

Plo) = gy el2e) = o) - 57

or
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e(x) —yp(2z) = g(z) (7)
with + given by (3a) and

o) = o {10 - 5 s}

Clearly g € Band |[y| # 1 (as A # 2, A\ # 2). Iteration of (7) gives

m—1

p(x) = yp(22) + g(z) = - = y™p(2™2) + > y*g(2F)

for every z € R, m € N. Consequently, for |y| < 1 there is at most one bounded
solution @ of (7), given by

O(z) = Y ~*9(2*a). (8)

A direct substitution shows that (7) is satisfied with ¢ = ®. Going back further
to (6), we see that

flx) — % fQz)y=MN-1)®(z) — % AP(2z) =: h(x).

As f and h are bounded, we have f = F'[h] by Proposition 1 b), hence
1

f@) = (A= DF[e](z) — 5 AF[@](22)

=(\=1) {@(x) + %@(2@ + %@(2%) + - }

1 R
=\ ®(z) — F[P|(z).
So in case |y| < 1, ie., A € (00, 2)U(2,00), equation (5) has a solution @ € B,
given by (8).
Now let |y| > 1. We write equation (7) in the equivalent form

1 T 1 x
— o[ E) g2 9
e(z) 7<P<2) 7g<2> (9)
Tteration of (9) gives

@=(3)(5)-2 () ()
pr)={=- el ) — — ) 9l 5%
5 2 =\ 2k
for every z € R, n € N. Because of |y| > 1, there is at most one bounded
solution ® of (9), given by



20 Hans-Heinrich Kairies

o] k
1 T
g0 w
k=1
On the other hand, this function ® satisfies equation (9):

wo=o(3) = {l3) lz)
lE)wlE)
e (3)

Hence @ satisfies equation (6) and, as in the case |y| < 1, also equation (5).
The case |y| > 1 corresponds to the remaining values A € (3,1) U (1,2).
Recall that A = 1 has already been treated.

Finally, we discuss the spectrum of Fy € L(C,C).

By Proposition 3 d), the point spectrum of Fy is just the singleton {2}.
The eigenvalue % of F3 is no longer an eigenvalue of Fy. It turns out that %
belongs to the residual spectrum of F, and that the resolvent of Fj coincides
with the resolvent of Fj.

THEOREM 2

The point spectrum and the residual spectrum of Fy are singletons: op(Fy)=
{2}, 0 (Fy) = {2}. For every X € R\ {2/3,2} the operator \XI — Fy is bijective.
Consequently o.(Fy) is emply.

Proof. For X\ # 2, the operator \I — Fj is injective by Proposition 3 d).
Next we show, that for any A € R\ {%, 2} and for any given f € C, the operator
equation

(M = Fy)e] = f (11)
has a solution ¢ € C. To see this we argue exactly as in the proof of Theorem 1.

Let the value ®(z) of the function ® : R — R be defined by (6a) when
A =1, by (8) when A € (—o0,2) U (2,00) and by (10) when X € (2,1) U (1,2).
Then @ is a bounded solution of equation (11), as we have seen in the proof of
Theorem 1. Moreover, ® is continuous, as z — f(z)—2f (%) is continuous and
because the series (8) and (10) are uniformly convergent on R with continuous
terms. So R\ {2,2} belongs to the resolvent p(F}).

The only remaining case to be checked is A =
gument in the proof of Theorem 1). If equation (11
A= %, then necessarily

(not covered by the ar-
has a solution ¢ € C for

~— |

o) +p(20) =3 3120) — 1) | = g(0) (12)
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This corresponds to equation (7), recall that A = % iff v = —1. Note further,
that g = —3F, '[f] or equivalently f = —2Fy[g]. Iteration of (12) gives

n—1

pla) = (=1)"p(2%) + Y (~1)*g(2"2) (13)

k=0

for every z € R and n € N.
Now take any § € C such that §(2*) = (—=1)* and || g || = sup {|g(t)|; t € R} =
1. Then for the corresponding ¢ we would obtain by (13)

B(1) = (132" + 3 (~ 1= 1)k
k=0
(1)

for every n € N, which is impossible for a bounded ¢. Hence (12) has no
solution ¢ = ¢ € C for g = g.
Consequently, equation (11) with X\ = %, Le.

2
(3L = Falel = f (14)
has no solution ¢ = ¢ € C for f = f= —%F4[§].

Now let f* € C such that || f — f* ||< i

If (14) has asolution ¢ = ¢* € C for f = f*, then (12) and (13) are satisfied
with g = g* and we have, using || F, ' ||= 2 (which is proved in [4])

1g—g* I = =3E, M1+ 3 7 |
=3[ E =
SEN Pon B IFEA
1
=5

This implies [§(2*) — ¢*(2°)] = |(=1)* = ¢*(2")| < 3, hence ¢*(2%) = (=1)* -k

with e; € [, 3]. Now by (13)

o) = (-1 @) + 3 e
k=0

for every n € N which is again impossible for ¢* € C. This contradiction shows
that no element of the closed ball with center f and radius % belongs to the
image (21 — Fy)[C], so that this set is not dense in C, hence 2 € o,.(Fy).
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